The natural variation of a process relative to the variation allowed by the design specifications is known as

Answers

Answer 1

Answer:

"Process capability" is the correct answer.

Explanation:

The Process Capability seems to be a method of measuring of how and why the framework performs concerning something like the successful objectives. This same capacity is characterized as that of the client's voice over procedure speech.Through using functionality indicators it analyses the performance with an in-control process with the permissible range.

Related Questions

An AC voltage is represented by the relation v= 12. Determine the: (a) peak-to-peak voltage; (b) frequency; (c) root-mean-square voltage; (d) Period of the signal.

Answers

Answer:

The answer is below

Explanation:

An AC voltage is represented by the relation v= 12 sin(500πt). Determine the:

The equation of an AC voltage is given as:

[tex]V=V_msin(2\pi ft)[/tex]

Where Vm is the maximum value of voltage and f is the frequency

From V= 12 sin(500πt), Vm = 12, 2πft = 500πt

(a) The peak to peak voltage is total amplitude (both the negative and positive amplitude) of the voltage, it is the difference between the positive amplitude and the negative amplitude. The peak to peak voltage ([tex]V{p-p}[/tex]) is given as:

[tex]V_{p-p}=2V_m=2*12=24\ V[/tex]

b) The frequency is the number of oscillation per second. The frequency (f) is gotten from:

2πft = 500πt

2f = 500

f = 500/2

f = 250 Hz

c) The root mean square voltage is the dc value of the voltage. It is given by:

[tex]V_{rms}=\frac{V_m}{\sqrt{2} }=\frac{12}{\sqrt{2} }=8.5\ V[/tex]

d) The period (T) is the time taken to complete one oscillation, it is given by:

[tex]T=\frac{1}{f}\\ \\T=\frac{1}{250} =0.004\ s[/tex]

The fins attached to a heat exchanger-surface are determined to have an effectiveness of 0.9. Do you think the rate of heat transfer from the surface has increased or decreased as a result of the addition of these fins?

Answers

Answer:

The rate of heat transfer has increased.

Explanation:

Heat transfer rate is the rate at which heat energy is dissipated to the ambient from a hot body. The rate of heat transfer is proportional to the available surface area for heat exchange. This means that the greater the exposed surface area for heat exchange, the greater the rate at which heat is lost to the ambient. In introducing the fins to the heat exchange system (fins have a large surface area to volume ratio for maximum exposure to the ambient), one maximizes the available surface area for heat exchange between the material and the ambient, increasing the rate of heat transfer.

A step-up transformer has an input voltage of 110 V (rms). There are 100 turns on the primary and 1500 turns on the secondary. What is the output voltage?

Answers

Answer:

V2= 1666.6 volts

Explanation:

Given data

primary turns N1= 100 turns

secondary turns N2= 1500 turns

primary voltage V1= 110 volts

secondary voltage V2= ?

We can solve for the output voltage using the turns ration sated below

  Turns Ratio = N1 / N2 = V1 / V2

Substituting our given data into the expression we have

100/1500= 110/V2

Making V2 subject of formula we have

V2= 110/(100/1500)=  1666.6 volts

V2= 1666.6 volts

Hence the secondary voltage is 1666.6 volts

What improves the structured approach in design?



A team is adopting a structured approach in design which helps them to improve the ___ of the design.

Answers

Answer:

efficiency

Explanation:

Answer:

The correct answer is Efficiency.

Explanation:

I got it right on the plato test.

Water at 20oC, with a free-stream velocity of 1.5 m/s, flows over a circular pipe with diameter of 2.0 cm and surface temperature of 80oC. Calculate the average heat transfer coefficient and the heat transfer rate per meter length of pipe.\

Answers

Answer:

Average heat transfer coefficient =  31 kw/m^2 k

Heat transfer rate per meter length of pipe =  116.808 KW

Explanation:

water temperature = 20⁰c,  

free-stream velocity = 1.5 m/s

circular pipe diameter = 2.0 cm = 0.02 m

surface temperature = 80⁰c

A) calculate average heat transfer coefficient

we apply the formula below :

m = αAv

A (area) = [tex]\pi /4 (d)^2[/tex]

m = 10^3 * [tex]\pi / 4 ( 0.02)^2[/tex] * 1.5

   = 10^3 * 0.7857( 0.0004) * 1.5

   = 0.4714 kg/s

Average heat transfer coefficient  

h = [tex]\frac{m(cp)}{A}[/tex]  ,  A = [tex]\pi DL[/tex]

