Answer:
a)17.92
b) 16.83 .... 21.17
Step-by-step explanation:
ρ→ z
0.14 = -1.080319341
-1.080 = (x - 19)/1 = 17.92
~~~~~~~~~~~~~~~~~~
3% / 2 = 1.5%
1.5% - 98.5%
ρ→ z
0.015 = -2.170090378 .... -2.17 = (x-19) =16.83
0.985 = 2.170090378 .... 2.17 = (x-19) =21.17
What is the value of h in the figure below? In this diagram, ABAD ~ ACBD.
Д.
С
0
20
А. 80
В. 16
ОО ооо
С. 60
D. 5
Е. 8
о
Е.
Answer:
[tex]h=\sqrt{16(4)}[/tex]
[tex]h=8[/tex]
[tex]ANSWER:E) 8[/tex]
-------------------------------
~HOPE IT HELPS
~HAVE A GREAT DAY!!
La señora Alcántara realiza una compra en el supermercado fortuna, ella solo tiene 12,400 pesos ,compra varios artículos y su compra es equivalente a 13,600 pesos. ¿Cuánto tiene que pagar si le realizan un descuento de un 15%? ¿Cuántos le quedaron de lo que tenía en efectivo?
Answer:
She spent = 11560 pesos
Amount left = 840 pesos
Step-by-step explanation:
Mrs. Alcántara makes a purchase at the fortuna supermarket, she only has 12,400 pesos, she buys several items and her purchase is equivalent to 13,600 pesos. How much do you have to pay if they give you a 15% discount? How many was left of what he had in cash?
Amount she has = 12400pesos
Item purchased = 13600 pesos
discount = 15 %
So, the total discount on the item purchased is
= 15 % of 13600
= 0.15 x 13600
= 2040 pesos
So, the amount spent = 13600 - 2040 = 11560 pesos
Amount she left = 12400 - 11560 = 840 pesos
Assume that $4,000 I deposited into an investment account doubled in value over a six year period. What annual interest rate must I have earned over this period? Is the initial amount of the deposit relevant to the calculation of the annual interest rate? Why or why not?
Answer:
Interest rate is about 12.246%
The initial deposit doesn't matter because when you divide both sides by the initial deposit you're always left with (1+i)ⁿ=2
Step-by-step explanation:
[tex]4000(1+i)^6=8000\\(1+i)^6=2\\1+i=\sqrt[6]{2} \\1+i=1.122462048\\i=.12246[/tex]
.4.1 Here are the data from Exercise 2.3.10 on the num-ber of virus-resistant bacteria in each of 10 aliquots: 14 14 15 26 13 16 21 20 15 13 (a) Determine the median and the quartiles. (b) Determine the interquartile range. (c) How large would an observati
Answer:
(a)
[tex]Q_1 = 14[/tex]
[tex]Median = 15[/tex]
[tex]Q_3 = 20[/tex]
(b) [tex]IQR = 6[/tex]
Step-by-step explanation:
Given
[tex]14\ 14\ 15\ 26\ 13\ 16\ 21\ 20\ 15\ 13[/tex]
[tex]n = 10[/tex]
Solving (a): Median and the quartiles
Start by sorting the data
[tex]Sorted: 13\ 13\ 14\ 14\ 15\ 15\ 16\ 20\ 21\ 26[/tex]
The median position is:
[tex]Median = \frac{n + 1}{2}[/tex]
[tex]Median = \frac{10 + 1}{2} = \frac{11}{2} = 5.5th[/tex]
This implies that the median is the average of the 5th and the 6th data;
So;
[tex]Median = \frac{15+15}{2} = \frac{30}{2} = 15[/tex]
Split the dataset into two halves to get the quartiles
[tex]Lower: 13\ 13\ 14\ 14\ 15\[/tex]
[tex]Upper: 15\ 16\ 20\ 21\ 26[/tex]
The quartiles are the middle items of each half.
So:
[tex]Lower: 13\ 13\ 14\ 14\ 15\[/tex]
[tex]Q_1 = 14[/tex] ---- 14 is the middle item
[tex]Upper: 15\ 16\ 20\ 21\ 26[/tex]
[tex]Q_3 = 20[/tex] ---- 20 is the middle item
Solving (b): The interquartile range (IQR)
This is calculated as:
[tex]IQR = Q_3 - Q_1[/tex]
[tex]IQR = 20 - 14[/tex]
[tex]IQR = 6[/tex]
Solving (c): Incomplete details
Bob had 10 more cars than Paul. Paul had 15 cars.
