Answer:
The temperature of the 5th day was 3°C
Step-by-step explanation:
Mean temperature of the first 4 days = 8°C
Note that:
Mean = Sum of temperatures ÷ number of days
∴ 8 = sum of temperature ÷ 4
[tex]= 8 = \frac{sum\ of\ temperatures}{4}[/tex]
[tex]= sum\ of\ temperatures\ = 8\ \times\ 4 = 32[/tex]
Therefore the sum of the first 4 days = 32
Let the temperature of the next day (the fifth day) be m
Hence,
sum of the temperatures of first 5 days = 32 + m - - - - (1)
Next, the sum of the first 5 days can be calculated from the given average of the first 5 days as follows:
Mean temperature of the first 5 days = 7
[tex]Mean = \frac{sum\ of\ temperatures}{number \ of\ days}\\\\7 = \frac{sum\ of\ temperatures}{5} \\sum\ of\ temperatures\ = \ 7\ \times\ 5\ = 35\\sum\ of\ temperature\ of\ the\ first\ 5\ days\ =\ 35 - - - - - (2)[/tex]
Now, you will notice that equation (1) = equation (2)
∴ 32 + m = 35
m = 35 - 32 = 3
therefore, the temperature of the 5th day was 3°C
The histogram shows that nine students had grades of 80 or higher.
The histogram shows there were 22 students in the class.
The histogram shows there were 25 students in the class.
The histogram is symmetrical.
The histogram has a peak.
The histogram shows the data is evenly distributed.
The histogram shows a gap in the data
Answer:
bde
Step-by-step explanation:
Answer:
B: The histogram shows there were 22 students in the class.
D: The histogram is symmetrical.
E:The histogram has a peak.
F: The histogram shows the data is evenly distributed.
Step-by-step explanation:
edg 2020
Fine the surface area
Answer:
88 if a rectangular prism, 64 based on the net.
Step-by-step explanation:
A = 4 * 2
B = 6 * 2
C = 4 * 2
D = 6 * 2
E = 6 * 4
A/C= 8
B/D= 12
E = 24
2(8) + 2(12) + 24 = 64
Surface Area: 64
However, a rectangular prism must have 6 faces, so unless this is a box, the answer would be 88, and E = F, the last face.
Given a sample of 35, what is the sample standard deviation of a pair of jeans if the 90% confidence interval is [37.14, 42.86]
Answer:
10.295Step-by-step explanation:
Using the value for calculating the confidence interval as given;
CI = xbar + Z*σ/√n
xbar is the mean = 37.14+42.86/2
xbar= 80/2
xbar = 40
Z is the z-score at the 90% confidence = 1.645
σ is the standard deviation
n is the sample size = 35
Given the confidence interval CI as [37.14, 42.86]
Using the maximum value of the confidence interval to get the value of the standard deviation, we will have;
42.86 = xbar + Z*σ/√n
42.86 = 40 + 1.645* σ/√35
42.86-40 = 1.645*σ/√35
2.86 = 1.645*σ/√35
2.86/1.645 = σ/√35
1.739 = σ/√35
1.739 = σ/5.92
σ= 1.739*5.92
σ = 10.295
Hence, the sample standard deviation of a pair of jeans is 10.295
In parallelogram PQSR, what is PQ? 2 cm 5 cm 6 cm 9 cm
Answer:
D) 9 cm
Step-by-step explanation:
EDGE 2020
(D) 9 cm.
Parallelogram:A simple (non-self-intersecting) quadrilateral with two sets of parallel sides is known as a parallelogram in Euclidean geometry. A parallelogram's facing or opposing sides are of equal length, and its opposing angles are of similar size. The Euclidean parallel postulate or one of its equivalent formulations must be used in order to demonstrate the congruence of opposed sides and opposite angles because both conditions are a direct result of this postulate.In contrast, a quadrilateral with only one set of parallel sides is referred to as a trapezoid or trapezium in British or American English.The parallelepiped is a parallelogram's three-dimensional equivalent.Therefore, the correct answer is (D) 9 cm.