L = 1 m , m = 0.4714 kgs , cp = 4.18

back to equation

h = [tex]\frac{0.4714*4.18}{\pi * 0.02 }[/tex]   = 1.970 / 0.0628 = 31.369 ≈ 31 kw/m^2 k

B) Heat transfer rate per meter length of pipe

Q = ha( ΔT ),  a = [tex]\pi DL[/tex]

   = 31 * 0.0628 * ( 80 - 20 )

  = 31 * 0.0628 * 60 = 116.808 KW

A power screw is 30 mm in diameter and has a thread pitch of 5 mm. Find the thread depth, the thread width, the mean and root diameters, and the lead, provided that square threads are used. Assume single threads.

Answers

Answer:

thread depth = 2.5 mm

thread width = 2.5 mm

mean diameter = 27.5 mm

root diameter = 25 mm

lead of screw = 5 mm

Explanation:

given data

power screw diameter D = 30 mm

thread pitch  P = 5 mm

solution

First, we get here thread depth fr square thread

thread depth = [tex]\frac{P}{2}[/tex]   ......................1

thread depth = [tex]\frac{5}{2}[/tex]

thread depth = 2.5 mm

and

thread width for square thread

thread width = [tex]\frac{P}{2}[/tex]   ......................2

thread width = [tex]\frac{5}{2}[/tex]

thread width = 2.5 mm

and

mean diameter is

mean diameter = D - [tex]\frac{P}{2}[/tex]    ................3

mean diameter = 30 - [tex]\frac{5}{2}[/tex]

mean diameter = 27.5 mm

and

root diameter is

root diameter = D - P   ....................4

root diameter = 30 - 5

root diameter = 25 mm

and

lead of screw for single thread so n = 1

so lead of screw = 1 × 5

lead of screw = 5 mm

Q1) Determine the force in each member of the
truss and state if the members are in tension or
compression.
Set P1 = 10 kN, P2=15 KN​

Answers

Answer:

CD = DE = DF = 0BC = CE = 15 N tensionFA = 15 N compressionCF = 15√2 N compressionBF = 25 N tensionBG = 55/2 N tensionAB = (25√5)/2 N compression

Explanation:

The only vertical force that can be applied at joint D is that of link CD. Since joint D is stationary, there must be no vertical force. Hence the force in link CD must be zero, as must the force in link DE.

At joint E, the only horizontal force is that applied by link EF, so it, too, must be zero.

Then link CE has 15 N tension.

The downward force in CE must be balanced by an upward force in CF. Of that force, only 1/√2 of it will be vertical, so the force in CF is a compression of 15√2 N.

In order for the horizontal forces at C to be balanced the 15 N horizontal compression in CF must be balanced by a 15 N tension in BC.

At joint F, the 15 N horizontal compression in CF must be balanced by a 15 N compression in FA. CF contributes a downward force of 15 N at joint F. Together with the external load of 10 N, the total downward force at F is 25 N. Then the tension in BF must be 25 N to balance that.

At joint B, the 25 N downward vertical force in BF must be balanced by the vertical component of the compressive force in AB. That component is 2/√5 of the total force in AB, which must be a compression of 25√5/2 N.

The horizontal forces at joint B include the 15 N tension in BC and the 25/2 N compression in AB. These are balanced by a (25/2+15) N = 55/2 N tension in BG.

In summary, the link forces are ...

(25√5)/2 N compression in AB15 N tension in BC25 N tension in BF0 N in CD, DE, and EF15 N tension in CE15√2 compression in CF15 N compression in FA

_____

Note that the forces at the pins of G and A are in accordance with those that give a net torque about those point of 0, serving as a check on the above calculations.

An air-conditioner which uses R-134a operates on the ideal vapor compression refrigeration cycle with a given compressor efficiency.
--Given Values--
Evaporator Temperature: T1 (C) = 9
Condenser Temperature: T3 (C) = 39
Mass flow rate of refrigerant: mdot (kg/s) = 0.027
Compressor Efficiency: nc (%) = 90

a) Determine the specific enthalpy (kJ/kg) at the compressor inlet.
Your Answer =
b) Determine the specific entropy (kJ/kg-K) at the compressor inlet
Your Answer =
c) Determine the specific enthalpy (kJ/kg) at the compressor exit
Your Answer =
d) Determine the specific enthalpy (kJ/kg) at the condenser exit.
Your Answer =
e) Determine the specific enthalpy (kJ/kg) at the evaporator inlet.
Your Answer =
f) Determine the coefficient of performance for the system.
Your Answer =
g) Determine the cooling capacity (kW) of the system.
Your Answer =
h) Determine the power input (kW)to the compressor.
Your Answer =

Answers

Answer:

A) 251.8 kj/kg

B) 0.9150 kj/kg-k

C) 155.4 kj/kg

F) 1.50

G) 3.95 kw

H) 2.6 kw

Explanation:

Given conditions :

air conditioner : R -134a

compressor efficiency (nc) = 90%.

