Answer:
[tex]F=5(240t^2i+72tj)\ N[/tex]
Explanation:
Given that,
The mass of the object, m = 5 kg
The position vector is, [tex]r=20t^4i+12t^3j[/tex]
Velocity, [tex]v=\dfrac{dr}{dt}=80t^3i+36t^2j[/tex]
Acceleration, [tex]a=\dfrac{dv}{dt}=240t^2i+72tj[/tex]
Newton's second law of motion is given as follows:
F = ma
Put all the values,
[tex]F=5(240t^2i+72tj)\ N[/tex]
Hence, this is the required solution.
Diwn unscramble the word
Answer:
WIND Is what you're looking for
Explanation:
The word is WIND
Steve pushes a crate 20 m across a level floor at a constant speed with a force of 200 N, this time on a frictionless floor. The velocity of the crate is in the direction of the force Steve is applying to the crate. What is the net work done on the crate
Answer:
The correct answer is "4000 J".
Explanation:
Given that,
Force,
= 200 N
Displacement,
= 20 m
Now,
The work done will be:
⇒ [tex]Work=Force\times displacement[/tex]
By putting the values, we get
[tex]=200\times 20[/tex]
[tex]=4000 \ J[/tex]
A ball is thrown straight up in the air at an initial speed of 30 m/s. At the same time the ball is thrown, a person standing 70 m away begins to run toward the spot where the ball will land.How fast will the person have to run to catch the ball just before it hits the ground?Vperson= m/s
Answer:
Explanation:
Here's what we know and in which dimension:
y dimension:
[tex]v_0=30[/tex] m/s
v = 0 (I'll get to that injust a second)
a = -9.8 m/s/s
The final velocity of 0 is important because that's the velocity of the ball right at the very top of its travels. If we knew how long it takes to get to that max height, we can also use that to find out how long it will take to hit the ground. Therefore, we will find the time it takes to reach its max height and pick up with the investigation of what this means after.
x dimension:
Δx = 70 m
v = ??
Velocity is our unknown.
Solving for the time in the y dimension:
[tex]v=v_0+at[/tex] and filling in:
0 = 30 + (-9.8)t and
-30 = -9.8t so
t = 3.1 seconds
We know it takes 3.1 seconds to get to its max height. In order to determine how long it will take to hit the ground, just double the time. Therefore, it will take 6.2 seconds for the ball to come back to the ground, which is where the persom trying to catch the ball comes in. We will use that time in our x dimension now.
In the x dimension, the equation we need is just a glorified d = rt equation since the acceleration in this dimension is 0.
Δx = vt and
70 = v(6.2) so
v = 11.3 m/s
How is fitness walking beneficial?
It can relieve stress and improve mood.
It can decrease energy levels.
It can decrease perspiration.
It can relieve allergy symptoms.
Answer:
It can relieve stress and improve mood.
A boy pushes his little brother on a sled. The sled accelerates from rest to (4 m/s). If the combined mass of his brother and the sled is (40.0 kg) and (20 W) of power is developéd, how long time does boy push the sled?
16s
300s
15s
23s
The boy pushed the sled for 16 seconds.
We have a boy who pushes his little brother on a sled.
We have to determine for how long time does boy push the sled.
State Work - Energy Theorem.The Work - Energy theorem states that the work done by the sum of all forces acting on a particle equals the change in the kinetic energy of the particle.
According to the question -
The sled is initially at rest → initial velocity (u) = 0.
Final velocity (v) = 4 m/s
Mass of boy and sled (M) = 40 kg
Power developed (P) = 20 W = 20 Joules/sec
According to work - energy theorem -
Work done (W) = Δ E(K) = E(f) - E(i)
Therefore -
W = ([tex]\frac{1}{2} \times 40 \times 4 \times 4 - \frac{1}{2}[/tex] x 40 x 0) = 320 Joule
Now, Power is defined as the rate of doing work -
P = [tex]\frac{dW}{dt}[/tex] = [tex]\frac{W}{t}[/tex]
20 = [tex]\frac{320}{t}[/tex]
t = 16 seconds
Hence, the boy pushed the sled for 16 seconds.