Know more about a parallelogram here:
https://brainly.com/question/970600
#SPJ2
A marathon started at 7:30am. The winner took 3hrs and 47
minutes to complete the race and the last person finished 55
minutes later. At what time did the marathon end?
Answer:
12:12
Step-by-step explanation:
first add 3 hours to 7:30 which makes it 10:30
then add 47 min and it becomes 11:17
add 55 min to that and its 12:12
suppose a chemical engineer randomly selects 3 catalysts for testing from a group of 10 catalysts, 6 of which have low acidity & 4 have high acidity. What is the probability that exactly2 lower acidic catalysts are selected?
Step-by-step explanation:
Total catalysts = 10
Probability of 2 lower acidic catalysts = 2/10 = 1/5
What is the median of these figure skating ratings?
6.0 6.0 7.0 7.0 7.0 8.0 9.0
Answer:
The median would be 7.0.
Step-by-step explanation:
The median of a set of numbers means it is the middle number. since this set has 7 numbers you would need to find the number that is in the middle of the set. This would be the 4th number since it is in the middle. 7.0 is your answer.
Justine and Meagan played a trivia game. Justine answered a question incorrectly and lost 7 points. Then Meagan answered correctly and got the opposite score. Which is the correct way to represent that “the opposite of Justine’s score was equal to Meagan’s score
Answer:
[tex]m = -j[/tex], or in this case, [tex]m=-(-7)[/tex]
Step-by-step explanation:
Assuming that Justine's score is represented by [tex]j[/tex] and Meagan's score is represented by [tex]m[/tex], we know that [tex]j[/tex] will always be the opposite of [tex]m[/tex].
To represent opposite, we put a negative sign before the variable.
This makes the current number, even if it's negative, the opposite value.
Let's test it out.
Since Justine's score is -7, substituting it into the equation makes it [tex]m=-(-7)[/tex]. We know that two negatives make a positive, so [tex]m=7[/tex].
Now let's assume Justine's score is 7. Plugging it into the equation, we get [tex]m=-(7)[/tex]. That's the same thing as [tex]m = -1(7)[/tex], and -1 times 7 is -7.
Hope this helped!
1
Drag and drop the
labels to the correct
sides using Angle A
as a reference.
A
boy
3
4
hypotenuse
adjacent
opposite
5
6
hypotenuse goes to the line across from the right angle. adjacent is the bottom one. lastly opposite is the left one.
Step-by-step explanation:
Hi, there!!
According to the question, we should find the hypotenuse, adjacent, and opposite to the refrence angle A ,right.
so, let's simply work with it,
hypotenuse (h)= AC {side opposite to the 90° is always a hypotenuse}.
opposite (p)= BC { as the side opposite to the refrence angle is always perpendicular or opposite}
adjacent (b)= AB { as remaining side is always base or adjacent}
Hope it helps....
Help with this please
[tex](f+g)(x)=\sqrt{4x+6}+\sqrt{4x-6}[/tex]
Answer:
[tex]\huge\boxed{Option \ 4: (f+g)(x) = \sqrt{4x+6} + \sqrt{4x-6}}[/tex]
Step-by-step explanation:
[tex]f(x) = \sqrt{4x+6}\\ g(x) = \sqrt{4x-6}[/tex]
Adding both
[tex](f+g)(x) = \sqrt{4x+6} + \sqrt{4x-6}[/tex]
Beginning 177 miles directly north of the city of Morristown, a van travels due west. If the van is travelling at a speed of 31 miles per hour, determine the rate of change of the distance between Morristown and the van when the van has been travelling for 71 miles. (Do not include units in your answer, and round to the nearest hundredth.)
