The mean weight of newborn infants at a community hospital is 6.6 pounds. A sample of seven infants is randomly selected and their weights at birth are recorded as 9.0, 7.3, 6.0, 8.8, 6.8, 8.4, and 6.6 pounds. Does the sample data show a significant increase in the average birthrate at a 5% level of significance?
A. Fail to reject the null hypothesis and conclude the mean is 6.6 lb.
B. Reject the null hypothesis and conclude the mean is lower than 6.6 lb.
C. Reject the null hypothesis and conclude the mean is greater than 6.6 lb.
D. Cannot calculate because the population standard deviation is unknown

Answers

Answer 1

Answer:

The correct option is  A

Step-by-step explanation:

From the question we are told that

    The  population is  [tex]\mu = 6.6[/tex]

     The level of significance is [tex]\alpha = 5\% = 0.05[/tex]

      The sample data is  9.0, 7.3, 6.0, 8.8, 6.8, 8.4, and 6.6 pounds

The Null hypothesis is [tex]H_o : \mu = 6.6[/tex]

 The Alternative hypothesis is  [tex]H_a : \mu > 6.6[/tex]

The critical value of the level of significance obtained from the normal distribution table is

                       [tex]Z_{\alpha } = Z_{0.05 } = 1.645[/tex]

Generally the sample mean is mathematically evaluated as

      [tex]\=x = \frac{\sum x_i }{n}[/tex]

substituting values

      [tex]\=x = \frac{9.0 + 7.3 + 6.0+ 8.8+ 6.8+ 8.4+6.6 }{7}[/tex]

      [tex]\=x = 7.5571[/tex]

The standard deviation is mathematically evaluated as

           [tex]\sigma = \sqrt{\frac{\sum [ x - \= x ]}{n} }[/tex]

substituting values

          [tex]\sigma = \sqrt{\frac{ [ 9.0-7.5571]^2 + [7.3 -7.5571]^2 + [6.0-7.5571]^2 + [8.8- 7.5571]^2 + [6.8- 7.5571]^2 + [8.4 - 7.5571]^2+ [6.6- 7.5571]^2 }{7} }[/tex][tex]\sigma = 1.1774[/tex]

Generally the test statistic is mathematically evaluated as

            [tex]t = \frac{\= x - \mu } { \frac{\sigma }{\sqrt{n} } }[/tex]

substituting values

           [tex]t = \frac{7.5571 - 6.6 } { \frac{1.1774 }{\sqrt{7} } }[/tex]

            [tex]t = 1.4274[/tex]

Looking at the value of  t and  [tex]Z_{\alpha }[/tex]   we see that [tex]t < Z_{\alpha }[/tex] hence we fail to reject the null hypothesis

  What this implies is that there is no sufficient evidence to state that the sample data show as significant increase in the average birth rate

The conclusion is that the mean is  [tex]\mu = 6.6 \ lb[/tex]


Related Questions

The following data represents the age of 30 lottery winners.

22 26 27 27 31 34
36 42 43 44 48 49
52 53 55 56 57 60
65 65 66 67 69 72
75 77 78 78 79 87
Complete the frequency distribution for the data.

Age Frequency
20-29
30-39
40-49
50-59
60-69
70-79
80-89

Answers

Answer:

Step-by-step explanation:

This is an example of a frequency distribution for a class interval. In order to complete the frequency distribution, we will count the number of data occurring in each group, and write that number as the frequency for that group. This is done as shown below:

 Age                Frequency          ages in class

20-29                       4                  22, 26, 27, 27                

30-39                       3                  31, 34, 36

40-49                       5                  42, 43, 44, 48, 49

50-59                       5                  52, 53, 55, 56, 57

60-69                       6                  60, 56, 65, 66, 67, 69

70-79                        6                  72, 75, 77, 78, 78, 79

80-89                       1                   87

Total                        30

The denominator of a fraction is 30 more than the numerator. The value of the fraction is 3/5. Find the fraction.

Answers

Answer:

45

------

75

Step-by-step explanation:

Let x be the value of the numerator and x+30 be the value of the denominator

This is equal to 3/5

x             3

-------- = -------

x+30      5

Using cross products

5x = 3(x+30)

Distribute

5x = 3x+90

Subtract 3x from each side

2x = 90

Divide by 2

x = 45

The fraction is

45

-----

30+45

45

------

75

[tex]\dfrac{x}{x+30}=\dfrac{3}{5}\\\\5x=3(x+30)\\5x=3x+90\\2x=90\\x=45\\\\\dfrac{x}{x+30}=\dfrac{45}{45+30}=\dfrac{45}{75}[/tex]

Four couples are at a party. Four of the eight people are randomly selected to win a prize. No person can win more than one prize. What is the probability that both of the members of at least one couple win prizes? Express your answer as common fraction.