T1 = 9⁰c,  T3 = 39⁰c, mass flow rate = 0.027 kg/s

A) Specific enthalpy at the compressor inlet

at T = 9⁰c the saturated vapor (x) = 1

from the R-134a property table

h1 = 251.8 kj/kg

B ) specific entropy ( kj/kg-k) at the compressor inlet

at T = 9⁰c the saturated vapor (x) = 1

s = 0.9150 kj/kg-k ( from the R-134a property table )

C) specific enthalpy at the compressor exit

at T3 = 39⁰c , s2 = s1

has = 165.12 kj/kg

h2 = 155.4 kj/kg

attached below is the remaining solution to some of the problems

In a typical transmission line, the current I is very small and the voltage V is very large. A unit length of line has resistance R. For a power line that supplies power to 10,000 households, we can conclude that:________

Answers

Answer:

IV > [tex]I^{2} R[/tex]

Explanation:

The current in the power line = I

The voltage in the power line = V

The resistance of the power line = R

Power supplied from the power house = P

power delivered to the households = [tex]p[/tex]

We know that the power supplied to a power line system is proportional to

P = IV    ....1

we also know that according to Ohm's law, the relationship between the voltage, resistance, and current through an electrical system is given as

V = IR    ....2

substituting equation 2 into equation 1, the power delivered to the households is proportional to the square of the current.

[tex]p[/tex] = [tex]I^{2} R[/tex]    ....3

The problem is that when power is delivered across a transmission line, some of the power is loss due to Joules heating effect of the power lines. This energy and power loss is proportional to [tex]I^{2}[/tex] therefore, the electrical power delivered to the households will be less than the electrical power supplied from the power station. This means that

P > [tex]p[/tex]

equating these two powers from equations 1 and equation 3, we have

IV > [tex]I^{2} R[/tex]

Strain gage is a device that senses the strain of the structure. The property of the strain gage that is used to correlate with the strain to be measured is

Answers

Answer:

  resistance

Explanation:

A strain gauge changes resistance with applied strain.

A single-threaded power screw is 35 mm in diameter with a pitch of 5 mm. A vertical load on the screw reaches a maximum of 5 kN. The coefficients of friction are 006 for the collar and 009 for the threads, while the frictional diameter of the collar is 45 mm. Find the overall efficiency and the torque to raise and lower the load for

Answers

Answer:

the torque required to RAISE the load is Tr = 18.09 Nm

the torque required to LOWER the load is Tl = 10.069 ≈ 10.07 Nm

the Overall Efficiency e = 0.2199 ≈ 0.22

Explanation:

Given that; F = 5 kN, p = 5mm, d = 35mm

Dm = d - p/2

Dm = 35 - ( 5/2) = 35 - 2.5

DM = 32.5mm

So the torque required to RAISE the load is

Tr = ( 5 × 32.5)/2 [(5 + (π × 0.09 × 32.5)) / ( (π × 32.5) - ( 0.09 × 5))] + [( 5 × 0.06 × 45)/2]

Tr = 81.25 × (14.1892 / 101.6518) + 6.75

Tr = 11.3414 + 6.75

Tr = 18.09 Nm

the torque required to LOWER the load is

Tl =  ( 5 × 32.5)/2 [(π × 0.09 × 32.5) - 5) / ( (π × 32.5) + ( 0.09 × 5))] + [( 5 × 0.06 × 45)/2]

Tl = 81.25 × 4.1892 / 102.5518 + 6.75

Tl = 3.3190 + 6.75

Tl = 10.069 ≈ 10.07 Nm

So since torque required to LOWER the load is positive

that is, the thread is self locking

Therefore the efficiency is

e = ( 5 × 5 ) / ( 2π × 18.09 )

e = 25 / 113.6628

e = 0.2199 ≈ 0.22

As the asteroid falls closer to the Earth's surface its _______ energy decreases and its _______ energy increases.

Answers

Answer:

As the asteroid falls closer to the Earth's surface its Gravitational Potential energy decreases and its Kinetic energy increases.