Answer:
Step-by-step explanation:
From the given information;
let the hypotenuse be a , the opposite which is the north direction be b and the west direction which is the adjacent be c
SO, using the Pythagoras theorem
a² = c² + 177²
By taking the differentiation of both sides with respect to time t , we have
[tex]2a \dfrac{da}{dt} = 2c \dfrac{dc}{dt} + 0[/tex]
[tex]\dfrac{da}{dt} = \dfrac{c}{a} \dfrac{dc}{dt}[/tex]
At c = 71 miles,[tex]a = \sqrt{ (71)^2 +(177)^2}[/tex]
[tex]a = \sqrt{ 5041+31329}[/tex]
[tex]a = \sqrt{ 36370}[/tex]
a = 190.71
SImilarly, [tex]\dfrac{dc}{dt} = \ 31 miles \ / hr[/tex]
Thus, the rate of change of the distance between Morristown and the van when the van has been travelling for 71 miles can be calculate as:
[tex]\dfrac{da}{dt} = \dfrac{c}{a} \dfrac{dc}{dt}[/tex]
[tex]\dfrac{da}{dt} = \dfrac{71}{190.71} \times 31[/tex]
[tex]\dfrac{da}{dt} = 0.37229 \times 31[/tex]
[tex]\mathbf{\dfrac{da}{dt} = 11.54}[/tex] to the nearest hundredth.
These figures are similar. The area of one is given. Find the area of the other. PLZ HELP Plz ps the answer is not 12
==================================================
Explanation:
Dividing the side lengths, the scale factor is 6/3 = 2. This means the larger figure has a side length twice as long compared to its smaller counterpart.
How can we use this to figure out how the areas are connected? By simply squaring the scale factor to get 2^2 = 2*2 = 4, then we divide the larger area over 4 to get 24/4 = 6.
The longer side is 2 times longer
The larger area is 4 times larger
--------------------
Let's say we had a 3 by 3 square. It's area would be 9.
Also, let's say we had a 6 by 6 square. It's area is 36.
Notice the ratio of areas is 36/9 = 4, so the larger square is 4 times larger than the smaller. This 4 matches with what we got earlier.
----------------------
Another example:
square A is 7 by 7 with area 49
square B is 21 by 21 with area 441
ratio of areas is 441/49 = 9, which is exactly equal to 3^2, and the 3 comes from the ratio of the sides 21/7 = 3.
------------------------
So in short, you find the linear scale factor by dividing the sides. Then you square the result to get the area scale factor, which you use to find the smaller area.
linear scale factor = (new side)/(old side)
area scale factor = (linear scale factor)^2
smaller area = (larger area)/(area scale factor)
Ever since Renata moved to her new home, she's been keeping track of the height of the tree outside her window. H represents the height of the tree (in centimeters), t years since Renata moved in. H = 210 + 33t How fast does the tree grow? ANSWER centimeters per year.
Answer:
The tree grows 33cm per year
Step-by-step explanation:
Here in this question, we are interested in knowing how fast the growth of the tree is.
This is easily obtainable from the equation for the height of the tree.
Mathematically, the equation is given as;
H = 210 + 33t
Interpreting this, we can have 210 as the original height of the tree when Renata moved in, while the term 33 represents the growth per year.
So we can say the tree adds a height of 33 cm each year and this translates to the yearly growth of the tree
Describe each of the following values as (A) a discrete random variable, (B) a continuous random variable, or (C) not a random variable:
1. Exact weight of quarters now in circulation in the United States
2. Shoe sizes of humans
3. Political party affiliations of adults in the United States
A. 1.C
2.A
3.В
B. 1.B
2.A
3.С
C. 1.A
2.C
3.В
D. 1.A
2.В
3.С
Answer:
(1) B
(2) A
(3) C
Step-by-step explanation:
A random variable is a variable that denotes a set of all the possible outcomes of a random experiment. It is denotes by a single capital letter such as X or Y.
There are two types of random variables.