Answers

Answer:

27/35

Step-by-step explanation:

We use combination to solve for this

C(n, r), =nCr = n!/r!(n - r)!

From the question, we are told that:

Four couples are at a party. Four of the eight people are randomly selected to win a prize.

Four couples = 8 people.

= 8C4 = 8!/4! (8 - 4)!

= 70

No person can win more than one prize. ( No person can win more than one prize of the 4 people selected)

This can happen in 4 ways

[4C1 × 3C2 ] × 4=

[4!/1! ×( 4 - 1)!] × [3!/2! ×(3-2)!] × 4 ways

= 4 × 3 × 4 ways

= 48

The probability that both of the members of at least one couple win prizes

48 + 4C2/ 8C4

4C2 = 4!/2!(4 - 2) !

= 6

8C4 = 8C4 = 8!/4! (8 - 4)!

= 70

48 + 6/ 70

= 54/70

= 27/35

Therefore, the probability that both of the members of at least one couple win prizes is 27/35.

The probability that both of the members of at least one couple win prizes is 27/35 and this can be determined by using the given data.

Given :

Four couples are at a party. Four of the eight people are randomly selected to win a prize. No person can win more than one prize.

The following steps can be used in order to determine the probability that both of the members of at least one couple win prizes:

Step 1 - The concept of probability is used in order to determine the probability that both of the members of at least one couple win prizes.

Step 2 - According to the given data, the total number of people is 8.

Step 3 - So, the probability that both of the members of at least one couple win prizes is:

[tex]\rm P =\dfrac{ \;^4C_1\times \;^3C_2\times 4 + \;^4C_2}{\;^8C_4}[/tex]

Step 4 - Simplify the above expression.

[tex]\rm P =\dfrac{48+ 6}{70}[/tex]

[tex]\rm P = \dfrac{27}{35}[/tex]

So, the probability that both of the members of at least one couple win prizes is 27/35.

For more information, refer to the link given below:

https://brainly.com/question/795909

Find the mean, variance, and standard deviation of the binomial distribution with the given values of n and p. n = 50 p = 0.2

Answers

Answer:

The mean, variance, and standard deviation of the binomial distribution are 10, 8, and 2.83 respectively.

Step-by-step explanation:

We have to find the mean, variance, and standard deviation of the binomial distribution with the given values of n and p, i.e; n = 50 p = 0.2.

Let X = binomial random variable

So, X ~ Binom(n = 50, p = 0.2)

Now, the mean of the binomial distribution is given by;

         Mean of X, E(X) = n [tex]\times[/tex] p

                                    = 50 [tex]\times[/tex] 0.2 = 10

Now, the variance of the binomial distribution is given by;

        Variance of X, V(X) = n [tex]\times[/tex] p [tex]\times[/tex] (1 - p)

                                         = 50 [tex]\times[/tex] 0.2 [tex]\times[/tex] (1 - 0.2)

                                         = 10 [tex]\times[/tex] 0.8 = 8

Also, the standard deviation of the binomial distribution is given by;

        Standard deviation of X, S.D.(X) = [tex]\sqrt{\text{n} \times \text{p} \times (1 - \text{p})}[/tex]

                                                              = [tex]\sqrt{\text{50} \times \text{0.2} \times (1 - \text{0.2})}[/tex]

                                                              = [tex]\sqrt{8}[/tex] = 2.83

Complete the table of values for y=-x^2+2x+1
X -3, -2, -1,0,1,2,3,4,5
Y -14,7, ,1, -2 -14

Answers

Answer:

  see the attachment

Step-by-step explanation:

When you have a number of function evaluations to do, it is convenient to let a graphing calculator or spreadsheet do them. That avoids the tedium and the mistakes in arithmetic.

Here's your completed table.

