Answer:
7°
Step-by-step explanation:
for this paralellogram to be a square, the sides should be perpendicular.
Woch means that 4x+17° = 45°
● 4x +17° = 45°
Substract 17 from both sides.
● 4x +17°-17° = 45°-17°
● 4x = 28°
Divide both sides by 4
● 4x/4 = 28°/ 4
● x = 7°
Evaluate the following expressions: 2(−1 + 3) − 7
Answer:
-3 is the answer.
Step-by-step explanation:
=2(-1+3)-7
=2(2)-7
=4-7
=-3
Hope it will help you :)
nd the measure of angle m
2. Find the length of sie
m
18.2m
61°
15:1m
х
105mm
Answer:
1). m° = 56.1°
2). X= 91.8 mm
Step-by-step explanation:
For angle m°
Using the sine rule
15.1/sin m= 18.2/sin 90
But Sin 90= 1
15.1/sin m= 18.2
15.1= 18.2*sin m
Sin m = 15.1/18.2
Sin m=0.8297
m= sin^-1(0.8297)
m= 56.06°
m° = 56.1°
For length of side x
Using sine rule
X/sin 61= 105/sin 90
But sin 90= 1
X/sin 61= 105
X = sin61 *105
X=0.8746*105
X= 91.833 mm
X= 91.8 mm
On a single toss of a fair coin, the probability of heads is 0.5 and the probability of tails is 0.5. If you toss a coin twice and get heads on the first toss, are you guaranteed to get tails on the second toss? Explain. Yes, since the coin is fair. No, each outcome is equally likely regardless of the previous outcome. Yes, tails will always result on the second toss. No, tails will never occur on the second toss.
Answer:
No, each outcome is equally likely regardless of the previous outcome.
In which set(s) of numbers would you find the number -832 a. whole number b. irrational number c. integer d. rational number e. real number f. natural number
Answer:
integer of course
Step-by-step explanation:
an integer can either be negative or positive.
PLEASE HELP Weekly wages at a certain factory are
normally distributed with a mean of
$400 and a standard deviation of $50.
Find the probability that a worker
selected at random makes betweenh
$250 and $300.
Answer: 0.0215 .
Step-by-step explanation:
Let X denotes the weekly wages at a certain factory .
It is normally distributed , such that
[tex]X\sim N(\mu=400,\ \sigma= 50)[/tex]
Then, the probability that a worker selected at random makes between
$250 and $300:
[tex]P(250<X<300)=P(\dfrac{250-400}{50}<\dfrac{x-\mu}{\sigma}<\dfrac{300-400}{50})\\\\=P(\dfrac{-150}{50}<z<\dfrac{-100}{50})\ \ [z=\dfrac{x-\mu}{\sigma}]\\\\=P(-3<z<-2)\\\\=P(z<-2)-P(z<-3)\\\\=1-P(z<2)-(1-P(z<3))\\\\=P(z<3)-P(z<2)\\\\=0.9987-0.9772\\\\=0.0215[/tex]
Hence,the required probability = 0.0215 .
Assume that women's heights are normally distributed with a mean given by mu = 64.3 inches, and a standard deviation given by sigma= 2.2 inches.
A) If a woman is randomly selected, find the probability that her height is less than 65 inches.
B) If 34 women are randomly selected, find the probability that they have a mean height less than 65 inches.
Answer:69
Step-by-step explanation:
In triangle ABC, ∠ABC=70° and ∠ACB=50°. Points M and N lie on sides AB and AC respectively such that ∠MCB=40° and ∠NBC=50°. Find m∠NMC.
Answer:
∠NMC = 50°
Step-by-step explanation:
The interpretation of the information given in the question can be seen in the attached images below.