Assume that the heat is transferred from the cold reservoir to the hot reservoir contrary to the Clausis statement of the second law. Prove that this violates the increase of entropy principle—as it should according to Clausius.

Answers

Answer: hello attached below is the diagram which is part of your question

Total entropy change  = entropy change in cold reservoir + entropy change in hot reservoir = -0.166 + 0.083 = -0.0837 kj/k  it violates Clausius increase of entropy which is Sgen > 0

Explanation:

Clausius statement states that it is impossible to transfer heat energy from a cooler body to a hotter body in a cycle or region without any other external factors affecting it .  

applying the increase in entropy principle to prove this

temp of cold reservoir (t hot)= 600 k

temp of hot reservoir(t cold) = 1220 k

energy (q) = 100 kj

total entropy change  = entropy change in cold reservoir + entropy change in hot reservoir = -0.166 + 0.083 = -0.0837 kj/k

entropy change in cold reservoir = Q/t cold = 100 / 600 = -0.166 kj/k

entropy change in hot reservoir = Q / t hot = 100 / 1220 = 0.083 kj/k

hence it violates  Clausius inequality of increase of entropy principle which is states that generated entropy has to be > 0

what scale model proves the initial concept?

Answers

Answer: A prototype

Explanation:

The scale model that proves the initial concept is called a domain model.

What is a scale model?

A copy or depiction of something where all parts have the same dimensions as the original. A scale model is an image or copy of an object that is either larger or smaller than the object being represented's actual size.

A domain model is a type of conceptual model that is used to depict the structural elements and conceptual constraints within a domain of interest.

A domain model will include all of the entities, their attributes, and relationships, as well as the constraints that govern the conceptual integrity of the structural model elements that comprise that problem domain.

Therefore, a domain model is the scale model that proves the initial concept.

To learn more about the scale model, refer to the below link:

https://brainly.com/question/14341149

#SPJ2

You have accumulated several parking tickets while at school, but you are graduating later in the year and plan to return to your home in another jurisdiction. A friend tells you that the authorities in your home jurisdiction will never find out about the tickets when you re-register your car and apply for a new license. What should you do?

Answers

Answer:

pay off the parking tickets

Explanation:

In the scenario being described, the best thing to do would be to pay off the parking tickets. The parking tickets stay under your name, and if they are not paid in time can cause problems down the road. For starters, if they are not paid in time the amount will increase largely which will be harder to pay. If that increased amount is also not paid, then the government will suspend your licence indefinitely which can later lead to higher insurance rates.

What's the resistance in a circuit that has a voltage of 60 V and a current of 2 A? A. 10 Ω B. 60 Ω C. 120 Ω D. 30 Ω

Answers

Answer:

D.  Resistance = 30 ohms

Explanation:

Using Ohm's law

V = I times R

Given:

V = 60 V

I = 2 A

Resistance = V / I = 60 V / 20 A

Resistance = 30 ohms

B1) 20 pts. The thickness of each of the two sheets to be resistance spot welded is 3.5 mm. It is desired to form a weld nugget that is 5.5 mm in diameter and 5.0 mm thick after 0.3 sec welding time. The unit melting energy for a certain sheet metal is 9.5 J/mm3 . The electrical resistance between the surfaces is 140 micro ohms, and only one third of the electrical energy generated will be used to form the weld nugget (the rest being dissipated), determine the minimum current level required.

Answers

Answer:

minimum current level required =  8975.95 amperes

Explanation:

Given data:

diameter = 5.5 mm

length = 5.0 mm

T = 0.3

unit melting energy = 9.5 j/mm^3

electrical resistance = 140 micro ohms

thickness of each of the two sheets = 3.5mm

Determine the minimum current level required

first we calculate the volume of the weld nugget

v = [tex]\frac{\pi }{4} * D^2 * l[/tex] = [tex]\frac{\pi }{4} * 5.5^2 * 5[/tex] = 118.73 mm^3

next calculate the required melting energy

= volume of weld nugget * unit melting energy

= 118.73 * 9.5 = 1127.94 joules

next find the actual required electric energy

= required melting energy / efficiency

= 1127 .94 / ( 1/3 )  = 3383.84 J

TO DETERMINE THE CURRENT LEVEL REQUIRED  use the relation below

electrical energy =  I^2 * R * T

3383.84 / R*T = I^2

3383.84 / (( 140 * 10^-6 ) * 0.3 ) = I^2

therefore  8975.95 = I ( current )