Answer:
Bob had 25 cars
Step-by-step explanation:
10+15=25
Find the value of x. What is the value of x?
Answer:
x = 16
Step-by-step explanation:
The product of the lengths theorem is a property that can be sued to describe the relationships of the sides between the tangents and secants in a circle. One of these products states the following;
The distance between the point of tangency and its intersection point with the exterior secant squared is equal to the product of the exterior secant times the interior secant.
This essentially means the following equation can be formed;
[tex](AB)^2=(DC)(CB)[/tex]
Substitute,
[tex]12^2=x*9[/tex]
Simplify,
[tex]144=9x[/tex]
Inverse operations,
[tex]\frac{144}{9}=x\\\\16=x[/tex]
Answer:
[tex]\boxed{\sf x=7}[/tex]
Step-by-step explanation:
By Targent-secant theorem...
[tex]\sf 9(x + 9) = {12}^{2} [/tex]
Use the distributive property to multiply 9 by x+9.
[tex]\sf 9x+81= {12}^{2} [/tex]
Now, let calculate 12 to the power of 2 and get 144.
[tex]\sf 9x+81=144[/tex]
Subtract 81 from both sides.
[tex]\sf 9x=63[/tex]
Divide both sides by 9.
[tex] \sf \cfrac{ 9x}{9} = \cfrac{63}{9} [/tex]
[tex]\sf x=7[/tex]
For any number n>1, is
|(.5 +.2i)^n|
A. greater than 1?
B. less than 1?
C. equal to 1?
PLZ HELP
Answer:
B. Less than 1
Step-by-step explanation:
You could plug in values of n greater than 1 and see what happens....
Example n=2 gives |(.5+.2i)^2|
Simplifying inside gives |(.5)^2+2(.5)(.2i)+(.2i)^2|
=|.25+.2i+.04i^2|=|.25+.2i-.04|=|.21+.2i|.
Applying the absolute value part gives sqrt(.21^2+.2^2)=sqrt(.0441+.04)=sqrt(.0841)=.29
This value is less than 1.
We should also be able to do the absolute value first then the power.
|.5+.2i|=sqrt(.25+.04)=sqrt(.29)
So |.5+.2i|^2=.29 which is what we got long way around.
Anyways (sqrt(.29))^n where n is greater than 1 will result in a number greater than 0 but less than 1.
Find the area of the figure
Please help :)
9514 1404 393
Answer:
66.5 cm²
Step-by-step explanation:
A horizontal line at the "knee" on the right will divide the figure into a 4 cm by 2 cm rectangle, and a trapezoid with bases 4 cm and 9 cm, and height 11-2 = 9 cm. Then the total area of the figure is ...
A = LW + 1/2(b1 +b2)h
A = (4 cm)(2 cm) + (1/2)(4 cm +9 cm)(9 cm) = 8 cm² +58.5 cm²
A = 66.5 cm² . . . . area of the figure
find a number such that when it is multiplied by 7 and 17 is subtracted from the product the result is the same as when it is multiplied by 3 and 19 added to the product .
Answer:
9
Step-by-step explanation:
Let the number be X
From the problem we have the following equation:
7x - 17 = 3x + 19
-> 4x = 36
-> x = 9
Answer:
9
Step-by-step explanation:
that is the procedure above
2.6.58
The lot in the figure shown, except for the house, shed, and driveway, is lawn. One bag of lawn fertilizer
costs $15.00 and covers 3,000 square feet.
Please help :)
Answer:
50 bags ;
£750
Step-by-step explanation:
The dimension of the rectangular lawn is 500ft by 300 ft
The area of the lawn an e obtained thus :
Area of rectangle = Length * width
Area of rectangle = 500 ft * 300 ft
Area of rectangle = 150000 feets
1 bag of fertilizer covers 3000 feets
The minimum bags of fertilizer required :
Area of rectangle / Area covered by 1 bag of fertilizer
Minimum bags of fertilizer required :
(150,000 / 3000) = 50 bags
50 bags of fertilizer
Cost per bag = 15
Total cost = 15 * 50 = £750
Carin opened a money market account with a
deposit of $3,000. This account earns 2% simple
interest annually. How many years will it take for
her $3,000 deposit to earn $420 in interest, assum-
ing she does not withdraw any of the money?
