Given:
The data set is:
9, 6, 8, 9, 7, 4, 3, 5, 2, 4
To find:
The mean absolute deviation (MAD) of the given data.
Solution:
We have,
9, 6, 8, 9, 7, 4, 3, 5, 2, 4
The mean of the given data set is:
[tex]\overline{x}=\dfrac{1}{n}\sum x_i[/tex]
[tex]\overline{x}=\dfrac{1}{10}(9+6+8+9+7+4+3+5+2+4)[/tex]
[tex]\overline{x}=\dfrac{1}{10}(57)[/tex]
[tex]\overline{x}=5.7[/tex]
So, the mean of the given data set is 5.7.
The mean absolute deviation (MAD) is:
[tex]MAD=\dfrac{1}{n}\sum |x-\overline{x}|[/tex]
The mean absolute deviation (MAD) of the given data is:
[tex]MAD=\dfrac{1}{10}(3.3+0.3+2.3+3.3+1.3+1.7+2.7+0.7+3.7+1.7)[/tex]
[tex]MAD=\dfrac{1}{10}(21)[/tex]
[tex]MAD=2.1[/tex]
Therefore, the mean absolute deviation (MAD) of the given data set is 2.1.
Expand 3(5y-3) can someone answer this please
Answer:
15y -9
Step-by-step explanation:
3(5y-3)
Distribute
3*5y -3*3
15y -9
What is the answer for the second one?
7% is the same as ??
Answer:
0.07
Step-by-step explanation:
Just put the value of the percent
40, 90, or 7 over 100
40/100, 90/100, 7/100
This yields
0.4, 0.9, 0.07
Fraces bonitas para decirle a tu nv?
minimo 6
Answer:
it's. is now the MA plz I miss you
si pudiera escoger entre vivir eternamente y vivir dos veces
yo escogeria vivir dos veces porque vivir una vida eterna sin ti a mi lado seria el mayor sufrimiento, ahora vivir dos veces me dejaria tranquilo porque despues del final de mi vida podria volver a encontrarme contigo y vivir todos los momentos bellos una vez mas y eso seria un sueño volviendose realidad
is 2012 a term of arithmetic sequence of 5,13,18
for the given A.P
5,9,13,...
First term (a)=5
common difference (d) = 9-5=4
Let Tn=2012
a +(n-1) d=2012
5 +(n-1) 4=2012
(n-1) 4=2012-5
(n-1)4=2007
n-1=501.75
n=1+501.75
n=502.75 -- - - - - -> which is not possible.
No.of terms can never in fraction.
Hence, 2012 is not a term of given A.P
what is the value of tan 0 in the unit circle below
Tangent = opposite / adjacent, or in this case Tangent = y / x.
Tan = (1/2) / ([tex]\sqrt{3}[/tex] / 2)
1 / [tex]\sqrt{3}[/tex]
[tex]\sqrt{3}[/tex] / 3
Hope this helps!
Which of the following is a solution to 2sin2x+sinx-1=0?
Answer:
270 degrees
Step-by-step explanation:
If you plug in 270 in place of the x's, the function is true!
This is correct for Plate/Edmentum users!! Hope I could help :)
If all possible random samples of size N are drawn from a population with a mean of mu and a standard deviation of sigma, then as N becomes larger, the sampling distribution of sample means becomes approximately normal with a mean of muy(bar) and a standard deviation of sigmay(bar). This statement is known as the:
Answer:
"Central limit theorem" is the right answer.
Step-by-step explanation:
A hypothesis essentially claims that whenever there seems to be a small variance throughout the big confidence intervals, the sampling is based on averages as well as the sampling distribution (mean) usually nearly the same as the public's median.
When,
Mean = [tex]\mu_y[/tex]Standard deviation = [tex]\sigma_y[/tex]Sample size = Nis sufficiently larger than [tex]\bar Y \sim N(\mu_y, \sigma_y)[/tex]
Thus, the above is the right answer.