Summary of Possible Weather and Associated Aviation Impacts for Geographic/Topographic Categories Common in the Western United States.
Geographic/Topographic Descriptive Summary of Potential Aviation Impacts
Category of a Possible Weather That Could Impact Based on Weather
of Airport Location Aviation Operations
Along the US West coast,
with steep mountains to the east
(An example of this category is
Santa Barbara Airport, located
on the Southern California Coast,
at an elevation of 10 feet).
Within a valley in elevated terrain
surrounded by high mountains
(An example of this category is
Friedman Memorial Airport, located
in Central Idaho, at an elevation of 5300 feet).
In elevated terrain on the leeside of
high mountains
(An example of this category is Northern Colorado
Regional Airport, located in northern Colorado,
at an elevation of 5000 feet, on the leeside
of the Rocky mountains).

Answers

Answer: answer provided in the explanation section.

Explanation:

Weather phenomenons that would impart Aviation Operations in Santa Barbara -

1. Although winters are cold, wet, and partly cloudy here. It is in general favorable for flying. But sometimes strong winds damage this pleasant weather.

2.  The Sundowner winds cause rapid warming and a decrease in relative humidity. The wind speed is very high surrounding this area for this type of wind.  

3. Cloud is an important factor that affects aviation operations. Starting from April, here the sky is clouded up to November. The sky is overcast (80 to 100 percent cloud cover) or mostly cloudy (60 to 80 percent) 44% on a yearly basis. Thus extra cloud cover can trouble aviation operations.

4. The average hourly wind speed can also be a factor. This also experiences seasonal variations, these variations are studied carefully in the aviation industry. The windier part of the year starts in January and ends in June. In April, the wind speed can reach 9.5 miles per hour.

This and more are some factors to look into when considering wheather conditions that would affect aviation operations.

I hope this was a bit helpful. cheers

In general, MOSFET'S:___________.
A) are mostly used in switching circuits
B) can be fabricated in much higher densities than BJT'S
C) produce simpler circuits than BJTS
D) all of the above

Answers

Answer:

A. Are mostly used in switching circuits

Explanation:

MOSFET: The acronym for  "metal oxide semiconductor field-effect transistor"  are mostly used in switching circuits.

There are two classes of MOSFET

1. Depletion mode

2. Enhancement mode

       

          Generally a  MOSFET is a kind of transistor, it is actually a field effect transistor with tree terminals gate, source and drain terminals, also the MOSFET can be used as an amplifier for the amplification of electronic signals in the electronic circuit/devices

A cylinder is to be cast out of aluminum. The diameter of the disk is 500 mm and its thickness is 20 mm. The mold constant 2.0 sec/mm2 in Chvorinov's formula to calculate the solidification time.

Required:
a. Calculate the minimum time (minutes) for the casting to solidify.
b. Discuss if the result in part (a) is the same when casting grey cast iron.

Answers

Answer:

a) the minimum time (minutes) for the aluminium casting to solidify is 2.86 min

b) the minimum time (minutes) for the grey iron casting to solidify is 2.13 min. Therefore solidification of grey iron cast will take less time (2.13 min) compared to the solidification of the aluminium cast (2.86 min)

Explanation:

Given that; diameter of Disk = 500 mm, thickness t = 20, mold constant Cm = 2.0 sec/mm²

first we find the volume and Area;

Volume V = πD²t / 4

Volume V = π × (500)² × 20 / 4 = 3,926,991 mm³

Area A = 2πD²/ 4 + πDt

Area A = {[π × (500)²] / 2} +{ π × (500) × (20)}

Area A = 392,699.08 + 31,415.93

Area A = 424,115 mm²

a)

Chvorinov’s rule

T(aluminium) = Cm (V/A) ²

T(aluminium) =  2.0 × (3,926,991 / 424,115) ²

T(aluminium) = 171.5 s = 2.86 min

∴ the minimum time (minutes) for the casting to solidify is 2.86 min

b)

For cast iron

Cm (mold constant = 1.488 sec/mm²)

Chvorinov’s rule

T(iron) = Cm (V/A) ²

T(iron) = 1.488 × (3,926,991 / 424,115) ²

T(iron) = 127.5720s = 2.13 min

Therefore solidification of grey iron cast will take less time (2.13 min) compared to the solidification of the aluminium cast (2.86 min)

Water discharging into a 10-m-wide rectangular horizontal channel from a sluice gate is observed to have undergone a hydraulic jump. The flow depth and velocity before the jump are 0.8m and 7m/s, respectively. Determine (a) the flow depth and the Froude number after the jump (b) the head loss (c) the dissipation ratio.