To solve more questions on Work, Energy and Power, visit the link below -
https://brainly.com/question/208670
#SPJ2
Three forces are pulling on the same object such that the system is in equilibrium. Their magnitudes are F1 = 2.83 N.F= 3.35 N. and F3 = 3.64 N, and they make angles of 0, = 45.0°, 02 = -63.43 and 03 =164.05° with respect to the x-axis, respectively.
Required:
a. What is the x-component of the force vector F1?
b. What is the y-component of the force vector F1?
(a) 2.001N
(b) 2.001N
Explanation:A sketch of the scenario has been attached to this response.
Since only the force vector F₁ is required, the only force shown in the sketch is F₁.
As shown in the sketch;
The x-component of the force vector F₁ = [tex]F_{x}[/tex]
The y-component of the force vector F₁ = [tex]F_{y}[/tex]
The magnitude of F₁ as given in the question = 2.83N
The angle that the force makes with respect to the x-axis = 45.0°
Using the trigonometric ratio, we see that;
(a) cos 45.0° = [tex]\frac{F_x}{F_1}[/tex]
=> [tex]F_{x}[/tex] = F₁ cos 45.0°
=> [tex]F_{x}[/tex] = 2.83 cos 45.0°
=> [tex]F_{x}[/tex] = 2.83 x 0.7071
=> [tex]F_{x}[/tex] = 2.001N
(b) Also;
sin 45.0° = [tex]\frac{F_y}{F_1}[/tex]
=> [tex]F_{y}[/tex] = F₁ sin 45.0°
=> [tex]F_{y}[/tex] = 2.83 sin 45.0°
=> [tex]F_{y}[/tex] = 2.83 x 0.7071
=> [tex]F_{y}[/tex] = 2.001N
Therefore, the x-component and y-component of the force vector F₁ is 2.001N
The x and y component of vector F1 is mathematically given as
F_x = 2.001N
F_y= 2.001N
What is the x and y component of vector F1?Question Parameters:
Generally, the equation for the x-component is mathematically given as
x=Fsin\theta
Therefore
F_x = F₁ cos 45.0°
F_x = 2.83 x 0.7071
F_x = 2.001N
For y component
x=Fcos\theta
F_y = F₁ sin 45.0
F_y = 2.83 x 0.7071
F_y= 2.001N
Read more about Cartesian
https://brainly.com/question/9410676
which unit would be most suitable for its scale?
A mm
B
с
crn?
D
cm
[0625_504_9p_1].
8
A piece of cotton is measured between two points on a ruler.
1
coton
BAS
2
4
5
6
7
8
9
10
11
12
13
14
15 16
when the lenge of coton is wound closely around a pen, goes round six times.
pen
six turns of coton
दे-
What is the distance onde round the pen?
4 2.2 m
B 26 cm
с
13.2 cm
D 15.6 cm
Answer:
Mm, thats the answer trust me men
They create a heat engine where the hot reservoir is filled with water and steam at equilibrium, and the cold reservoir is filled with ice and water at equilibrium. What is the Carnot efficiency for their heat engine if the pressure is constant at 1.0 atmospheres?
Answer:
The efficiency of Carnot's heat engine is 26.8 %.
Explanation:
Temperature of hot reservoir, TH = 100 degree C = 373 K
temperature of cold reservoir, Tc = 0 degree C = 273 K
The efficiency of Carnot's heat engine is
[tex]\eta = 1-\frac{Tc}{T_H}\\\\\eta = 1 -\frac{273}{373}\\\\\eta = 0.268 =26.8 %[/tex]
The efficiency of Carnot's heat engine is 26.8 %.
Find the X and Y components of the following:
A. 35 m/s at 57q from the x-axis.
Explanation:
Given that,
35 m/s at 57° from the x-axis.