Answer:
7
Step-by-step explanation:
For simple interest,
I = prt
where I = interest,
p = principal (amount deposited)
r = annual rate of interest
t = time in years
We have r = 2% = 0.02
p = $3,000
I = $420
We need to find t
I = prt
420 = 3000 * 0.02 * t
420 = 60t
t = 420/60
t = 7
Answer: 7 years
A Sociology instructor gives students points for each discussion-board post and points for each reply to a post. Ana wrote 6 posts and 8 replies and received 114 points. Jae wrote 5 posts and 4 replies and received 79 points. Determine how many points a discussion post is worth and how many points a reply is worth?
Answer:
5 points per post and 2 points per replies
what is the range of the funcion y=x^2
Answer:
Range = [0, infinity)
Step-by-step explanation:
Minimum point of the graph is at (0,0) and it is a u shaped graph. Hence, range is 0 inclusive to infinity
Lendo 15 páginas por dia, Marcos leu um livro em
9 dias.
Para ler esse mesmo livro em 3 dias, quantas páginas
ele deveria ler por dia?
Answer:
Olha a foto.
Step-by-step explanation:
A cardboard box without a lid is to have a volume of 4,000 cm3. Find the dimensions that minimize the amount of cardboard used. (Let x, y, and z be the dimensions of the cardboard box.)
In a mixture of 240 gallons, the ratio of ethanol and gasoline is 3:1. If the ratio is to be 1:3, then find the quantity of gasoline that is to be added.
Answer:
480 gallons.
Step-by-step explanation:
Given that in a mixture of 240 gallons, the ratio of ethanol and gasoline is 3: 1, if the ratio is to be 1: 3, to find the quantity of gasoline that is to be added the following calculation must be performed:
240/4 x 3 = Ethanol
240/4 = Gasoline
180 = Ethanol
60 = Gasoline
0.25 = 180
1 = X
180 / 0.25 = X
720 = X
720 - 180 - 60 = X
480 = X
Therefore, 480 gallons of gasoline must be added if the ratio is to be 1: 3.
It says I need too put 20 characters in too ask the question so ignore this part
Determine the value of z in the figure
5z
130°
A.Z = 30°
B.Z = 45°
C.z = 50°
D.Z = 10°
Hi!
180° - 130° = 50°
5z = 50° || : 5
z = 10°
Answer:
10
Step-by-step explanation:
since 130 and the 5z are complementary angles, by subtracting 130 from 180, you get 50. then you equal in 50 to 5z. 50=5z. to solve, you divide 5 from 50 and your answer is 10.
math help plz
how to divide polynomials, how to understand and step by step with an example provided please
Answer:
hiiiiiii....!!! how r u
5/6 ÷ 1/3 - 2/3 (2/5)
Answer:
[tex] \frac{67}{30} \: \text{or} \:2 \frac{7}{30} [/tex]
Step-by-step explanation:
5/6 ÷ 1/3 - 2/3 (2/5)
= 5/6 ÷ 1/3 - 2/3 × 2/5= 5/2 - 2/3 × 2/5= 5/2 - 4/15= 67/30 or 2 7/30Hope it helps you! \(^ᴥ^)/
what is 3/2 divided by 1/8
helppp
Answer: 12
Step-by-step explanation:
The first step to dividing fractions is to find the reciprocal (reverse the numerator and denominator) of the second fraction. Next, multiply the two numerators. Then, multiply the two denominators. Finally, simplify the fractions if needed.
What is the average (with 0 decimal places) across all schools for the total score? Group of answer choices 1287 1215 1221 1229
Answer:
See explanation
Step-by-step explanation:
Required
The average
The data whose average is to be calculated are not given.
However, the formula to calculate the average is:
[tex]\bar x = \frac{\sum x}{n}[/tex]
Assume the data is:
[tex]1287\ 1215\ 1221\ 1229[/tex]
This means that the number of schools is 4
So:
[tex]\bar x = \frac{1287+ 1215+ 1221+ 1229}{4}[/tex]
[tex]\bar x = \frac{4952}{4}[/tex]
[tex]\bar x = 1238[/tex]
The average of the assumed data is 1238
1. You measure 24 textbooks' weights, and find they have a mean weight of 75 ounces. Assume the population standard deviation is 3.3 ounces. Based on this, construct a 90% confidence interval for the true population mean textbook weight.
2. You measure 37 backpacks' weights, and find they have a mean weight of 45 ounces. Assume the population standard deviation is 10.1 ounces. Based on this, construct a 95% confidence interval for the true population mean backpack weight.
