Answer:
(-1,-6)
Step-by-step explanation:
(13 + x)/2 = 6
13+x= 12
x = -1
~~~~~~~~~~~~~~~
(-2 + y ) / 2 = -4
-2 + y = -8
y = -6
The coordinates of the other endpoint will be (-1,-6). The correct option is C.
What is the midpoint of the line?Divide the measurement of the distance between the two end locations by 2. The middle of that line is located at this separation from either end.
A coordinate plane is a 2D plane that is formed by the intersection of two perpendicular lines known as the x-axis and y-axis.
Given that the midpoint of a segment is (6,−4) and one endpoint is (13,−2).
The x- coordinate will be calculated as:-
(13 + x)/2 = 6
13+x= 12
x = -1
The y-coordinate will be calculated as:-
(-2 + y ) / 2 = -4
-2 + y = -8
y = -6
Therefore, the coordinates of the other endpoint will be (-1,-6). The correct option is C.
To know more about midpoints of the line follow
https://brainly.com/question/24431553
#SPJ2
Charlene is a salesperson. Let y represent her total pay (in dollars). Let x represent the number of
items she sells. Suppose that x and y are related by the equation y=32x + 1900.
What is Charlene's total pay if she doesn't sell any items?
A. $32
B. $1,900
C. $3,200
D. $19
Help anyone can help me do the question,I will mark brainlest.
Answer:
a) 30
b)600pi
Step-by-step explanation:
For the first questions, since the arc is 240°, the area of the sector and circumference will be 240/360 or 2/3 of the total of the circles'. Therefore 125.6 x 3/2 is the circumference, which is 188.4. When we divide this by 6.28, we get 30
Now, since the area is pi r^2 where we know that r=30, we get 900pi as the area of the whole thing, however since the sector is 2/3 of the whole circle, 2/3 x 900pi = 600pi
Select the two values of x that are roots of this equatio 2x - 5 = - 3x ^ 2
alright I can help!
so to find the two values of x that are roots of the equation we need to put the variables all on one side so that we can set up the quadratic formula.
3x^2+2x-5=0 (the -3x^2 becomes positive when moved across the equal sign)
now we can set up the quadratic formula. the equation is x= (-b+-(sqrt of b^2 -4ac))/ 2a
so now we just plug in our variables.
x= (-2+-(sqrt of 2^2 -4×3×-5))/ 2×3
x= (-2+-8)/6
now we just seperate the equations so that we have the two roots. and then just solve!
x= (-2-8)/6 -> x= -5/3
x= (-2+8)/6 -> x=1
hope this helps! best wishes and best of luck!!
after allowing 20% discount an article is sold for rs.672 levying 12% VAT, find its market price
The market price is Rs. 750 which was obtained by creating a mathematical relationship from the given parameters.
PERCENTAGE DISCOUNT = 20%
VAT LEVIED= 12%
PRICE SOLD = 672
Let the MARKET PRICE = m
Hence,
market price * (1 - discount) * (1 + VAT) = price sold
m * (1 - 20%) * (1 + 12%) = 672
m * (1 - 0.2) * (1 + 0.12) = 672
m * 0.8 * 1.12 = 672
0.896m = 672
m = 672 / 0.896
m = Rs. 750
Learn more :
https://brainly.com/question/20418815
The Market Price of the product is RS. 750.
The Market Price is calculated by dividing the components associated to Discount, which is less than 1, and the Value Added Tax, which more than 1, to the Resulting Price.
[tex]c_{M} = \frac{c_{R}}{\left(1-\frac{r_{D}}{100} \right)\cdot \left(1+\frac{r_{T}}{100} \right)}[/tex] (1)
Where:
[tex]c_{M}[/tex] - Market price, in monetary units.
[tex]c_{R}[/tex] - Resulting price, in monetary units.
[tex]r_{D}[/tex] - Discount rate, in percentage.
[tex]r_{T}[/tex] - Tax rate, in percentage.
If we know that [tex]c_{R} = 672[/tex], [tex]r_{D} = 20[/tex] and [tex]r_{T} = 12[/tex], then the market price is:
[tex]c_{M} = \frac{672}{\left(1-\frac{20}{100} \right)\cdot \left(1+\frac{12}{100} \right)}[/tex]
[tex]c_{M} = 750[/tex]
The market price of the product is RS. 750.
y= -(x+3)^2 -5
What is the leading coefficient?
How do you find the vertex?
Answer:
To find the leading coefficient, first expand the function:
[tex]y= -(x+3)^{2} -5\\\\y=-(x^{2} +6x+9)-5\\\\y=-x^{2} -6x-9-5\\\\y=-x^{2} -6x-14[/tex]
The leading coefficient is the coefficient of the highest-order term, which, in this case, would be the -1 from -x².