Answers

Answer:

A) Flow depth = 2.46 m, Froude number after jump = 0.464

B) head loss = 0.572 m

C) dissipation ratio = 0.173

Explanation:

Given data :

Velocity before jump ( v1 ) = 7 m/s

flow depth before jump ( y1 ) = 0.8 m

g = 9.81 m/s

Esi = 3.3 m ( calculated )

attached below is a detailed solution of the problem

Write about traditional brick production in Pakistan

Answers

Answer:

Clay bricks are manufactured by mining and clay moulded blocks. There are 20,000 brick klins in Pakistan.

Explanation:

In Pakistan, the clay bricks are manufactured by mining and baking the clay moulded blocks in brick kilns. According to an estimate, the baking process emits about  1.4 pounds of carbon per brick made, but in Pakistan, because the systems are outdated, brick kilns are used, which is producing more than the average amount of the pollution.

There are about 20,000 brick kilns in Pakistan. The traditional brick production in Pakistan is consists of hand-made bricks which are first baked in Fixed Chimney Bull's Trench Kilns (FCBTK), this is the most widely used brick firing technology in South Asia.

Steam enters an adiabatic turbine at 800 psia and9008F and leaves at a pressure of 40 psia. Determine themaximum amount of work that can be delivered by thisturbine.

Answers

Answer:

[tex]w_{out}=319.1\frac{BTU}{lbm}[/tex]

Explanation:

Hello,

In this case, for the inlet stream, from the steam table, the specific enthalpy and entropy are:

[tex]h_1=1456.0\frac{BTU}{lbm} \ \ \ s_1=1.6413\frac{BTU}{lbm*R}[/tex]

Next, for the liquid-vapor mixture at the outlet stream we need to compute its quality by taking into account that since the turbine is adiabatic, the entropy remains the same:

[tex]s_2=s_1[/tex]

Thus, the liquid and liquid-vapor entropies are included to compute the quality:

[tex]x_2=\frac{s_2-s_f}{s_{fg}}=\frac{1.6313-0.39213}{1.28448}=0.965[/tex]

Next, we compute the outlet enthalpy by considering the liquid and liquid-vapor enthalpies:

[tex]h_2=h_f+x_2h_f_g=236.14+0.965*933.69=1136.9\frac{BTU}{lbm}[/tex]

Then, by using the first law of thermodynamics, the maximum specific work is computed via:

[tex]h_1=w_{out}+h_2\\\\w_{out}=h_1-h_2=1456.0\frac{BTU}{lbm}-1136.9\frac{BTU}{lbm}\\\\w_{out}=319.1\frac{BTU}{lbm}[/tex]

Best regards.

Define centrifugal pump. Give the construction and working of centrifugal pump. ​

Answers

Centrifugal pump is a hydraulic machine which converts mechanical energy into hydraulic energy by the use of centrifugal force acting on the fluid. These are the most popular and commonly used type of pumps for the transfer of fluids from low level to high level.

"The transistor base-emitter voltage (VBE) a. increases with an increase in temperature. b. is not affected by temperature change. c. decreases with an increase in temperature. d. has no effect on collector current."

Answers

Answer:

C) Decreases with an increase in temperature

Explanation:

As the temperature of a transistor increases, the thermal runaway property of the transistor becomes more significant and the transistors, conducting more freely as a result of the rise in temperature, causes an increase in the collector current or leakage current. The transistor base-emitter voltage decreases as a result.

With increased heating due to heavy current flow, the transistor is damaged.

A plate is supported by a ball-and-socket joint at A, a roller joint at B, and a cable at C. How many unknown support reactions are there in this problem?

Answers

Answer:

There are five (5) unknown support reactions in this problem.

Explanation:

A roller joint rotates and translates along the surface on which the roller rests. The resulting reaction force is always a single force that is perpendicular to, and away from, the surface. This allows the roller to move in a single plane along the surface where it rests.

A cable support provides support in one direction, parallel, and in opposite direction to the load on it. There exists a single reaction from the cable pointed upwards.

A ball-and-socket joint have  reaction forces in all 3 cardinal  directions. This allows it to move in the x-y-z plane.

The total unknown reactions on the member are five in number.

The cold drawn AISI 1040 steel bar with 25-mm width and 10-mm thick has a 6- mm diameter thru hole in the center of the plate. The plate is subjected to a completely reversed axial load that fluctuates from 12kN to 28kN. Use notch sensitivity of 0.83.