PLS HELP :Find all the missing elements:

Answers

Answer:

[tex]\large \boxed{\mathrm{34.2}}[/tex]

Step-by-step explanation:

[tex]\sf B= arcsin (\frac{b \times sin(A)}{a} )[/tex]

[tex]\sf B= arcsin (\frac{7 \times sin(40\°)}{8} )[/tex]

[tex]\sf B = 0.59733 \ rad = 34.225\°[/tex]

At Jefferson Middle School, eighty-two students were asked which sports they plan to participate in for the coming year. Twenty students plan to participate in track and cross country; six students in cross country and basketball; and eight students in track and basketball. Twelve students plan to participate in all three sports. A total of thirty students plan to participate in basketball, and a total of forty students plan to participate in cross country. Ten students don't plan to participate in any of the three sports. How many students plan to just participate in cross country? 2 4 40 30

Answers

Answer:

40

Step-by-step explanation:

In the question only lies the answer:

"and a total of forty students plan to participate in cross country."

Answer:

2

Step-by-step explanation:

2

what is the number if 4 is subtracted from the sum of one fourth of 5 times of 8 and 10

Answers

Answer:

Step-by-step explanation:

Lets, turn this into words and use order of operations, First, we look for multiplication and division.

the sum of one fourth of 5 times of 8 and 10 gets you 1/4(5*8) + 10 = 20

what is the number if 4 is subtracted from the sum

20 - 4 = 16

As a bowling instructor, you calculate your students' averages during tournaments. In 5 games, one bowler had the following scores: 143, 156, 172, 133, and 167. What was that bowler's average?

Answers

Answer:

154.2

Step-by-step explanation:

143 plus

156 plus

172 plus

133 plus

167 = 771

divide by 5 equals 154.2

determine x in the following equation 2x - 4 = 10

Answers

Answer:

7

Step-by-step explanation:

10+4 = 14

14/2  = 7

x = 7

1+2x=6x+11 PLS HELP URGENT

Answers

Answer:

x = -5/2

Step-by-step explanation:

1+2x=6x+11

Subtract 2x from each side

1+2x-2x=6x-2x+11

1 = 4x+11

Subtract 11 from each side

1-11 = 4x

-10 =4x

Divide by 4

-10/4 = 4x/4

-5/2 =x

Answer:

[tex]\boxed{x=-\frac{5}{2}}\\[/tex]

Step-by-step explanation:

To begin, get the variable on one side of the equation - preferably the left for standard solution notation (for this equation, it is easier to place it on the right side to avoid negative values). Do this by subtracting 2x from both sides of the equation. Then, subtract 11. Finally, divide by 4 and get the answer in terms of x.

1 + 2x = 6x + 11

1 = 4x + 11

-10 = 4x

[tex]\boxed{x=-\frac{5}{2}}[/tex]

There are 9 students at the math club picnic. If 3 students are drinking punch and 6 are drinking lemonade, what fraction are drinking lemonade

Answers

6/9 = 2/3
Therefore 2/3 of the students are drinking lemonade.

how many quarts are there in 12 gallons and 3 quarts? enter the number only. Do not include units

Answers

Answer:

51

Step-by-step explanation:

If SSR is 2592 and SSE is 608, then A. the standard error would be large. B. the coefficient of determination is .23. C. the slope is likely to be insignificant. D. the coefficient of determination is .81.

Answers

Answer:

D. the coefficient of determination is .81.

Step-by-step explanation:

SST = SSE + SSR

where

SST is the summation of square total

SSE is the summation of squared error estimate = 608

SSR is the summation of square of residual = 2593

with these in mind we put the values into the formula

= 2592 + 608

=3200

Coefficient of determination = SSR/SST

= 2592/3200

= 0.81

Therefore option D is the correct answer to the question.

plzzz help me quick will give goood rate

Answers

Answer:

Average rate of change of the function will be = (-1.5)

Step-by-step explanation:

Average rate of change of a function f(x) is determined by the formula,

Average rate of change = [tex]\frac{f(b)-f(a)}{b-a}[/tex] If a < x < b

We have to find the average rate of change of a function g(t) between the interval [-3, 1]

From the given table,

For t = -3,

g(-3) = 6

For t = 1,

g(1) = 0

Therefore, average rate of change of the function in the given interval

= [tex]\frac{g(1)-g(-3)}{1-(-3)}[/tex]

= [tex]\frac{0-6}{1+3}[/tex]

= [tex]-\frac{3}{2}[/tex]

= - 1.5

Determine the point estimate of the population proportion and the margin of error for the following confidence interval.Lower boundequals0.212​,upper boundequals0.758​,nequals1200The point estimate of the population proportion is . 485.​(Round to the nearest thousandth as​ needed.)The margin of error is 0.273.​(Round to the nearest thousandth as​ needed.)