A population of 1,000 students spends an average of $10.50 a day on dinner. The standard deviation of the expenditure is $3. A simple random sample of 64 students is taken. a. What are the expected value, standard deviation, and shape of the sampling distribution of the sample mean
Answer:
expected value is the mean : 10.5
Standard error for the sampling distribution : 0.375
it has a bell-shaped curve with 99.7% of the values between 9.375 and 11.625
Step-by-step explanation:
PLEASE HELPPPPPPPPPPP
Answer:
P(S or T) = 3/4
Step-by-step explanation:
Ophelia is making homemade spaghetti sauce by combining 48 oz of tomato paste with 6 cups of water.ophelia needs to make a small batch of sauce using only 20 ounces of tomato paste how many cups of water will she need.show your work
Answer:
1 cup per 8 oz
48/6 = 8
every 1 cup of water 8 oz of tomato paste.
Step-by-step explanation:
can i brainlist
Divide 5x^2+3x-2 by x + 1
5x + 8
I used long division
Approximately 5% of calculators coming out of the production lines have a defect. Fifty calculators are randomly selected from the production line and tested for defects. What is the probability that exactly 2 calculators are defective?
Answer:
0.2611 = 26.11% probability that exactly 2 calculators are defective.
Step-by-step explanation:
For each calculator, there are only two possible outcomes. Either it is defective, or it is not. The probability of a calculator being defective is independent of any other calculator, which means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
5% of calculators coming out of the production lines have a defect.
This means that [tex]p = 0.05[/tex]
Fifty calculators are randomly selected from the production line and tested for defects.
This means that [tex]n = 50[/tex]
What is the probability that exactly 2 calculators are defective?
This is P(X = 2). So
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 2) = C_{50,2}.(0.05)^{2}.(0.95)^{48} = 0.2611[/tex]
0.2611 = 26.11% probability that exactly 2 calculators are defective.
Help please guys thanks
Answer:
5
Step-by-step explanation:
(625 ^2)^(1/8)
Rewriting 625 as 5^4
(5^4 ^2)^(1/8)
We know that a^b^c = a^(b*c)
5^(4*2)^1/8
5^8 ^1/8
5^(8*1/8)
5^1
5
Answer:
[tex]5[/tex]
Step-by-step explanation:
[tex] { {(625}^{2} )}^{ \frac{1}{8} } \\ { ({25}^{2 \times 2} )}^{ \frac{1}{8} } \\ {25}^{4 \times \frac{1}{8} } \\ {5}^{2 \times 4 \times \frac{1}{8} } \\ {5}^{ \frac{8}{8} } \\ {5}^{1} \\ = 5[/tex]
What’s the equation?
Answer:
The answer is D.
Step-by-step explanation:
Building A is 170 feet shorter than building B. The total height of the two building is 1490 feet. Find the height of each building.
Answer:
Building A is 660 feet and Building B is 830 feet
Step-by-step explanation:
Let x represent the height of building B.
Since building A is 170 feet shorter than building B, it can be represented by x - 170.
Create an equation and solve for x:
(x) + (x - 170) = 1490
2x - 170 = 1490
2x = 1660
x = 830
So, the height of building B is 830 feet.
Subtract 170 from this to find the height of building A:
830 - 170
= 660
Building A is 660 feet and Building B is 830 feet
PLEASE HELP I REALLY NEED THIS
How is an inequality different from an equation?
What are four ways inequality can be written?
What would the graph of each inequality look like on a number line? (use an example)
What would the graph of an equation look like on a number line(use an example)
Pam has 15 candies in a jar, her sister threw in some more ( the ones she doesn’t like) and now Pam has 27. Write an equation to determine how many candies ( x) her sister put in the jar. Solve using both inverse operations and a balance scale.
Explain the Golden Rule for solving equations
using an example.
What does it mean if a situation has a condition or constraint? Give an example.
Give an example of a situation that contains an independent and dependent variable. Explain if your data is continuous or discrete.