Discrete random variable: These type of random variable takes finite number of values, such as 0, 1, 2, 3, 4, ... For example, number of girl child in a neighborhood.Continuous random variable: These type of random variables takes infinite number of possible values. For example, the height, weight.(1)
Exact weight of quarters now in circulation in the United States.
The variable weight is a continuous variable.
Thus, the exact weight of quarters now in circulation in the United States is a continuous random variable.
(2)
Shoe sizes of humans.
The shoe size of a person are discrete and finite values.
Thus, the shoe sizes of humans are discrete random variables.
(3)
Political party affiliations of adults in the United States.
This variable is not a quantitative variable.
It is a qualitative variable.
Thus, the political party affiliations of adults in the United States is no random variable.
Of the three properties, reflexive, symmetric, and transitive that define the relation "is equal to," which one could also apply to "is less than" and "is greater than?" transitive reflexive symmetric
Answer: Transitive property.
Step-by-step explanation:
First, for the equality we have:
Reflexive:
For all real numbers x, x = x.
Symmetric:
For all real numbers x, y
if x= y, then y = x.
Transitive:
For reals x, y and z.
if x = y, and y = z, then x = z.
Now, let's talk about inequalities.
first, the reflexive property will say that:
x > x.
This has no sense, so this property does not work for inequalities.
Now, the reflexive.
If x > y, then y > x.
Again, this has no sense, if x is larger than y, then we can never have that y is larger than x. This property does not work for inequalities.
Not, the transitive property.
if x > y, and y > z, then x > z.
This is true.
x is bigger than y, and y is bigger than z, then x should also be bigger than z.
x > y > z.
And this also works for the inverse case:
x < y and y < z, then x < z.
So the correct option is transitive property.
What is the solution to this ?
Answer:
[tex]\boxed{\sf C. \ x\geq -4}[/tex]
Step-by-step explanation:
[tex]-8x+4\leq 36[/tex]
[tex]\sf Subtract \ 4 \ from \ both \ sides.[/tex]
[tex]-8x+4-4 \leq 36-4[/tex]
[tex]-8x\leq 32[/tex]
[tex]\sf Divide \ both \ sides \ by \ -8.[/tex]
[tex]\frac{-8x}{-8} \leq \frac{32}{-8}[/tex]
[tex]x\geq -4[/tex]
What is 45x62 Please help.
Answer:
45
62x
______
90
2700+
_________
2790
Step-by-step explanation:
A car dealer recommends that transmissions be serviced at 30,000 miles. To see whether her customers are adhering to this recommendation, the dealer selects a random sample of 40 customers and finds that the average mileage of the automobiles serviced is 30,456. The standard deviation of the population is 1684 miles. By finding the P-value, determine whether the owners are having their transmissions serviced at 30,000 miles. Use α = 0.10. Are the owners having their transmissions serviced at 30,000 miles?
Answer:
No, the owners are not having their transmissions serviced at 30,000 miles.
Step-by-step explanation:
We are given that a car dealer recommends that transmissions be serviced at 30,000 miles.
The car dealer selects a random sample of 40 customers and finds that the average mileage of the automobiles serviced is 30,456. The standard deviation of the population is 1684 miles.
Let [tex]\mu[/tex] = true average mileage of the automobiles serviced.
So, Null Hypothesis, [tex]H_0[/tex] : [tex]\mu[/tex] = 30,000 miles {means that the owners are having their transmissions serviced at 30,000 miles}
Alternate Hypothesis, [tex]H_A[/tex] : [tex]\mu\neq[/tex] 30,000 miles {means that the owners are having their transmissions serviced at different than 30,000 miles}
The test statistics that will be used here is One-sample z-test statistics because we know about population standard deviation;
T.S. = [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex] ~ N(0,1)
where, [tex]\bar X[/tex] = sample average mileage serviced = 30,456 miles
[tex]\sigma[/tex] = population standard deviation = 1684 miles
n = sample of customers = 40
So, the test statistics = [tex]\frac{30,456-30,000}{\frac{1684}{\sqrt{40} } }[/tex]
= 1.71
The value of z-statistics is 1.71.