Answers

Answer: The point estimate of the population proportion is . 485.​

The margin of error is 0.273.

Step-by-step explanation:

Confidence interval for population proportion(p):

sample proportion ± Margin of error

Given:  Lower bound of confidence interval  = 0.212

Upper bound = 0.758

⇒sample proportion - Margin of error=0.212  (i)

sample proportion + Margin of error= 0.758  (ii)

Adding (i) and (ii) , we get

2(sample proportion) =0.970

⇒ sample proportion = 0.970÷2= 0.485

Since sample proportion is the point estimate of the population proportion.

So, the point estimate of the population proportion=  0.485

Now put sample proportion =0.485 in (ii), we get

0.485+ Margin of error= 0.758

⇒  Margin of error= 0.758 - 0.485 =0.273

i.e. The margin of error is 0.273.​

PLEAS HELP...FIRST CORRECT ANSWER WILL GET BRAINLIEST....PLEASE ANSWER NOW!!!!
The bar graph shows the number of students who earned each letter grade on an
exam, which statement about the graph is true?

Answers

*a clearer picture containing the graph is shown in the attachment

Answer:

20% of the class earned a D

Step-by-step Explanation:

Step 1: Determine the total number of students represented on the graph:

9 students => D

5 students => C

14 students => B

17 students => A

Total number of students = 45

Step 2: Express each category of students who scored a particular grade as a fraction and as percentage.

9 students => D => [tex] \frac{9}{45} = \frac{1}{5} [/tex] => as percentage, we have [tex] \frac{1}{5} * 100 = 20 percent [/tex]

5 students => C => [tex] \frac{5}{45} = \frac{1}{9} [/tex] => as percentage, we have [tex] \frac{1}{9} * 100 = 11.1 percent [/tex]

14 students => B => [tex] \frac{14}{45} [/tex] => as percentage, we have [tex] \frac{14}{45} * 100 = 31.1 percent [/tex]

17 students => A => [tex] \frac{17}{45} [/tex] => as percentage, we have [tex] \frac{17}{45} * 100 = 37.8 percent [/tex]

Step 3: Check each statement to see if they are true or not based on the calculations above.

Statement 1: "⅕ of the students earned a C."

This is NOT TRUE From our calculation, ⅑ of the students earned a C.

Statement 2: "3% more students earned an A than a B." This is also NOT TRUE.

37.8% earned A, while 31.1% earned a B. Thus, about 6.7% more students earned an A than a B.

Statement 3: "20% of the class earned a D".  This is TRUE.

Check calculation in step 2.

Statement 4: "¼ of the class earned a B". This is NOT TRUE.

¼ is 25% of the class. Those who earned a B account for 31.1% not 25% (¼ of the class).

The correct statement is: "20% of the class earned a D"

The check_time function checks for the time format of a 12-hour clock, as follows: the hour is between 1 and 12, with no leading zero, followed by a colon, then minutes between 00 and 59, then an optional space, and then AM or PM, in upper or lower case. Fill in the regular expression to do that. How many of the concepts that you just learned can you use here

Answers

Answer:

Following are the correct code to this question:

import re#import package for regular expression

def check_time(text):#defining a method check_time that accepts string value  

   p = r'(1[012]|[1-9]):[0-5][0-9][ ]{0,1}?(am|pm|AM|PM)'#defining string variable p that stores values

   val = re.search(p, text)#defining val variable that check serachs p and text variable values

   return val!= None#use return keyword to return val value

print(check_time("12:45pm"))#defining print method that calls method by input value  

print(check_time("9:59 AM")) #defining print method that calls method by input value

print(check_time("6:60 am")) #defining print method that calls method by input value

print(check_time("five o'clock"))#defining print method that calls method by input value

Output:

True

True

False

False

Step-by-step explanation:

In the above-given program, some data is missing that is code file so, the correct code can be defined as follows:

In the above-given method, that is "check time" it uses 12-hour time format validation, that is tested by coding the regex and  all the value validates in the "val" variables, that can be defined as  follows:  

In the first step, its values should be in  1,2,3, ... 10,11,12   In the second step, it values in Between hour and minutes, and there will be a colon.  In the third step, the minutes variable should take the double-digit, that will be like  00,01 .... 59.  In the last step, one space becomes permitted after an hour: a minute or no space for am or pm value.