To find the vertex: see image below
Vertex = (-3, -5)
Find m/ELM if m/ELM = 15x - 1, m/KLE = 20°, and m/KLM = 17x - 1.
Answer:
∠ ELM = 149°
Step-by-step explanation:
∠ KLM = ∠ KLE + ∠ ELM , substitute values
17x - 1 = 20 + 15x - 1
17x - 1 = 15x + 19 ( subtract 15x from both sides )
2x - 1 = 19 ( add 1 to both sides )
2x = 20 ( divide both sides by 2 )
x = 10
Then
∠ ELM = 15x - 1 = 15(10) - 1 = 150 - 1 = 149°
help! please!!!!!! look at photo :))
Hey there!
We know that Danielle earns $10 per hour, so muliply that by 3 and get 30.
Because Danielle works an extra half an hour, divide 10 by 2 and get 5.
Danielle earns $35 in 3 hours and a half.
Hope this helps! Please mark me as brainliest!
Have a wonderful day :)
The graph of a line is shown below. What is the equation of the line, in slope-intercept form, that is parallel to this line and has a y-intercept of 1?
Answer:
[tex]y = - \frac{3}{2} x + 1[/tex]
Step-by-step explanation:
Slope -intercept form: y= mx +c, where m is the slope and c is the y-intercept.
Parallel lines have the same slope. Let's find the slope of the given line.
Given points: (-2, 0) and (0, -3)
[tex]\boxed{slope = \frac{y1 - y2}{x1 - x2} }[/tex]
slope of given line
[tex] = \frac{0 - ( - 3)}{ - 2 - 0} [/tex]
[tex] = \frac{0 + 3}{ - 2} [/tex]
[tex] = - \frac{3}{2} [/tex]
[tex]y = - \frac{3}{2} x + c[/tex]
Given that the y- intercept is 1, c= 1.
[tex]y = - \frac{3}{2} x + 1[/tex]
Jo bought a used car for $6000 and paid a 15% deposit. How much did he still have to pay?
Answer:
900 is the correct awnser
In figure above, if l1 | | l2 then value of x is:
a) 40°
b) 50°
c) 80°
d) 100°
Answer:
its letter c so 80
Step-by-step explanation:
I hope this help
what is the answer? I need help!! please and thank you
Answer:
B
Step-by-step explanation:
27%=0.27 and sqrt(2)<2.75
Simplify. (x2+2x-4)+(2x-5x-3)
Answer:
Step by Step Solution
More Icon
STEP
1
:
3
Simplify ——
x2
Equation at the end of step
1
:
3
((((2•(x2))-5x)-——)+2x)-3
x2
STEP
2
:
Equation at the end of step
2
:
3
(((2x2 - 5x) - ——) + 2x) - 3
x2
STEP
3
:
Rewriting the whole as an Equivalent Fraction
3.1 Subtracting a fraction from a whole
Rewrite the whole as a fraction using x2 as the denominator :
2x2 - 5x (2x2 - 5x) • x2
2x2 - 5x = ———————— = ———————————————
1 x2
Equivalent fraction : The fraction thus generated looks different but has the same value as the whole
Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator
STEP
4
:
Pulling out like terms
4.1 Pull out like factors :
2x2 - 5x = x • (2x - 5)
Adding fractions that have a common denominator :
4.2 Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator
Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:
x • (2x-5) • x2 - (3) 2x4 - 5x3 - 3
————————————————————— = —————————————
x2 x2
Equation at the end of step
4
:
(2x4 - 5x3 - 3)
(——————————————— + 2x) - 3
x2
STEP
5
:
Rewriting the whole as an Equivalent Fraction :
5.1 Adding a whole to a fraction
Rewrite the whole as a fraction using x2 as the denominator :
2x 2x • x2
2x = —— = ———————
1 x2
Polynomial Roots Calculator :
5.2 Find roots (zeroes) of : F(x) = 2x4 - 5x3 - 3
Polynomial Roots Calculator is a set of methods aimed at finding values of x for which F(x)=0
Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers x which can be expressed as the quotient of two integers
Triangle XYZ is isosceles. The measure of the vertex angle, Y, is twice the measure of a base angle. What is true about triangle XYZ? Select three options.
Answer:
A. Angle Y is a right angle.
B. The measure of angle Z is 45°.
E. The perpendicular bisector of creates two smaller isosceles triangles.
Step-by-step explanation:
Let x represent the measures of base angles X and Z. 2x is the measure of vertex angle Y.
x + x + 2x = 180°
x = 45°
2x = m∠Y = 90°
The triangle is an isosceles right triangle which has base angles of 45°.