In ΔABC;
∠ A + ∠ B + ∠ C = 180° (sum of angles in a triangle)
∠ A + 70° + 50° = 180°
∠ A = 180° - 70° - 50°
∠ A = 180° - 120°
∠ A = 60°
In ΔAMN ; the base angle are equal , let the base angles be x and y
So; x = y (base angle of an equilateral triangle)
Then;
x + x + 60° = 180°
2x + 60° = 180°
2x = 180° - 60°
2x = 120°
x = 120°/2
x = 60°
∴ x = 60° , y = 60°
In ΔBQC
∠a + ∠e + ∠b = 180°
50° + ∠e + 40° = 180°
∠e = 180° - 50° - 40°
∠e = 180° - 90°
∠e = 90°
At point Q , ∠e = ∠f = ∠g = ∠h = 90° (angles at a point)
∠i = 50° - 40° = 10°
In ΔNQC
∠f + ∠i + ∠j = 180°
90° + 10° + ∠j = 180°
∠j = 180° - 90°-10°
∠j = 180° - 100°
∠j = 80°
From line AC , at point N , ∠y + ∠c + ∠j = 180° (sum of angles on a straight line)
60° + ∠c + ∠80° = 180°
∠c = 180° - 60°-80°
∠c = 180° - 140°
∠c = 40°
Recall that :
At point Q , ∠e = ∠f = ∠g = ∠h = 90° (angles at a point)
Then In Δ NMC ;
∠d + ∠h + ∠c = 180° (sum of angles in a triangle)
∠d + 90° + 40° = 180°
∠d = 180° - 90° -40°
∠d = 180° - 130°
∠d = 50°
Therefore, ∠NMC = ∠d = 50°
Solve 5(2x + 4) = 15. Round to the nearest thousandth.
[tex]5(2x + 4) = 15\\10x+20=15\\10x=-5\\x=-\dfrac{5}{10}=-0,5[/tex]
Answer:
[tex]\huge\boxed{x=-0.5}[/tex]
Step-by-step explanation:
[tex]5(2x+4)=15\qquad\text{divide both sides by 5}\\\\\dfrac{5\!\!\!\!\diagup(2x+4)}{5\!\!\!\!\diagup}=\dfrac{15\!\!\!\!\!\diagup}{5\!\!\!\!\diagup}\\\\2x+4=3\qquad\text{subtract 4 from both sides}\\\\2x+4-4=3-4\\\\2x=-1\qquad\text{divide both sides by 2}\\\\\dfrac{2x}{2}=\dfrac{-1}{2}\\\\\boxed{x=-0.5}[/tex]
Given below are descriptions of two lines. Line 1: Goes through (-2,10) and (1,1) Line 2: Goes through (-2,8) and (2,-4)
Answer:
Option (2)
Step-by-step explanation:
1). If two lines have the same slope, lines are defined as parallel.
m₁ = m₂
2). If the multiplication of the slopes of two lines is (-1), lines will be perpendicular.
m₁ × m₂ = (-1)
Line 1 : It passes through two points (-2, 10) and (1, 1).
Slope of the line 1 = [tex]\frac{y_2-y_1}{x_2-x_1}[/tex]
= [tex]\frac{1+2}{10-1}[/tex]
= [tex]\frac{3}{9}[/tex]
m₁ = [tex]\frac{1}{3}[/tex]
Line 2 : It passes through two points (-2, 8) and (2, -4).
Slope of the line 2 = [tex]\frac{y_2-y_1}{x_2-x_1}[/tex]
= [tex]\frac{8+4}{-2-2}[/tex]
= [tex]-\frac{12}{4}[/tex]
m₂ = -3
Since, m₁ × m₂ = [tex]\frac{1}{3}\times (-3)[/tex]
= (-1)
Therefore, given lines are perpendicular to each other.
Option (2) is the correct option.
The population of men at UMBC has a mean height of 69 inches with a standard deviation of 4 inches. The women at UMBC have a mean height of 65 inches with a standard deviation of 3 inches. A sample of 50 men and 40 women is selected. What is the probability that the sample mean of men heights is more than 5 inches greater than the sample mean of women heights
Answer:
The probability that the sample mean of men heights is more than 5 inches greater than the sample mean of women heights is 0.0885.
Step-by-step explanation:
We are given that the population of men at UMBC has a mean height of 69 inches with a standard deviation of 4 inches. The women at UMBC have a mean height of 65 inches with a standard deviation of 3 inches.
A sample of 50 men and 40 women is selected.