In the Cash Now lottery game there are 8 finalists who submitted entry tickets on time. From these 8 tickets, three grand prize winners will be drawn. The first prize is one million dollars, the second prize is one hundred thousand dollars, and the third prize is ten thousand dollars. Determine the total number of different ways in which the winners can be drawn. (Assume that the tickets are not replaced after they are drawn.)

Answers

Answer:

The number of ways is  [tex]\left n} \atop {}} \right. P_r = 336[/tex]

Step-by-step explanation:

From the question we are told that

   The number of tickets are   [tex]n = 8[/tex]

    The number of finalist are [tex]r =3[/tex]

Generally the number of way by which this winners can be drawn and arrange in the order of   [tex]1^{st} , \ 2nd , \ 3rd[/tex]    is mathematically represented as

             [tex]\left n} \atop {}} \right. P_r = \frac{n\ !}{(n-r) !}[/tex]

substituting values

             [tex]\left n} \atop {}} \right. P_r = \frac{ 8!}{(8-3) !}[/tex]

           [tex]\left n} \atop {}} \right. P_r = \frac{ 8* 7*6*5*4*3*2*1}{ 5*4*3*2*1}[/tex]

           [tex]\left n} \atop {}} \right. P_r = 336[/tex]

How many pencils are in a bundle of 10

Answers

if they're in a bundle of 10 then theres 10 pencils

A test is being conducted to test the difference between two population means using data that are gathered from a matched pairs experiment. If the paired differences are normal, then the distribution used for testing is the:

Answers

Answer:

Student t-distribution.

Step-by-step explanation:

In this scenario, a test is being conducted to test the difference between two population "means" using data that are gathered from a matched pairs experiment. If the paired differences are normal, then the distribution used for testing is the student t-distribution.

In Statistics and probability, a student t-distribution can be defined as the probability distribution which can be used to estimate population parameters when the population variance is not known (unknown) and the sample population is relatively small. The student t-distribution is a statistical distribution which was published in 1908 by William Sealy Gosset.

A student t-distribution has a similar curve with the normal distribution curve, except that it is fatter and a little bit shorter.

4
If Randy flips a coin 3 times, what is the probability that it will come up heads 3 times?

Answers

Hi there! :)

Answer:

[tex]P(heads) = \frac{1}{8}[/tex]

Step-by-step explanation:

Probability of a coin landing on heads:

[tex]P(heads) = \frac{1}{2}[/tex]

Find the probability of getting heads 3 times:

[tex]\frac{1}{2} * \frac{1}{2} * \frac{1}{2} = \frac{1}{8}[/tex]

Therefore, the probability of the coin showing heads for 3 tosses is:

[tex]P(heads) = \frac{1}{8}[/tex]

Sodas in a can are supposed to contain an average 12 oz. This particular brand has a standard deviation of 0.1 oz, with an average of 12.1 oz. If the can’s contents follow a Normal distribution, what is the probability that the mean contents of a six-pack are less than 12 oz?

Answers

Answer:

The probability is  [tex]P(X < 12) = 0.99286[/tex]

Step-by-step explanation:

From the question we are told that

        The population mean is [tex]\mu = 12 \ oz[/tex]

         The  standard deviation is  [tex]\sigma = 0.1 \ oz[/tex]

          The sample mean is  [tex]\= x = 12.1 \ oz[/tex]

          The sample size is  n = 6 packs

   

The standard error of the mean is mathematically represented as

              [tex]\sigma_{\= x } = \frac{\sigma}{\sqrt{n} }[/tex]

substituting values

            [tex]\sigma_{\= x } = \frac{0.1}{\sqrt{6} }[/tex]

            [tex]\sigma_{\= x } = 0.0408[/tex]

Given that the can’s contents follow a Normal distribution then then  the probability that the mean contents of a six-pack are less than 12 oz is mathematically represented as

         [tex]P(X < 12) = P ( \frac{X - \mu }{ \sigma_{\= x }} < \frac{\= x - \mu }{ \sigma_{\= x }} )[/tex]

Generally  [tex]\frac{X - \mu }{ \sigma_{ \= x }} = Z (The \ standardized \ value \ of \ X )[/tex]

So

         [tex]P(X < 12) = P ( Z < \frac{\= x - \mu }{ \sigma_{\= x }} )[/tex]

substituting values

       [tex]P(X < 12) = P ( Z < \frac{12.2 -12 }{0.0408} )[/tex]

      [tex]P(X < 12) = P ( Z < 2.45 )[/tex]

From the normal distribution table the value of [tex]P ( Z < 2.45 )[/tex] is  

           [tex]P (Z < 2.45)0.99286[/tex]

=>   [tex]P(X < 12) = 0.99286[/tex]

Study the table. Which best describes the function represented by the data in the table?