Speed, v = 35 m/s
Angle, θ = 57°
Horizontal component,
[tex]v_x=v\cos\theta\\\\=35\times \cos(57)\\\\=19.06 m/s[/tex]
Vertical component,
[tex]v_y=v\sin\theta\\\\v_y=35\times \sin(57)\\\\=29.35\ m/s[/tex]
Hence, this is the required solution.
A man pulls his dog (m=20kg) on a sled with a force of 100N at a 60° angle from the horizontal. What is the horizontal component of the force?
A) 100N
B) 196N
C) 50N
D) 86N
show your work please
Answer:
the horizontal component of the force is 50 N
Explanation:
Given;
force applied by the man, F = 100 N
angle of inclination of the force, θ = 60⁰
mass of the dog, m = 20 kg
The horizontal component of the force is calculated as;
[tex]F_x = F\times cos(\theta)\\\\F_x = 100 \ N \times cos(60^0)\\\\F_x = 100\ N \times 0.5\\\\F_x = 50 \ N[/tex]
Therefore, the horizontal component of the force is 50 N
Một học sinh làm thí nghiệm sóng dừng trên dây cao su dài L với hai đầu A và B cố định . Xét điểm M trên dây sao cho khi sợi dây duỗi thẳng thì M cách B một khoảng a < L/2 . Khi tần số sóng là f = f1 = 60 Hz thì trên dây có sóng dừng và lúc này M là một điểm bụng . Tiếp tục tăng dần tần số thì lần tiếp theo có sóng dừng ứng với f = f2=72 Hz và lúc này M không phải là điểm bụng cũng không phải điểm nút . Thay đổi tần số trong phạm vi từ 73 Hz đến 180 Hz , người ta nhận thấy với f = fo thì trên dây có sóng dừng và lúc này M là điểm nút . Lúc đó , tính từ B ( không tính nút tại B ) thì M có thể là nút thứ ?
If R1 and R2 are in parallel and R3 is in series with them then equivalent resistance will be
Answer:
Refer to the attachment!~
Choose the CORRECT statements. The superposition of two waves.
I. refers to the effects of waves at great distances.
Il. refers to how displacements of the two waves add together.
Ill. results into constructive interference and destructive interference
IV. results into minimum amplitude when crest meets trough.
V. results into destructive interference and the waves stop propagating.
A. I and II
B. II and III
C. I, II and III
D. II, III and IV
E. III, IV and V
F. II, III, IV and V
Answer:
A
Explanation:
I guess not that much confidential!
A 75.0 kg diver falls from rest into a swimming pool from a height of 5.10 m. It takes 1.34 s for the diver to stop after entering the water. Find the magnitude of the average force exerted on the diver during that time.
Answer:
559.5 N
Explanation:
Applying,
v² = u²+2gs............. Equation 1
Where v = final velocity,
From the question,
Given: s = 5.10 m, u = 0 m/s ( from rest)
Constant: 9.8 m/s²
Therefore,
v² = 0²+2×9.8×5.1
v² = 99.96
v = √(99.96)
v = 9.99 m/s
As the diver eneters the water,
u = 9.99 m/s, v = 0 m/s
Given: t = 1.34 s
Apply
a = (v-u)/t
a = 9.99/1.34
a = -7.46 m/s²
F = ma.............. Equation 2
Where F = force, m = mass
Given: m = 75 kg, a = -7.46 m/s²,
F = 75(-7.46)
F = -559.5 N
Hence the average force exerted on the diver is 559.5 N
Which of the following is acceleration toward the center of a circular motion? O A. Centripetal acceleration O B. Uniform circular motion O C. Centrifugal force D. Centripetal force
PLEASE HELP ASAP!!
We call the acceleration of an object moving in uniform circular motion— resulting from a net external force—the centripetal ...
If ATM is 102 kPa, what force does the atmosphere exert on the palm of your hand which has an area of 0.016 meters?