Also, the P-value of the test statistics is given by;
P-value = P(Z > 1.71) = 1 - P(Z [tex]\leq[/tex] 1.71)
= 1 - 0.9564 = 0.0436
For the two-tailed test, the P-value is calculated as = 2 [tex]\times[/tex] 0.0436 = 0.0872.
Since the P-value of our test statistics is less than the level of significance as 0.0872 < 0.10, so we have sufficient evidence to reject our null hypothesis as the test statistics will fall in the rejection region.
Therefore, we conclude that the owners are having their transmissions serviced at different than 30,000 miles.
in the factory 25 men working 26 hour can produce 1300 radios . how manny hours must the same group of men work to produce 450 radios
Answer:
9 hours
Step-by-step explanation:
Since the group of men remains the same, number of hours is proportional to number of radios.
1300/26 = 450/h
h = 26 * 450 / 1300 = 9 hours
What is 7 x -5?........
Answer:
-35
Step-by-step explanation:
7*5*(-1)
The solution to the expression 7 * -5 is -35
How to evaluate the expressionFrom the question, we have the following parameters that can be used in our computation:
7 * -5
Evaluate all the products in the expression
so, we have the following representation
7 * -5 = -35/1
Evaluate all the quotients in the expression
so, we have the following representation
7 * -5 = -35
Lastly, we have
7 * -5 = -35
Hence, the solution is -35
Read more about expressions at
https://brainly.com/question/30492964
#SPJ6
Find x. A. 44√3 B. 33 C. 33√2 D. 11√3
Answer:
B
Step-by-step explanation:
Sin 45 = y/(11√6)
1/√2 = y/(11√6)
y= (11√6)/√2
y= 11√3
tan 60 = x/y
√3 = x/y
x = y√3
= (11√3)√3
= 11(3)
= 33
a family spent $93 at a carnival.
*they spent $18 on tickets and $30 on food. they spent the rest of the money on games.
which equation can be used to to find "g", the amount of money used on games.
Answer: 93-(18+30)=g
93-48=g
45=g
Step-by-step explanation: yup
The answer is 93-18-30-g=0 or 18+30+g=93
Draw the function
[tex]y = \tan(x) [/tex]
on the interval [-pi, pi]
Answer:
The answer is in the photo below. The interval is (-pi, pi) and the function is y = tanx.
Evaluate the double integral ∬Ry2x2+y2dA, where R is the region that lies between the circles x2+y2=16 and x2+y2=121, by changing to polar coordinates.
Answer:
See answer and graph below
Step-by-step explanation:
∬Ry2x2+y2dA
=∫Ry.2x.2+y.2dA
=A(2y+4Ryx)+c
=∫Ry.2x.2+y.2dA
Integral of a constant ∫pdx=px
=(2x+2.2Ryx)A
=A(2y+4Ryx)
=A(2y+4Ryx)+c
The graph of y=A(2y+4Ryx)+c assuming A=1 and c=2
The evaluation of the double integral is [tex]\mathbf{ \dfrac{105}{2}\pi }[/tex]
The double integral [tex]\mathbf{\int \int _R\ \dfrac{y^2}{x^2+y^2} \ dA}[/tex], where R is the region that lies between
the circles [tex]\mathbf{x^2 +y^2 = 16 \ and \ x^2 + y^2 = 121}[/tex].