Required:
a. Estimate the fatigue factor of safety based on yielding criteria.
b. Estimate the fatigue factor of safety based on Goodman and Morrow criteria.

Answers

Answer:

A)  ( N ) = 1.54

B)  N ( Goodman ) = 1.133,  N ( Morrow) = 1.35

Explanation:

width of steel bar = 25-mm

thickness of steel bar = 10-mm

diameter = 6-mm

load on plate = between 12 kN AND 28 kN

notch sensitivity = 0.83

A ) Fatigue factor of safety based on yielding criteria

= δa + δm = [tex]\frac{Syt}{n}[/tex]   =  91.03 + 227.58 = 490 / N

therefore Fatigue number of safety ( N ) = 1.54

δa (amplitude stress ) = kf ( Fa/A) = 2.162 * ( 8*10^3 / 190 ) = 91.03 MPa

A = area of steel bar = 190 mm^2 , Fa = amplitude load = 8 KN , kf = 2.162

δm (mean stress ) = kf ( Fm/A ) = (2.162 * 20*10^3 )/ 190 = 227.58 MPa

Fm = mean load  = 20 *10^3

B) Fatigue factor of safety based on Goodman and Morrow criteria

δa / Se + δm / Sut = 1 / N

= 91.03 / 183.15 + 227.58 / 590 = 1 /N

Hence N = 1.133 ( based on Goodman criteria )

note : Se = endurance limit (calculated) = 183.15 , Sut = 590

applying Morrow criteria

N =   1 / ( δa/Se) + (δm/ δf )

   = 1 / ( 91.03 / 183.15 ) + (227.58 / 935 )  

   = 1.35

An AC generator supplies an rms voltage of 120 V at 50.0 Hz. It is connected in series with a 0.650 H inductor, a 4.80 μF capacitor and a 301 Ω resistor.
(a) What is the impedance of the circuit?
(b) What is the rms current through the resistor?
(c) What is the average power dissipated in the circuit?
(d) What is the peak current through the resistor?
(e) What is the peak voltage across the inductor?
(f) What is the peak voltage across the capacitor?
The generator frequency is now changed so that the circuit is in resonance. What is that new (resonance) frequency?

Answers

Answer:

Explanation:

f = 50.0 Hz, L = 0.650 H, π = 3.14

C = 4.80 μF, R = 301 Ω resistor. V = 120volts

XL = wL = 2πfL

= 2×3.14×50* 0.650

= 204.1 Ohm

Xc= 1/wC

Xc = 1/2πfC

Xc = 1/2×3.14×50×4.80μF

= 1/0.0015072

= 663.48Ohms

1. Total impedance, Z = sqrt (R^2 + (Xc-XL)^2)= √ 301^2+ (663.48Ohms - 204.1 Ohm)^2

√ 90601 + (459.38)^2

√ 90601+211029.98

√ 301630.9844

= 549.209

Z = 549.21Ohms

2. I=V/Z = 120/ 549.21Ohms =0.218Ampere

3. P=V×I = 120* 0.218 = 26.16Watt

Note that

I rms = Vrms/Xc

= 120/663.48Ohms

= 0.18086A

4. I(max) = I(rms) × √2

= 0.18086A × 1.4142

= 0.2557

= 0.256A

5. V=I(max) * XL

= 0.256A ×204.1

=52.2496

= 52.250volts

6. V=I(max) × Xc

= 0.256A × 663.48Ohms

= 169.85volts

7. Xc=XL

1/2πfC = 2πfL

1/2πfC = 2πf× 0.650

1/2×3.14×f×4.80μF = 2×3.14×f×0.650

1/6.28×f×4.8×10^-6 = 4.082f

1/0.000030144× f = 4.082×f

1 = 0.000030144×f×4.082×f

1 = 0.000123f^2

f^2 = 1/0.000123048

f^2 = 8126.922

f =√8126.922

f = 90.14 Hz

A two-lane, one-way ramp from an urban expressway with a design speed of 30 mi/h connects with a local road at a T-intersection. The turning roadway has a vertical curb on both sides. Determine the width of the turning roadway if the predominant turning vehicles are single unit trucks with some semi-trailers. Use 0.08 for super-elevation if applicable.