Answer:
inequality is mostly represented on a number line but equation is not.
find x in this similar triangles
Answer:
6. x = 4
8. x = 13
Step-by-step explanation:
Using similar triangles theorem,
6. (5+4)/5 = (4x + 2)/(4x + 2 - 8)
9/5 = (4x + 2)/(4x - 6)
Cross multiply
9(4x - 6) = 5(4x + 2)
36x - 54 = 20x + 10
Collect like terms
36x - 20x = 54 + 10
16x = 64
16x/16 = 64/16
x = 4
8. (4x + 13)/20 = 52/16
(4x + 13)/20 = 13/4
Cross multiply
4(4x + 13) = 13(20)
16x + 52 = 260
16x = 260 - 52
16x = 208
x = 208/16
x = 13
1. Consider a lottery with three possible outcomes:-$125 will be received with probability 0.2-$100 will be received with probability 0.3-$50 will be received with probability 0.5a. What is the expected value of the lottery
Answer:
The expected value of the lottery is $80
Step-by-step explanation:
To get the expected value, we have to multiply each outcome by its probability
Then we proceed to add up all of these to get the expected value of the lottery
we have this as ;;
125(0.2) + 100(0.3) + 50(0.5)
= 25 + 30 + 25 = $80
The graph shows the functior f(x) = 2X
What is the value of x when f(x) = 8?
Answer: b
Step-by-step explanation:
Which of the following scatterplots would have a trend line with a negative slope?
Answer:
A scatter plot shows a negative trend if y tends to decrease as x increases. A scatter plot shows no trend if there is no obvious pattern.
15. Find the x- and y-intercepts for the lineal equation - 3x + 4y = 24
Please explain steps! ❤️
Answer:
x (-8,0)
y (0,6)
Step-by-step explanation:
at the x-intercept, y = 0
at the y-intercept x=0
sub those values into your equation!
for the x-intercept,
-3x = 24
x = -8
for the y-intercept,
4y = 24
y = 6
If a hypothesis is not rejected at a 5% level of significance, it _____.
a. will also not be rejected at the 1% level
b. may be rejected or not rejected at the 1% level
c. will always be rejected at the 1% level
d. will sometimes be rejected at the 1% level
Answer:
a. will also not be rejected at the 1% level.
Step-by-step explanation:
A hypothesis is rejected if:
The p-value is larger than the significance level.
Hypothesis is not rejected at a 5% level of significance
This means that the p-value is > 0.05.
At the 1% level:
p-value > 0.01, so it will never be rejected, and thus, the correct answer is given by option a.
Answer theas question
(1) Both equations in (a) and (b) are separable.
(a)
[tex]\dfrac xy y' = \dfrac{2y^2+1}{x+1} \implies \dfrac{\mathrm dy}{y(2y^2+1)} = \dfrac{\mathrm dx}{x(x+1)}[/tex]
Expand both sides into partial fractions.
[tex]\left(\dfrac1y - \dfrac{2y}{2y^2+1}\right)\,\mathrm dy = \left(\dfrac1x - \dfrac1{x+1}\right)\,\mathrm dx[/tex]
Integrate both sides:
[tex]\ln|y| - \dfrac12 \ln\left(2y^2+1\right) = \ln|x| - \ln|x+1| + C[/tex]
[tex]\ln\left|\dfrac y{\sqrt{2y^2+1}}\right| = \ln\left|\dfrac x{x+1}\right| + C[/tex]
[tex]\dfrac y{\sqrt{2y^2+1}} = \dfrac{Cx}{x+1}[/tex]
[tex]\boxed{\dfrac{y^2}{2y^2+1} = \dfrac{Cx^2}{(x+1)^2}}[/tex]
(You could solve for y explicitly, but that's just more work.)
(b)
[tex]e^{x+y}y' = 3x \implies e^y\,\mathrm dy = 3xe^{-x}\,\mathrm dx[/tex]
Integrate both sides:
[tex]e^y = -3e^{-x}(x+1) + C[/tex]
[tex]\ln(e^y) = \ln\left(C - 3e^{-x}(x+1)\right)[/tex]
[tex]\boxed{y = \ln\left(C - 3e^{-x}(x+1)\right)}[/tex]
(2)
(a)
[tex]y' + \sec(x)y = \cos(x)[/tex]
Multiply both sides by an integrating factor, sec(x) + tan(x) :
[tex](\sec(x)+\tan(x))y' + \sec(x) (\sec(x) + \tan(x)) y = \cos(x) (\sec(x) + \tan(x))[/tex]
[tex](\sec(x)+\tan(x))y' + (\sec^2(x) + \sec(x)\tan(x)) y = 1 + \sin(x)[/tex]
[tex]\bigg((\sec(x)+\tan(x))y\bigg)' = 1 + \sin(x)[/tex]
Integrate both sides and solve for y :
[tex](\sec(x)+\tan(x))y = x - \cos(x) + C[/tex]
[tex]y=\dfrac{x-\cos(x) + C}{\sec(x) + \tan(x)}[/tex]
[tex]\boxed{y=\dfrac{(x+C)\cos(x) - \cos^2(x)}{1+\sin(x)}}[/tex]
(b)
[tex]y' + y = \dfrac{e^x-e^{-x}}2[/tex]
(Note that the right side is also written as sinh(x).)