The z-score probability distribution for the two-sample normal distribution is given by;
Z = [tex]\frac{(\bar X_M-\bar X_W)-(\mu_M-\mu_W)}{\sqrt{\frac{\sigma_M^{2} }{n_M}+\frac{\sigma_W^{2} }{n_W} } }[/tex] ~ N(0,1)
where, [tex]\mu_M[/tex] = population mean height of men at UMBC = 69 inches
[tex]\mu_W[/tex] = population mean height of women at UMBC = 65 inches
[tex]\sigma_M[/tex] = standard deviation of men at UMBC = 4 inches
[tex]\sigma_M[/tex] = standard deviation of women at UMBC = 3 inches
[tex]n_M[/tex] = sample of men = 50
[tex]n_W[/tex] = sample of women = 40
Now, the probability that the sample mean of men heights is more than 5 inches greater than the sample mean of women heights is given by = P([tex]\bar X_M-\bar X_W[/tex] > 5 inches)
P([tex]\bar X_M-\bar X_W[/tex] > 5 inches) = P( [tex]\frac{(\bar X_M-\bar X_W)-(\mu_M-\mu_W)}{\sqrt{\frac{\sigma_M^{2} }{n_M}+\frac{\sigma_W^{2} }{n_W} } }[/tex] > [tex]\frac{(5)-(69-65)}{\sqrt{\frac{4^{2} }{50}+\frac{3^{2} }{40} } }[/tex] ) = P(Z > 1.35)
= 1 - P(Z [tex]\leq[/tex] 1.35) = 1 - 0.9115 = 0.0885
The above probability is calculated by looking at the value of x = 1.35 in the z table which has an area of 0.9115.
In the figure below, circle O has a central ángel of 120 degrees. what is the area shaded of the circle in terms of ,r, the radius? Leave your answer in terms of pi.
Answer:
the area of a section of a circle is [tex]\frac{1}{360}[/tex]* Θ * (area of the circle)
the theta/360 tells us the amount of circle currently in question
so , the answer will be 1/3 pi r^2 [A]
If the occurrence of one event does not influence the outcome of another event, then two events are:
A. conditional
B. disjoint
C. independent
D. interdependent
Answer:
C. Independent
Step-by-step explanation:
Independent events are events that have no impact on each other.
So, if the occurrence of an event doesn't influence the outcome of another, this means that they are independent because they do not impact each other.
This must mean C is correct because the two events have to be independent.
ACDF,BE is a mid segment what is x?
Answer:
X= 15
Step-by-step explanation:
the above equation will be used to determine the value of x.
the above equation will be used to determine the value of x.
6x-12= 2x+20+18
6x-2x = 20+12+18
4x= 60.
X= 60/4
X= 15
x = 15
What value of x makes this equation true?
17 5 - 7 = -4
x=
y Su
What value of x makes this equation true? X/6-7=-4
Answer:
x=18
Step-by-step explanation:
x/6 - 7 = -4
x/6 = 3
(x/ 6) * 6 = 3*6
x = 18
solve the following system of equations
1/2x+1/4y=-2
-2/3x+1/2y=6
x=
y=
Answer:
x = -6
y = 4
Step-by-step explanation:
Rewriting the equations :
2x + y = -84x - 3y = -36Now, solving the two equations using substitution method, we get :
x = -6
y = 4
Answer:
y = 4
x = -6
Step-by-step explanation:
1/2 x + 1/4 y= -2 first equation
-2/3 x + 1/2 y = 6 second equation
solution:
from the first equation:
8(1/2 x + 1/4 y) = -2*8
8x*1/2 + 8y*1/4 = -16
8x/2 + 8y/4 = -16
4x + 2y = -16 third equation
from the second equation
6(-2/3 x + 1/2 y) = 6*6
6x*-2/3 + 6y*1/2 = 36
-12x/3 + 6y/2 = 36
-4x + 3y = 36 fourth equation
from the third & fourth equation:
4x + 2y = -16
-4x + 3y = 36
0 + 5y = 20
5y = 20
y = 20/5
y = 4
from the fourth equation:
-4x + 3y = 36
-4x + 3*4 = 36
-4x + 12 = 36
-4x = 36 - 12
-4x = 24
x = 24/-4
x = -6
Check:
from the first equation:
1/2 x + 1/4 y = -2
1/2 *-6 + 1/4 * 4 = -2
-3 + 1 0 -2
from the second equation:
-2/3 x + 1/2 y = 6
-2/3 * -6 + 1/2 * 4 = 6
4 + 2 = 6
If I chose a number uniformly from the integers from 1 to 25, calculate the conditional probability that the number is a multiple of 6 (including 6) given that it is larger than 18.