3. You measure 30 watermelons' weights, and find they have a mean weight of 37 ounces. Assume the population standard deviation is 4.1 ounces. Based on this, what is the maximal margin of error associated with a 90% confidence interval for the true population mean watermelon weight.
4. A student was asked to find a 99% confidence interval for widget width using data from a random sample of size n = 16. Which of the following is a correct interpretation of the interval 11.8 < μ < 20.4?
A. There is a 99% chance that the mean of a sample of 16 widgets will be between 11.8 and 20.4.
B. The mean width of all widgets is between 11.8 and 20.4, 99% of the time. We know this is true because the mean of our sample is between 11.8 and 20.4.
C. With 99% confidence, the mean width of all widgets is between 11.8 and 20.4.
D. With 99% confidence, the mean width of a randomly selected widget will be between 11.8 and 20.4.
E. There is a 99% chance that the mean of the population is between 11.8 and 20.4.
5. For a confidence level of 90% with a sample size of 23, find the critical t value.
Answer:
(73.845 ; 76.155) ;
(41.633 ; 48.367) ;
1.273 ;
C. With 99% confidence, the mean width of all widgets is between 11.8 and 20.4. ;
1.717
Step-by-step explanation:
1.)
Given :
Mean, xbar = 75
Sample size, n = 24
Sample standard deviation, s = 3.3
α = 90%
Confidence interval = mean ± margin of error
Margin of Error = Tcritical * s/√n
Tcritical at 90% ; df = 24 - 1 = 23
Tcritical = 1.714
Margin of Error = 1.714 * 3.3/√24 = 1.155
Confidence interval = 75 ± 1.155
Confidence interval = (73.845 ; 76.155)
2.)
Given :
Mean, xbar = 45
Sample size, n = 37
Sample standard deviation, s = 10.1
α = 95%
Confidence interval = mean ± margin of error
Margin of Error = Tcritical * s/√n
Tcritical at 95% ; df = 37 - 1 = 36
Tcritical = 2.028
Margin of Error = 2.028 * 10.1/√37 = 3.367
Confidence interval = 45 ± 3.367
Confidence interval = (41.633 ; 48.367)
3.)
Given :
Mean, xbar = 37
Sample size, n = 30
Sample standard deviation, s = 4.1
α = 90%
Margin of Error = Tcritical * s/√n
Tcritical at 90% ; df = 30 - 1 = 29
Tcritical = 1.700
Margin of Error = 1.700 * 4.1/√30 = 1.273
5.)
Sample size, n = 23
Confidence level, = 90%
df = n - 1 ; 23 - 1 = 22
Tcritical(0.05, 22) = 1.717
Wires manufactured for a certain computer system are specified to have a resistance of
between 0.11 and 0.16 ohm. The actual measured resistances of the wires produced by
Company A have a normal probability distribution, with a mean of 0.14 ohms, and a
standard deviation of 0.003 ohms. What is the probability that a randomly selected wire
from Company A’s production lot will meet the specifications?
Answer:
8d68d68fu9d6rf0d
c9yd7xpjd
puf68d6rif7
In what ratio of line x-y-2=0 divides the line segment joining (3,-1) and (8,9)?
[tex] \large{ \tt{❁ \: USING \: INTERNAL \: SECTION \: FORMULA: }}[/tex]
[tex] \large{ \bf{✾ \: P(x \:, y \: ) = ( \frac{m_{1}x_{2} + m_{2}x_{1}}{m_{1} + m_{2}} \: ,\: \frac{m_{1}y_{2} + m_{2}y_{1}}{m_{1} + m_{2}}) }}[/tex]
[tex] \large{ \bf{⟹ \: ( \frac{8m + 3n}{m + n} , \: \frac{9m -n}{m + n}) }}[/tex]
Since point P lies on the line x - y - 2 = 0 ,[tex] \large{ \bf{ ⟼\frac{8m + 3n}{m + n} - \frac{9m - n}{m + n} - 2 = 0 }}[/tex]
[tex] \large{ \bf{⟼ \: \frac{8m + 3n - 9m + n}{m + n} - 2 = 0 }}[/tex]
[tex] \large{ \bf{⟼ \: \frac{4n - m}{ m + n} - 2 = 0 }}[/tex]
[tex] \large{⟼ \: \bf{ \frac{4n - m}{m + n }} = 2} [/tex]
[tex] \large{ \bf{⟼ \: 4n - m = 2m + 2n}}[/tex]
[tex] \large{ \bf{⟼ \: 4n -2 n = 2m + m}}[/tex]
[tex] \large{ \bf{⟼2n = 3m}}[/tex]
[tex] \large{ \bf{⟼ \: 3m = 2n}}[/tex]
[tex] \large{ \bf{⟼ \: \frac{m}{n} = \frac{2}{3} }}[/tex]
[tex] \boxed{ \large{ \bf{⟼ \: m : \: n = 2: \: }3}}[/tex]
Hence , The required ratio is 2 : 3 .-Hope I helped! Let me know if you have any questions regarding my answer and also notify me , if you need any other help! :)
▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
PLEASE HELP WILL MARK BRAINLIEST!