Answers

Answer:

  linear with a common first difference of 2

Step-by-step explanation:

On the face of it, you can reject answers that ascribe a common ratio to a linear or quadratic function. (A common ratio is characteristic of an exponential function.)

You can also reject the answer that ascribes a common first difference to a quadratic function. (A quadratic function has a common second difference.)

After you reject the nonsense answers, there is only one remaining choice. It is also the correct one:

  linear with a common first difference of 2

_____

The ratio of change in y to change in x is ...

  (0 -(-2))/(-2 -(-3)) = 2

  (4 -0)/(0 -(-2)) = 2

  (12 -4)/(4 -0) = 2

That is, y increases by 2 when x increases by 1. The common first difference is 2.

Simple math! What is the issue with my work? I got it wrong.

Answers

Answer:

x = 6

Step-by-step explanation:

In the third line of the solution on right side of the equal sign, middle term should be 8x instead of 4x.

The final value of x will be 6.

[tex] PQ^2 + QO^2 = PO^2 \\

x^2 + 8^2 = (4+x)^2 \\

x^2 + 64 = 16 + 8x + x^2 \\

64 = 16 + 8x \\

64 - 16 = 8x \\

48 = 8x \\

6 = x\\[/tex]

Given log32≈0.631 and log37≈1.771, what is log314

Answers

Answer:

the log to the base 3 of 14 is 2.402

Step-by-step explanation:

You must find a way to indicate that 3 is the base; you cannot run this '3' together with 2, 7 or 14.

Example:  

log to the base 3 of 2 = 0.631

log to the base 3 of 7 = 1.771

Note that 2 times 7 is 14.  Thus, to obtain the log to the base 3 of 14, we must ADD the two logs shown above:

0.631

+1.771

----------

2.402

Thus, the log to the base 3 of 14 is 2.402.

Check:  Does 3^2.402 = 14?  YES

Express the product of z1 and z2 in standard form given that [tex]z_{1} = 6[cos(\frac{2\pi }{5}) + isin(\frac{2\pi }{5})][/tex] and [tex]z_{2} = 2\sqrt{2} [cos(\frac{-\pi }{2}) + isin(\frac{-\pi }{2})][/tex]

Answers

Answer:

Solution : 5.244 - 16.140i

Step-by-step explanation:

If we want to express the two as a product, we would have the following expression.

[tex]-6\left[\cos \left(\frac{2\pi }{5}\right)+i\sin \left(\frac{2\pi }{5}\right)\right]\cdot 2\sqrt{2}\left[\cos \left(\frac{-\pi }{2}\right)+i\sin \left(\frac{-\pi \:}{2}\right)\right][/tex]

Now we have two trivial identities that we can apply here,

( 1 ) cos(- π / 2) = 0,

( 2 ) sin(- π / 2) = - 1

Substituting them,

= [tex]-6\cdot \:2\sqrt{2}\left(0-i\right)\left(\cos \left(\frac{2\pi }{5}\right)+i\sin \left(\frac{2\pi }{5}\right)\right)[/tex]

= [tex]-12\sqrt{2}\sin \left(\frac{2\pi }{5}\right)+12\sqrt{2}\cos \left(\frac{2\pi }{5}\right)i[/tex]

Again we have another two identities we can apply,

( 1 ) sin(x) = cos(π / 2 - x )

( 2 ) cos(x) = sin(π / 2 - x )

[tex]\sin \left(\frac{2\pi }{5}\right)=\cos \left(\frac{\pi }{2}-\frac{2\pi }{5}\right) = \frac{\sqrt{2}\sqrt{5+\sqrt{5}}}{4}[/tex]

[tex]\cos \left(\frac{2\pi }{5}\right)=\sin \left(\frac{\pi }{2}-\frac{2\pi }{5}\right) = \frac{\sqrt{2}\sqrt{3-\sqrt{5}}}{4}[/tex]

Substitute,

[tex]-12\sqrt{2}(\frac{\sqrt{2}\sqrt{5+\sqrt{5}}}{4}) + 12\sqrt{2}(\frac{\sqrt{2}\sqrt{3-\sqrt{5}}}{4})[/tex]

= [tex]-6\sqrt{5+\sqrt{5}}+6\sqrt{3-\sqrt{5}} i[/tex]

= [tex]-16.13996 + 5.24419i[/tex]

= [tex]5.24419i - 16.13996[/tex]

As you can see option d is the correct answer. 5.24419 is rounded to 5.244, and 16.13996 is rounded to 16.14.