Answer:
1/7Step-by-step explanation:
If I choose a number from the integers 1 to 25, the total number of integers I can pick is the total outcome which is 25. n(U) = 25
Let the probability that the number chosen at random is a multiple of 6 be P(A) and the probability that the number chosen at random is is larger than 18 be P(B)
P(A) = P(multiple of 6)
P(B) = P(number larger than 18)
A = {6, 12, 18, 24}
B = {19, 20, 21, 22, 23, 24, 25}
The conditional probability that the number is a multiple of 6 (including 6) given that it is larger than 18 is expressed as P(A|B).
P(A|B) = P(A∩B)/P(B)
Since probability = expected outcome/total outcome
A∩B = {24}
n(A∩B) = 1
P(A∩B) = n(A∩B)/n(U)
P(A∩B) = 1/25
Given B = {19, 20, 21, 22, 23, 24, 25}.
n(B) = 7
p(B) = n(B)/n(U)
p(B) = 7/25
Since P(A|B) = P(A∩B)/P(B)
P(A|B) = (1/25)/(7/24)
P(A|B) = 1/25*25/7
P(A|B) = 1/7
Hence the conditional probability that the number is a multiple of 6 (including 6) given that it is larger than 18 is 1/7
g a video game claims that the drop rate for a certain item is 5% according to the game publisher. in online forums, a number of players are complaining that the drop rate seems to be low. in order to test the drop rate claim, 100 players agree to attempt to get the drop, each attempting 10 times. of the 1000 tries, the item only drops 40 times state the null hypothesis needed to test this claim group of answer choices
Answer:
p0 = 0.05
Step-by-step explanation:
Fill in the blanks and explain the pattern.
4.25, 4.5,__,__,__,5.5,__,6.0
Answer:
4.25, 4.5, 4.75, 5.00, 5.25, 5.5, 5.75, 6.00
Step-by-step explanation:
it is an arithmetic sequence with common difference 0.25
for the following questions, determine how many solutions each equation has. if one solution, state the value of x. x+6+8=2x-x+14? and is it a No solution, or a many solution or is it a one solution?
Answer:
infinite solutions
Step-by-step explanation:
x+6+8=2x-x+14
x+6+8=x+14
x+14=x+14
14=14
or
x=x
plug in any number
2+6+8=2(2)-2+14
16=16
another example
8+6+8=2(8)-8=14
22=22
round 38562 to one significant figure
Answer:
plz refer the attachment
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Hi my lil bunny!
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
ROUND 38562 to ONE significant figure.
Answer:
= 4000
Rounding Significant Figures Rules
~ ↓↓↓↓↓↓↓ ~
Non-zero digits are always significant
Zeros between non-zero digits are always significantLeading zeros are never significantTrailing zeros are only significant if the number contains a decimal pointExamples of Significant Figures❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
If this helped you, could you maybe give brainliest..?
❀*May*❀
a radion station usa 1\6 of its time for the news. in a 12 hour day, how many hours are used for music & entertainment?
Answer:
10 hours
Step-by-step explanation:
In order to answer this question, you must assume that all air time not spent on news is spent on music & entertainment. That would usually not be the case, as there would usually be advertisements and public service programming along with everything else.
The time spent on news is ...
(1/6)(12 hours) = 2 hours
If the rest is spent on music and entertainment, then ...
12 -2 = 10 . . . hours are used for music and entertainment
The product of a number and 3 is equal to 15 minutes twice the number, find the number.