Answers

Answer:

30 feet

Explanation:

Given data :

design speed = 30 miles/h

super elevation = 0.08

determine the width of the turning roadway

calculate the value of R = V^2 / 15( e + p)

e = 0.08 , p = 0.2 , v = 30

R = (30)^2 / 15 ( 0.08 + 0.2 )

  = 900 / 15 ( 0.28 )

  ≈ 215 ft

pavement width from the calculation above = 28 ft

width of the turning roadway = pavement width + 2 = 30 feet ( because there are two vertical widths joining up the main road at the T junction )

An ideal Diesel cycle has a compression ratio of 17 and a cutoff ratio of 1.3. Determine the maximum temperature of the air and the rate of heat addition to this cycle when it produces 140 kW of power and the state of the air at the beginning of the compression is 90 kPa and 578C. Use constant specific heats at room temperature.

Answers

Answer:

maximum temperature = 1322 k

rate of heat addition = 212 kw

Explanation:

compression ratio = 17

cut off ratio = 1.3

power produced = 140 Kw

state of air at the beginning of the compression = 90 kPa and 578 c

Determine the maximum temperature of air

attached below is the detailed solution

Other Questions
If the x-position of a particle is measured with an uncertainty of 1.0010-10 m, then what is the uncertainty of the momentum in this same direction? (Useful constant: h-bar = 1.0510-34 Js.) What is nonmaleficence? The ostrich is a bird. However, it has traits that are different from those of the birds we typically see flying around our neighborhoods. Using credible sources, investigate the environment and adaptations of ostriches to explain how they evolved to survive in their environment. I dont really understand this PLEASE ANSWER QUICKLY What do commas create? In sexually reproducing organisms, such as humans, which of the following statements is TRUE about the DNAfound in the cells of the children Please help! Suppose that [tex]\alpha[/tex] is inversely proportional to [tex]\beta[/tex]. If [tex]\alpha=4[/tex] when [tex]\beta=9[/tex], find [tex]\alpha[/tex] when [tex]\beta=-72[/tex] evaluate the expression for r=-10 -54-r= Which word correctly completes this sentence? Todos los das juego ftbol en la ___________ del parque. A. flor B. cancha C. fuente D. barbacoa I need help answering these two questions Find an equation for the surface consisting of all points P in the three-dimensional space such that the distance from P to the point (0, 1, 0) is equal to the distance from P to the plane y Point B is on line segment AC. Given BC=9 and AB=11, determine the length AC. If 2x3 4x2 + kx + 10 is divided by (x + 2), the remainder is 4. Find the value of k using remainder theorem. Please help :) Bob has taken out a loan of $15,000 for a term of 48 months (4 years) at an interest rate of 6.5%. Using the amortization table provided, what will be his total financecharge over the course of his loan?Monthly Payment per $1,000 of PrincipalRate 1 Year 2 Years 3 Years 4 Years 5 Years6.5% $86.30 $44.55 $30.65 $23.71 $19.577.0% $86.53 $44.77$30.88$23.95$19.807.5% $86.76 $45.00$31.11$24.18$20.048.0% $86.99 $45.23$31.34$24.41$20.288.5% $87.22 $45.46$24.65$24.65$20.529.0% $87.45 $45.68$31.80$24.89$20.76A.$355.65OB.$975.00C.$1,682.40D.$2,071.20E. $17,071.20ResetNext 2020 Edmentum. All rights reserved. 6. How was France able to create an Enlightenment government at last under Napoleon's dictatorial rule?Napoleon included many ideals of the Enlightenment in the legal systems he created.The Treaty of Versailles included most of the ideals formed during the Enlightenment.The people of France copied the American Bill of Rights, and Napoleon applied its freedoms to all French citizens.Enlightenment ideals were written into the new French constitution, which was written by Napoleon. What happens when volcanoes release greenhouse gases into the atmosphere? Different bosses have the authority to run their own departments in what department? Read the e-mail from Emily's mother, Teresa, about their planned trip. Create a response from Emily's perspective giving your opinions about howyou would like the trip to shape up.Querida EmilyHola, hija! Qu tal la Investigacin? Qu has aprendido? Yo siempre quise visitar las ruinas de civilizaciones antiguas como Machu Picchu oTeotihuacn. Pero quiero que t elijas el lugar para nuestras vacaciones. Me Interesa tambin el ecoturismo y me llaman la atencin los deportesde aventuras. Qu piensas?Espero que todo vaya bien, mi amor. Te extrao mucho. Dale recuerdos de mi parte a la familia.Con carino,Tu mam For the regression equation, = +20X + 200 what can be determined about the correlation between X and Y?