9514 1404 393
Answer:
7.5
Step-by-step explanation:
Corresponding sides are proportional, so ...
UV/VW = LM/MN
x/6 = 15/12
x = 6(15/12) = 15/2
x = 7.5
A Line passes through the .4 -6 and has a slope of -3 and four which is the equation of the line
Answer:
(in the image)
Step-by-step explanation:
I'm not sure I understood your question completely but I hope this helps.
2. The prices, in dollars per unit, of the three commodities X, Y and Z are x, y and z,
respectively
Person A purchases 4 units of Z and sells 3 units of X and 3 units of Y.
Person B purchases 3 units of Y and sells 2 units of X and 1 unit of Z.
Person C purchases 1 unit of X and sells 4 units of Y and 6 units of Z.
In the process, A, B and C earn $40, $50, and $130, respectively.
a) Find the prices of the commodities X, Y, and Z by solving a system of linear
equations (note that selling the units is positive earning and buying the units is
negative earning).
Answer:
Price of X is $24.81
Price of Y is $3.66
Price of Z is $11.36
Step-by-step explanation:
for person A, we know that earns $40, then we can write the equation:
-4*z + 3*x + 3*y = $40
For person B, we know that earns $50, then:
1*z + 2*x - 3*y = $50
For person C, we know that earns $130, then:
6*z - 1*x + 4*y = $130
Then we have a system of equations:
-4*z + 3*x + 3*y = $40
1*z + 2*x - 3*y = $50
6*z - 1*x + 4*y = $130
To solve the system, we need to isolate one of the variables in one of the equations.
Let's isolate z in the second equation:
z = $50 - 2*x + 3*y
now we can replace this in the other two equations:
-4*z + 3*x + 3*y = $40
6*z - 1*x + 4*y = $130
So we get:
-4*($50 - 2*x + 3*y) + 3*x + 3*y = $40
6*($50 - 2*x + 3*y) - 1*x + 4*y = $130
Now we need to simplify both of these, so we get:
-$200 + 11x - 9y = $40
$350 - 13*x + 28*y = $130
Now again, we need to isolate one of the variables in one of the equations.
Let's isolate x in the first one:
-$200 + 11x - 9y = $40
11x - 9y = $40 + $200 = $240
11x = $240 + 9y
x = ($240 + 9y)/11
Now we can replace this in the other equation:
$350 - 13*x + 28*y = $130
$350 - 13*($240 + 9y)/11 + 28*y = $130
Now we can solve this for y.
- 13*($240 + 9y)/11 + 28*y = $130 - $350 = -$220
-13*$240 - (13/11)*9y + 28y = - $220
y*(28 - (9*13/1) ) = -$220 + (13/11)*$240
y = ( (13/11)*$240 - $220)/(28 - (9*13/1) ) = $3.66
We know that:
x = ($240 + 9y)/11
Replacing the value of y, we get:
x = ($240 + 9*$3.66)/11 = $24.81
And the equation of z is:
z = $50 - 2*x + 3*y = $50 - 2* $24.81 + 3*$3.66 = $11.36
Then:
Price of X is $24.81
Price of Y is $3.66
Price of Z is $11.36
If the current through a circuit is 2 A and the resistance of a light bulb in the circuit is 10 Ohms what is tge voltage difference across the light bulb
Answer:
v = ir
2 times 10 = 20v
Step-by-step explanation:
i think it is the one
40 points! Need help finding.
The cordent plan of the answer is 2
Answer:
The scale factor will just be 2
Step-by-step explanation:
The length of PQ is twice as larger than the length of AB.
so from 12 to 6 or 6 to 12, we multiply 6 by 2 which equals to 12