Let consider x = rcosθ and y = rsinθ because x² + y² = r²;
Now, the double integral can be written in polar coordinates as:
[tex]\mathbf{\implies \int \int _R\ \dfrac{y^2}{x^2+y^2} \ dxdy}[/tex]
[tex]\mathbf{\implies \int \int _R\ \dfrac{r^2 \ sin^2 \theta}{r^2} \ rdrd\theta}[/tex]
[tex]\mathbf{\implies \int \int _R\ \ sin^2 \theta \ r \ drd\theta}[/tex]
Thus, the integral becomes:
[tex]\mathbf{=\int^{2 \pi}_{0} sin^2 \theta d\theta \int ^{11}_{4} rdr }[/tex]
since 2sin² = 1 - cos2θ∴
[tex]\mathbf{=\int^{2 \pi}_{0} \dfrac{1-cos 2 \theta }{2} \ \theta \ d\theta\dfrac{r}{2} \Big|^{11}_{4}dr }[/tex]
[tex]\mathbf{\implies \dfrac{1}{2} \Big[\theta - \dfrac{sin \ 2 \theta}{2}\Big]^{2 \pi}_{0} \ \times\Big[ \dfrac{11^2-4^2}{2}\Big]}[/tex]
[tex]\mathbf{\implies \dfrac{\pi}{2} \times\Big[ 121-16\Big]}[/tex]
[tex]\mathbf{\implies \dfrac{105}{2}\pi }[/tex]
Learn more about double integral here:
https://brainly.com/question/19756166
Find the sum of the first 12 terms of the sequence 512, 256, 128, …
Answer: 1023.75 (a)
Step-by-step explanation:
The sequence is a Geometric progression with the common ratio of ¹/₂ and first term of 512.
a = 512, r = ¹/₂. To determine the ratio, just divide the second term by the first term.
Now to calculate the sum, we consider two formula here and select the one that is most appropriate,
(1) a( rⁿ - 1 )/r - 1, when r is greater than 1
(2) a( 1 - rⁿ )/1 - rⁿ, when r is less than 1.
In this question, formula 2 shall be appropriate because r is less than 1.
so,
S₁₂ = 512( 1 - 0.5¹² )/1 - 0.5
512( 1 - 2.44 ₓ 10⁻⁴ )/0.5
= 512( 0,9998 )/0.5
= 511.875/0.5
= 1023.75
The answer is a
Your’re in charge of evening entertainment for an important client group You use the company credit card to take their four representatives out to dinner. Two people order the steak entree for 32.50 Two people order the grilled tuna for 28.90 and you order the lasagna for 24.95 When the bill comes you tip 20% what is the amount of tip you leave
Answer:
total amount paid = 32.5 + 28.9 + 24.95 = 86.35
20% of the total amount paid = 0.2 * 86.35 = 17.27
you tip 17.25$
perform the following division (-2/3) ÷ (4/7)
Answer:
-7/6
Step-by-step explanation:
-2/3 x 7/4 = -14/12 = -7/6
Answer: -7/6
Step-by-step explanation: (-2/3) ÷ (4/7) can be rewritten as (-2/3) · (7/4).
Remember that dividing by a fraction is the same thing
as multiplying by the reciprocal of the fraction.
Before multiplying however, notice that we
can cross-cancel the 2 and 4 to 1 and 2.
So multiplying across the numerators and denominator and
remembering our negative in the first fraction, we have -7/6.
point a is at (6,-6) and point c is at (-6, -2)
Find the cooridantes of point b on AC such that AB=3/4 AC
Answer:
(-3,-3)
B=(6-9,6+3)
-58.58 is equal to the rational number
Answer:
This is true
Step-by-step explanation:
Because a rational number can be expressed as going on forever.
A total of n bar magnets are placed end to end in a line with random independent orientations. Adjacent like poles repel while ends with opposite polarities join to form blocks. Let X be the number of blocks of joined magnets. Find E(X) and Var(X).
Answer:
E(x) [tex]= \frac{n+1}{2}[/tex]
Var(x) [tex]= \frac{1}{4} [ n - 1 ][/tex]
Step-by-step explanation:
Hint x = 1 + x1 + ......... Xn-1
[tex]X_{i} = \left \{ {{1} if the ith adjacent pair of magnets repel each other \atop {0} if ith adjacent pair of magnets join} \right.[/tex]
attached below is the detailed solutioN
usually like poles of magnets repel each other and unlike poles of magnets attract each other forming a block