Answer:
The answer is 3Step-by-step explanation:
Let the number to be found be x
The product of a number and 3 is written as
3 × x = 3x15 minus twice the number is written as
15 - 2xNow equate the two statements
That's
3x = 15 - 2x
Group like terms
3x + 2x = 15
5x = 15
Divide both sides by 5
the final answer is
x = 3Hope this helps you
Can somebody help me with parametric equations?
I do not have a TI-84 at the moment! Thanks!
1. Graph the following set of parametric equations on your calculator and select the matching graph.
2. Transform the given parametric equations into rectangular form. Then identify the conic.
Answer:
Attachment 1 : Graph B
Attachment 2 : Option B
Step-by-step explanation:
( 1 ) The equation x = t² - 3 is represented by exponential growth, ( t² ) so it's graph will be similar to the first graph, graph 1, in our options. Then again we have to consider the equation y = √t - 2, which will be similar to graph 4, but with a greater slope. This leaves us with a solution of graph b.
( 2 ) We have the following system of equations at hand here.
{ x = 5 cot(t), y = - 3csc(t) + 4 }
Now instead of isolating the t from either equation, let's isolate cot(t) and csc(t) --- Step #1,
x = 5 cot(t) ⇒ x - 5 = cot(t),
y = - 3csc(t) + 4 ⇒ y - 4 = - 3csc(t) ⇒ y - 4 / - 3 = csc(t)
Now let's square these two equations, adding them --- Step #2
We know that csc²θ - cot²θ = 1, so let's subtract the equations
( y - 4 / - 3 )² = (csc(t))²
- ( x - 5 / 1 )² = (cot(t))²
___________________
(y - 4)² / 9 - x² / 25 = 1
And as we are subtracting the two expressions, this is an example of a hyperbola. Therefore your solution is option b.
find the value of each variable and the measure of each angle
Answer:
y = 90x = 302x° = 60°(y+x)° = 120°(y-x)° = 60°Step-by-step explanation:
Adjacent angles are supplementary, so ...
(y +x) +(y -x) = 180
2y = 180 . . . . . . . . . simplify
y = 90 . . . . . . . . . . . divide by 2
__
2x +(y +x) = 180
3x +90 = 180 . . . . substitute for y
x + 30 = 60 . . . . . . divide by 3
x = 30 . . . . . . . . . . subtract 30
__
With these values of x and y, the angle measures are ...
2x° = 2(30)° = 60°
(y+x)° = (90+30)° = 120°
(y-x)° = (90-30)° = 60°
Consider the following. x = t − 2 sin(t), y = 1 − 2 cos(t), 0 ≤ t ≤ 2π Set up an integral that represents the length of the curve. 2π 0 dt Use your calculator to find the length correct to four decimal places.
Answer:
L = 13.3649
Step-by-step explanation:
We are given;
x = t − 2 sin(t)
dx/dt = 1 - 2 cos(t)
Also, y = 1 − 2 cos(t)
dy/dt = 2 sin(t)
0 ≤ t ≤ 2π
The arc length formula is;
L = (α,β)∫√[(dx/dt)² + (dy/dt)²]dt
Where α and β are the boundary points. Thus, applying this to our question, we have;
L = (0,2π)∫√((1 - 2 cos(t))² + (2 sin(t))²)dt
L = (0,2π)∫√(1 - 4cos(t) + 4cos²(t) + 4sin²(t))dt
L = (0,2π)∫√(1 - 4cos(t) + 4(cos²(t) + sin²(t)))dt
From trigonometry, we know that;
cos²t + sin²t = 1.