The perpendicular bisector of line XZ creates two smaller isosceles triangles with acute angles of 45°
Answer:
The answers are A B E
Step-by-step explanation:
which statement is true
What is the volume?
9 ft
4 ft
2 ft
HELPPPP
Answer:
72?
Step-by-step explanation:
V=whl=4 x 2 x9=72
Which graph represents the function f(x)=|x−1|−3 ?
What is the difference between-5and2
Answer:
7
Step-by-step explanation:
Consider the absolute value of the difference , that is
| - 5 - 2 | = | - 7 | = 7
or
| 2 - (- 5) | = | 2 + 5 | = | 7 | = 7
Answer:
7
Step-by-step explanation:
Difference is - sign so the equation is: 2- -5 which is 7. Or
think a number line, -5 is 5 spots to 0, then two more spots to 2 so 5+2=7
You order CDs for $14.25 each and the website charges $4.50 for each shipment.
The expression $14.25p + $4.50 represents the cost of p CDs. Find the total cost for
ordering 4 CDs.
Answer:
$61.50
Step-by-step explanation:
14.25(4) + 4.50
= 57.00 + 4.50
= 61.50
3. If triangle ABC has the following measurements, find the measure of angle A.
a = 17
b = 21
C = 25
9514 1404 393
Answer:
(a) 42.3°
Step-by-step explanation:
Side 'a' is the shortest of three unequal sides, so angle A will be the smallest angle in the triangle. Its measure can be found from the Law of Cosines.
a² = b² +c² -2bc·cos(A)
cos(A) = (b² +c² -a²)/(2bc) = (21² +25² -17²)/(2·21·25) = 777/1050
A = arccos(777/1050) ≈ 42.3°
The measure of angle A is about 42.3°.
_____
Additional comment
The smallest angle in a triangle can never be greater than 60°. This lets you eliminate choices that exceed that value.
Answer:
(a) 42.3°
Step-by-step explanation:
(06.01)
Write the following expression in exponential form:
1.6 × 1.6 × 1.6 × 1.6
41.6
1.64
1.6 × 4
1.6 + 4
Answer:
[tex]1.6^{4}[/tex]
Step-by-step explanation:
1.6 is multiplied by itself 4 times. This is represented in exponential form as
[tex]1.6^{4}[/tex]
Find a 2-digit number smaller than 50, the sum of whose digits does not change after being multiplied by a number greater than 1
The only 2-digit number that is lesser than 50 and the sum of its digits remain unaffected despite being multiplied by a number < 1 would be '18.'
To prove, we will look at some situations:
If we add up the two digits of 18. We get,
[tex]1 + 8 = 9[/tex]
And we multiply 18 by 2 which is greater than 1. We get,
[tex]18[/tex] × [tex]2 = 36[/tex]
The sum remains the same i.e. [tex]3 + 6 = 9[/tex]
Similarly,
If 18 is multiplied to 3(greater than 1), the sum of the two digits comprising the number still remains the same;
[tex]18[/tex] × [tex]3 = 54[/tex]
where (5 + 4 = 9)
Once more,
Even if 18 is multiplied to 4 or 5(greater than 1), the sum of its digits will still be 9.
[tex]18[/tex] × [tex]4 = 72[/tex]
[tex](7 + 2 = 9)[/tex]
[tex]18[/tex] × [tex]5 = 90[/tex]
[tex](9 + 0 = 9)[/tex]
Thus, 18 is the answer.
Learn more about 'numbers' here: brainly.com/question/1624562
What is the surface area of the right prism?
92 ft2
46 ft2
48 ft2
70 ft2
(will mark brainliest <3)
=========================================================
Work Shown:
L = 8 ft = lengthW = 3 ft = widthH = 1 ft = heightSA = surface area of the rectangular prism (aka block or box)
SA = 2*(LW + LH + WH)
SA = 2*(8*3 + 8*1 + 3*1)
SA = 2*(24 + 8 + 3)
SA = 2*(35)
SA = 70 square feet
This is the amount of wrapping paper you would need to cover all six sides of the box. This assumes that there are no gaps or overlaps.
If YWZ=17, what is WXY?
34
56
17
73
Answer:
73
Step-by-step explanation:
17×2=34
180-34=146
146/2=73
=73
solve for x.
solve for x.
solve for x.