A sample of 81 observations is taken from a normal population with a standard deviation of 5. The sample mean is 40. Determine the 95% confidence interval for the population mean.

Answers

Answer:

38.911≤p≤41.089

Step-by-step explanation:

The formula for calculating confidence interval for a population mean us as shown below;

CI = xbar ± Z×S/√N where;

xbar is the sample mean = 40

Z is the z score at 95% confidence interval = 1.96

S is the standard deviation = 5

N is the sample size = 81

Substituting this parameters in the formula we have;

CI = 40±1.96×5/√81

CI = 40±(1.96×5/9)

CI = 40±(1.96×0.556)

CI = 40±1.089

CI = (40-1.089, 40+1.089)

CI = (38.911, 41.089)

The 95% confidence interval for the population mean is 38.911≤p≤41.089

Answer:

38.9 ≤ U ≤ 41.1

Step-by-step explanation:

Mean, m = 40; standard deviation, α = 5; Confidence limit, U = 95% or 0.95

N = 81

The standard error, α(m) = α/√(N) = 5/√81 =5/9

Using table: 0.95 = 0.0379

Z(0.95) = 2 - 0.0379 = 1.9621 or 1.96

Hence, confidence interval = { m - 1.96(α/√N) ≤ U ≤ m +1.96(α/√N)}

But, 1.96(α/√N) = 1.96 X 5/9 = 1.96 X 0.56 = 1.1

(40 - 1.1 ≤ U ≤ 40 + 1.1)

∴ the confidence interval = 38.9 ≤ U ≤ 41.1

What is nine thousandths as a decimal

Answers

Answer:

Nine thousandths = 0.009

Step-by-step explanation:

thousandths =  1/1000 = 0.001

nine thousandths = 9/1000 = 0.009

Answer:

.009

Step-by-step explanation:

9 thousandths as a decimal is 9/1000.  Which is the same 0.009

g When conducting a one-way ANOVA, the _______ the between-treatment variability is when compared to the within-treatment variability, the __________the value of the F statistic will be which gives us ________ evidence against the null. (Choose all that apply)

Answers

Answer:

One - way ANOVA, the smaller the between treatment

The smaller the value of F statistic will give us significant evidence.

Step-by-step explanation:

ANOVA is a statistical technique designed to test mean of one or more quantitative populations.  In two-way ANOVA it equals the block mean. Column block means square is three-way ANOVA. It is a statistical technique designed to test mean of one or more quantitative populations. In two-way ANOVA it equals the block mean. Column block means square is three-way ANOVA.

One-way ANOVA, the smaller the between treatment

The smaller the value of F statistic will give us significant evidence.

What is ANOVA?

It should be the statistical technique that are made for testing the mean for one or more than one quantitative population. In two-way ANOVA it should be equivalent to the block mean. Here the column block represent the square be the three-way ANOVA.

Therefore, One-way ANOVA, the smaller the between treatment

The smaller the value of F statistic will give us significant evidence.

Learn more about evidence here: https://brainly.com/question/6764645?referrer=searchResults