Thus;
L = (0,2π)∫√(1 - 4cos(t) + 4)dt
L = (0,2π)∫√(5 - 4cos(t))dt
Using online integral calculator, we have;
L = 13.3649
Fiona wrote the linear equation y = y equals StartFraction 2 over 5 EndFraction x minus 5.x – 5. When Henry wrote his equation, they discovered that his equation had all the same solutions as Fiona’s. Which equation could be Henry’s? x – x minus StartFraction 5 over 4 EndFraction y equals StartFraction 25 over 4 EndFraction.y = x – x minus StartFraction 5 over 2 EndFraction y equals StartFraction 25 over 4 EndFraction.y = x – x minus StartFraction 5 over 4 EndFraction y equals StartFraction 25 over 2 EndFraction.y = x – x minus StartFraction 5 over 2 EndFraction y equals StartFraction 25 over 2 EndFraction.y =
Answer:
D. [tex]x-\frac{5}{2}y = \frac{25}{2}[/tex]
Step-by-step explanation:
Given
[tex]y = \frac{2}{5}x - 5[/tex]
Required
Determine its equivalent
From the list of given options, the correct answer is
[tex]x - \frac{5}{2}y = \frac{25}{2}[/tex]
This is shown as follows;
[tex]y = \frac{2}{5}x - 5[/tex]
Multiply both sides by [tex]\frac{5}{2}[/tex]
[tex]\frac{5}{2} * y = \frac{5}{2} * (\frac{2}{5}x - 5)[/tex]
Open Bracket
[tex]\frac{5}{2} * y = \frac{5}{2} * \frac{2}{5}x - \frac{5}{2} *5[/tex]
[tex]\frac{5}{2}y = x - \frac{25}{2}[/tex]
Subtract x from both sides
[tex]\frac{5}{2}y - x = x -x - \frac{25}{2}[/tex]
[tex]\frac{5}{2}y - x = - \frac{25}{2}[/tex]
Multiply both sides by -1
[tex]-1 * \frac{5}{2}y - x * -1 = - \frac{25}{2} * -1[/tex]
[tex]-\frac{5}{2}y + x = \frac{25}{2}[/tex]
Reorder
[tex]x-\frac{5}{2}y = \frac{25}{2}[/tex]
Hence, the correct option is D
[tex]x-\frac{5}{2}y = \frac{25}{2}[/tex]
Answer:
The 4th option
Step-by-step explanation:
You are a great student so you know that you answer probability questions correctly with probability 0.8. A friend told you that "NA" is a correct answer with probability 0.01 in general. Let XX be a random variable that takes on the value 1 if you answer a probability question correctly and 0 otherwise, and let YY be a random variable with takes on the value 1 if "NA" is the correct answer to the probability question and 0 otherwise.Required:a. P [X=0]=_______b. P[Y=1]=________
Answer:
sorry gave wrong answer
Step-by-step explanation:
Armando is baking 36 batches of brownies for the bake sale. Each batch of brownies takes cups of flour. What is a reasonable estimate of the amount of flour that he will need to bake all thirty-six batches of brownies?
Answer:
Well, let's assume that "cups" = 3 cups of flour.
Step-by-step explanation:
First, multiply 3x36.
If for some reason this is incorrect, try 2 cups instead of 3. Both are reasonable measurements when it comes to baking.
. In statistics, a data set has the following characteristics: (Choose all that apply) A:A data set is a collection of similar data. B:A data set can contain only quantitative data. C:A data set is any piece of descriptive or quantitative information on any object of study. D:A data set contains data all of which have some common characteristic.
Answer:
A. A data set is a collection of similar data.
D. A data set contains data all of which have some common characteristic.
Five more than the square of a number Five more than twice a number Five less than the product of 3 and a number Five less the product of 3 and a number Twice the sum of a number and 5 The sum of twice a number and 5 The product of the cube of a number and 5 The cube of the product of 5 and a number. 5 + x2 5 + 2x 5 - 3x 3x - 5 2x + 5 2(x + 5) 5x3 (5x)3 WILL MARK BRAINLIEST AND DON'T PUT A FAKE ANSWER TO GET POINTS EITHER CUS I NEED HELP
Answer:
BelowStep-by-step explanation: Let all unknown no be x
Five more than the square of a number
= [tex]5 + x^2[/tex]
Five more than twice a number ;
[tex]5+2x\\= 2x+5[/tex]
Five less than the product of 3 and a number ;
[tex]5- 3x\\= 3x-5[/tex]
Twice the sum of a number and 5 ;
[tex]2(x+5)\\[/tex]
The sum of twice a number and 5 ;
[tex]2x+5[/tex]
The product of the cube of a number and 5;
[tex]x^3 \times 5\\=5x^3[/tex]
The cube of the product of 5 and a number ;
[tex](5\times x)^3\\(5x)^3[/tex]