The correct statement regarding the relative frequencies in the table is given as follows:
D. More students prefer Model 55 calculators than Model 77
How to get the relative frequencies from the table?For each model, the relative frequencies are given by the Total row, as follows:
Model 55: 0.5 = 50% of the students.Model 66: 0.25 = 25% of the students.Model 77: 0.25 = 25% of the students.Hence Model 55 is the favorite of the students, and thus option D is the correct option for this problem.
More can be learned about relative frequency at https://brainly.com/question/1809498
#SPJ1
In a laboratory experiment, the count of a certain bacteria doubles every hour. present midnighe a) At 1 p.m., there were 23 000 bacteria p How many bacteria will be present at r b) Can this model be used to determine the bacterial population at any time? Explain. 11. Guy purchased a rare stamp for $820 in 2001. If the value of the stamp increases by 10% per year, how much will the stamp be worth in 2010? Lesson 7.3 12. Toothpicks are used to make a sequence of stacked squares as shown. Determine a rule for calculating t the number of toothpicks needed for a stack of squares n high. Explain your reasoning. 16. Calc b) c) 17. As de: 64 re 7 S
Lab bacteria increase every hour. Using exponential growth, we can count microorganisms. This model assumes ideal conditions and ignores external factors that may affect bacterial growth.
In the laboratory experiment, the count of a certain bacteria doubles every hour. This exponential growth pattern implies that the bacteria population is increasing at a constant rate. If we know the initial count of bacteria, we can determine the number of bacteria at any given time by applying exponential growth.
For example, at 1 p.m., there were 23,000 bacteria. Since the bacteria count doubles every hour, we can calculate the number of bacteria at midnight as follows:
Number of hours between 1 p.m. and midnight = 11 hours
Since the count doubles every hour, we can use the formula for exponential growth
Final count = Initial count * (2 ^ number of hours)
Final count = 23,000 * (2 ^ 11) = 23,000 * 2,048 = 47,104,000 bacteria
Therefore, at midnight, there will be approximately 47,104,000 bacteria.
However, it's important to note that this model assumes ideal conditions and does not take into account external factors that may affect bacterial growth. Real-world scenarios may involve limitations such as resource availability, competition, environmental factors, and the impact of antibiotics or other inhibitory substances. Therefore, while this model provides an estimate based on exponential growth, it may not accurately represent the actual bacterial population under real-world conditions.
Learn more about exponential here:
https://brainly.com/question/29160729
#SPJ11