Multiply both sides by e ˣ :
[tex]e^x y' + e^x y = \dfrac{e^{2x}-1}2[/tex]
[tex]\left(e^xy\right)' = \dfrac{e^{2x}-1}2[/tex]
Integrate both sides and solve for y :
[tex]e^xy = \dfrac{e^{2x}-2x}4 + C[/tex]
[tex]\boxed{y=\dfrac{e^x-2xe^{-x}}4 + Ce^{-x}}[/tex]
(c) I've covered this in an earlier question of yours.
(d)
[tex]y'=\dfrac y{x+y}[/tex]
Multiply through the right side by x/x :
[tex]y' = \dfrac{\dfrac yx}{1+\dfrac yx}[/tex]
Substitute y(x) = x v(x), so that y' = xv' + v, and the DE becomes separable:
[tex]xv' + v = \dfrac{v}{1+v}[/tex]
[tex]xv' = -\dfrac{v^2}{1+v}[/tex]
[tex]\dfrac{1+v}{v^2}\,\mathrm dv = -\dfrac{\mathrm dx}x[/tex]
[tex]-\dfrac1v + \ln|v| = -\ln|x| + C[/tex]
[tex]\ln\left|\dfrac yx\right| -\dfrac xy = C - \ln|x|[/tex]
[tex]\ln|y| - \ln|x| -\dfrac xy = C - \ln|x|[/tex]
[tex]\boxed{\ln|y| -\dfrac xy = C}[/tex]
Evaluate z^2−3 z+4 , when z=−4
Answer:
8
Step-by-step explanation:
=z²-3z+4 when z is 4
=4²-3(4)+4
=16-12+4
=8
cho f(x)= sign x và g(x) = x(1-x^2). tìm f(g(x))
Answer:
[tex]f(g(x))= sign(x(1-x^{2})) = sign(x-x^{3})[/tex]
Step-by-step explanation:
Game consoles: A poll surveyed 341 video gamers, and 95 of them said that they prefer playing games on a console, rather than a computer or hand-held device. An executive at a game console manufacturing company claims that the proportion of gamers who prefer consoles differs from . Does the poll provide convincing evidence that the claim is true
Answer:
proportion of gamers who prefer console does not differ from 29%
Step-by-step explanation:
Given :
n = 341 ; x = 95 ; Phat = x / n = 95/341 = 0.279
H0 : p = 0.29
H1 : p ≠ 0.29
The test statistic :
T = (phat - p) ÷ √[(p(1 - p)) / n]
T = (0.279 - 0.29) ÷ √[(0.29(1 - 0.29)) / 341]
T = (-0.011) ÷ √[(0.29 * 0.71) / 341]
T = -0.011 ÷ 0.0245725
T = - 0.4476532
Using the Pvalue calculator from test statistic score :
df = 341 - 1 = 340
Pvalue(-0.447, 340) ; two tailed = 0.654
At α = 0.01
Pvalue > α ; We fail to reject the null and conclude that there is no significant evidence that proportion of gamers who prefer console differs from 29%
If f(x) = negative 3X -2, what if f(-5)?
Answer:
f(- 5) = 13
Step-by-step explanation:
Substitute x = - 5 into f(x)
f(x) = - 3x - 2 , then
f(- 5) = - 3(- 5) - 2 = 15 - 2 = 13
The following data represents the age of 30 lottery winners.
22 30 30 35 36 37 37
37 39 39 41 51 51 54
54 55 57 57 58 58 61
64 68 69 72 74 75 78 79 80
Complete the frequency distribution for the data.
Age Frequency
20-29
30-39
40-49
50-59
60-69
70-79
80-89
what’s the missing side of the polygons
Answer:
the missing side is 21!!!!!!!!
what are the zeros of this function?
Answer:
the Ans is c
Step-by-step explanation:
actually I don't know how to explain