Answer:
[tex]x=10[/tex]
Step-by-step explanation:
A secant is a line segment that intersects a circle in two places. One property of a secant is the product of the lengths ratio. This ratio can be described as the following, let ([tex]inside[/tex]) refer to the part of the secant that is inside the circle, and ([tex]outside[/tex]) refer to the part that is outside of it. ([tex]total[/tex]) will refer to the entirety of the secant or ([tex]inside+outside[/tex]). The numbers (1) and (2) will be used as subscripts to indicate that there are two different secants.
[tex](outside_1)(total_2)=(outside_2)(total_2)[/tex]
Substitute,
[tex](outside_1)(total_2)=(outside_2)(total_2)[/tex]
[tex](outside_1)(inside_1+outisde_1)=(outside_2)(inside_2+outside_2)[/tex]
[tex](6)(6+x+5)=(7)(7+x+1)[/tex]
Simplify,
[tex](6)(6+x+5)=(7)(7+x+1)[/tex]
[tex]6(x+11)=7(x+8)[/tex]
[tex]6x+66=7x+56[/tex]
Inverse operations,
[tex]6x+66=7x+56[/tex]
[tex]66=x+56[/tex]
[tex]10=x[/tex]
A box contains a yellow ball, an orange ball, a green ball, and a blue ball. Billy randomly selects 4 balls from the box (with replacement). What is the expected value for the number of distinct colored balls Billy will select?
Answer:
[tex]Expected = 0.09375[/tex]
Step-by-step explanation:
Given
[tex]Balls = 4[/tex]
[tex]n = 4[/tex] --- selection
Required
The expected distinct colored balls
The probability of selecting one of the 4 balls is:
[tex]P = \frac{1}{4}[/tex]
The probability of selecting different balls in each selection is:
[tex]Pr = (\frac{1}{4})^n[/tex]
Substitute 4 for n
[tex]Pr = (\frac{1}{4})^4[/tex]
[tex]Pr = \frac{1}{256}[/tex]
The number of arrangement of the 4 balls is:
[tex]Arrangement = 4![/tex]
So, we have:
[tex]Arrangement = 4*3*2*1[/tex]
[tex]Arrangement = 24[/tex]
The expected number of distinct color is:
[tex]Expected = Arrangement * Pr[/tex]
[tex]Expected = 24 * \frac{1}{256}[/tex]
[tex]Expected = \frac{3}{32}[/tex]
[tex]Expected = 0.09375[/tex]
20) solve:
[tex] {8}^{2} + 2 = [/tex]
21) solve:
[tex]4(2x + 5y = [/tex]
22) simplify the expression
[tex]4( {2}^{2} + 30) - 4 = [/tex]
Match the answers……………..
9 in 8956 = 900
9 in 95675 = 90000
9 = 9 in 124569
9 in 68795 = 90
90000 = 9 in 2549652.........
hope it helps...
A person walks away from a pulley pulling a rope slung over it. The rope is being held at a height 10 feet below the pulley. Suppose that the weight at the opposite end of the rope is rising at 4 feet per second. At what rate is the person walking when s/he is 20 feet from being directly under the pulley
The image of this question is missing and so i have attached it.
Answer:
dd/dt = 4.47 ft/s
Step-by-step explanation:
From the image attached, let's denote the following;
d = horizontal distance beneath pulley
h = height of pulley
l = diagonal from the pulley to the head of the person
v = velocity of rope rising
Using pythagoras theorem;
l² = d² + h²
Differentiating with respect to time and considering h = c^(te) gives;
2l(dl/dt) = 2d(dd/dt)
We are given;
d = 20 ft
h = 10 ft
v = 4 ft/s
We know that velocity in this case is change in diagonal distance with time. Thus;
v = dl/dt = 4 ft/s
From earlier, we saw that;
2l(dl/dt) = 2d(dd/dt)
Thus, reducing it gives
(dl/dt)(l/d) = dd/dt
Now, l² = d² + h²
l = √(d² + h²)
Also, v = dl/dt = 4
Thus;
4(√(d² + h²))/d = dd/dt
4(√(20² + 10²))/20 = dd/dt
dd/dt = 4.47 ft/s
In the PQRS triangle PQ=QR, QR side extended to S Show that PQ+RS=QS. -S Q R
pls explain too
Answer:
Step-by-step explanation:
from the picture:
QP = QR
and
QR = RS
so
PQ + RS = QS
A game involves correctly choosing the 5 correct numbers from 1 through 18 that are randomly drawn. What is the probability that a person wins the game, if they enter a) once? b) 7 times with a different choice each time?
Answer:
[tex]=\frac{1}{8568}\ = .00011\\\ =\frac{7}{8568} = .00081[/tex]
Step-by-step explanation:
[tex]5/18\cdot \:4/17\cdot \:3/16\cdot \:2/15\cdot \:1/14=\frac{1}{8568}[/tex]