Other Questions
Gerbils were used to assess the effect of Natural Neutral, a drug designed to reduce emotionality in high-drive people. Each of 20 gerbils spent 10 solitary minutes in an open field. The investigator recorded the number of fecal boluses for each animal. Then each animal was given an injection of Natural Neutral and the open field task was repeated.No Drug Drug mean number of boluse 6 8standard deviation of boluses 2 2The design of this study is:______a. paired samples;b. independent samples;c. testing the significance of a correlation;d. none of the other alternatives are correct. Elite Apparel Inc. is considering two investment projects. The estimated net cash flows from each project are as follows:Year Plant Expansion Retail Store Expansion1 $ 450,000 $ 500,000 2 450,000 400,0003 340,000 350,0004 280,000 250,0005 180,000 200,000Total $1,700,000 $1,700,000Each project requires an investment of $900,000. A rate of 15% has been selected for the net present value analysis.Present Value of $1 at Compound InterestYear 6% 10% 12% 15% 20%1 0.943 0.909 0.893 0.870 0.8332 0.890 0.826 0.797 0.756 0.6943 0.840 0.751 0.712 0.658 0.5794 0.792 0.683 0.636 0.572 0.4825 0.747 0.621 0.567 0.497 0.4026 0.705 0.564 0.507 0.432 0.3357 0.665 0.513 0.452 0.376 0.2798 0.627 0.467 0.404 0.327 0.2339 0.592 0.424 0.361 0.284 0.19410 0.558 0.386 0.322 0.247 0.162Required:1a. Compute the cash payback period for each project. Cash Payback PeriodPlant Expansion < >1 year2 years3 years4 years5 yearsRetail Store Expansion < >1 year2 years3 years4 years5 years1b. Compute the net present value. Use the present value of $1 table above. If required, round to the nearest dollar. Plant Expansion Retail Store ExpansionPresent value of net cash flow total $ $Less amount to be invested $ $Net present value $ $2. Because of the timing of the receipt of the net cash flows, theplant expansionretail store expansion Name:Unit 1: Geometry BasicsDate:Per: Homework 3: Distance & Midpoint Formulas** This is a 2-page document! **Directions: Find the distance between each pair of points.1. 1-4.6) and (3.-7)2. (-6,-5) and (2.0)M=(-12,-1)M=4. (0.-8) and (3.2)3. (-1, 4) and (1-1)5..Directions: Find the coordinates of the midpoint of the segment given its endpoints.6. /15, 8) and B(-1,-4)7. M(-5,9) and N[-2.7)8. P(-3,-7) and Q13.-5)9. F12.-6) and G(-8,5)Gina Whion (All Things Algobro. LLC) 2014-2017 A firm's diversification strategy is most likely to add value if:________. a. There exist economies of scope between diversified business units. b. The firm has a comprehensive business portfolio in different industries. c. The diversification strategy enables the firm to enter several unrelated businesses. d. It enters unfamiliar market through aggressive acquisitions. PLEASE ANSWER !! WILL GIVE BRAINLIEST! Consider the exponential functions f, g, and h, defined as shown. Place the three functions in order from the fastest decreasing average rate of change to the slowest decreasing average rate of change on the interval [0, 3]. As a factor of production how is capital created A. by adding land to entreprenurship B. by adding human labor to land C. by removing land from services D. by using labor to create services All the following statements concerning universal life insurance are correct EXCEPT: Group of answer choices Interest credited to the cash value is taxable to a policyowner in the year credited. The policyowner can add to a policy's cash value at any time subject to policy guidelines. Interest is credited to the policy's cash value each month. Withdrawals from a policy's cash value reduce the death benefit. Select all transformations that carry rectangleABCD onto itself.A. Rotate by 90 degrees clockwise using center P.B. Rotate by 180 degrees clockwise using center P.C. Reflect across line m.D. Reflect across diagonal AC.E. Translate by the directed line segment from A to B. Use the distributive property to rewrite the given expression without parentheses.7(x+2)7(x+2) = HELP PRECALC NEED IN PROOF FORM How does it do? thank you very muchsorry this subject is physic. If 4SINB=3SIN(2A+B) :Prove that:7COT(A+B)=COTA Which equation represents this statement: A number minus 6 is 168? 6 n = 168 n 6 = 168 n 6 = 168 6n = 168 For each function, determine if it intersects or is parallel to the line y = -1.5x. If itintersects the line, find the intersection point.y =0.5x +4PLEASE ANSWER I HAVE 25 MINUTES LEFT PLEASE Explain why the first ionisation energy of helium islarger than that of hydrogen. At an output level of 53,000 units, you calculate that the degree of operating leverage is 3.21. If output rises to 57,000 units, what will the percentage change in operating cash flow be? Suppose fixed costs are $175,000. What is the operating cash flow at 46,000 units? The degree of operating leverage? that the degree of operating Indigo Corporation had the following tax information.Year Taxable Income Tax Rate Taxes Paid2015 $294,000 35% $102,900 2016 332,000 30% 99,600 2017 399,000 30% 119,700In 2018, Indigo suffered a net operating loss of $487,000, which it elected to carry back. The 2018 enacted tax rate is 26%.Prepare Indigos entry to record the effect of the loss carryback. Account titles Debit Credit Which relation is a function? A device for acclimating military pilots to the high accelerations they must experience consists of a horizontal beam that rotates horizontally about one end while the pilot is seated at the other end. In order to achieve a radial acceleration of 34.1 m/s2 with a beam of length 5.55 m , what rotation frequency is required? This table shows a linear relationship.The slope of the line is ?