Answer:
Force = 1.632 Newton
Explanation:
Given the following data;
Pressure = 102 kPa
Area = 0.016 m²
To find what force the atmosphere exert on the palm of your hand;
Mathematically, pressure is given by the formula;
[tex] Pressure = \frac {Force}{area} [/tex]
Force = 102 * 0.016
Force = 1.632 Newton
A student on a new planet wants to determine the value of gravity on that planet. Luckily for them they brought equipment that they can use to set up an oscillating spring or an oscillating pendulum. Which procedure would allow the student to determine the value of gravity on the new planet
Answer:
By measure the effective length and the time period of the pendulum.
Explanation:
Let the student take the oscillating pendulum at the planet.
He measure the time period of the pendulum by using the stop watch or the ordinary watch.
Then measure the effective length of the pendulum which is the distance between the center of gravity of the bob and the point of suspension of the pendulum.
Now, use the formula of the time period of the pendulum,
[tex]T =2\pi\sqrt\frac{L}{g}[/tex]
Here, L is the effective length of the pendulum, g is the acceleration due to gravity at the planet and T is time period of the pendulum.
By rearranging the terms, we get
[tex]T =2\pi\sqrt\frac{L}{g}\\\\T^{2}=4\pi^2\times\frac{L}{g}\\\\g =\frac{4\pi^2L}{T^2}[/tex]
Here, by substituting the values of L and T, the student get the value of acceleration due to gravity at that planet.
A car has a mass of 900 kg is accelerated from rest at a rate of 1.2 m/s calculate the time taken to reach 30/s
Answer:
12+2=24+30+2=66
Explanation:
Baseball runner with a mass of 70kg, moving at 2.7m/s and collides head-on into a shortstop with a mass of 85kg and a velocity of 1.6m/s. What will be the resultant velocity of the system when they make contact with each other
Answer:
The speed of the combined mass after the collision is 2.1 m/s.
Explanation:
mass of runner, m = 70 kg
speed of runner, u = 2.7 m/s
mass of shortstop, m' = 85 kg
speed of shortstop, u' = 1.6 m/s
Let the velocity of combined system is v.
Use conservation of momentum
Momentum before collision = momentum after collision
m u + m' u' = (m + m') v
70 x 2.7 + 85 x 1.6 = (70 + 85) v
189 + 136 = 155 v
v = 2.1 m/s
Convert the following:
1) 367.5 mg = _______ g
2) 367 mL = _______ L
3) 28.59 in =______ cm
4) 8 0z =_______lb
5) 0.671 mm =_____m
Answer:
1) 0.3675
2) 0.367
3) 72.6186
4) 0.5
5) 0.000671
Answer:
1) 367.5 mg = 0.3675 g
2) 367 mL = 0.367 L
3) 28.59 in = 72.61 cm
4) 8 0z = 0.5 lb
5) 0.671 mm = 0.0000671 m
A team of people who traveled to the North Pole by dogsled lived on butter because they needed to consume 6 000 dietitian's Calories each day. Because the ice there is lumpy and irregular, they had to help the dogs by pushing and lifting the load. Assume they had a 16-hour working day and that each person could lift a 500-N load. How many times would a person have to lift this weight 1.00 m upwards in a constant gravitational field, where (g = 9.80m/s2) where to do the work equivalent to 6 000 Calories?
Answer:
The right solution is "50200 days".
Explanation:
Given:
Calories intake,
= 6000 kcal,
or,
= [tex]2.52\times 10^7 \ J[/tex]
Force,
= 500 N
As we know,
⇒ [tex]Work \ done = Force\times distance[/tex]
Or,
⇒ [tex]distance = \frac{Work \ done}{Force}[/tex]
By putting the values, we get
[tex]=\frac{2.52\times 10^7}{500}[/tex]
[tex]=0.502\times 10^5[/tex]
[tex]=50200 \ m[/tex]
hence,
The number of days will be:
= [tex]\frac{50200}{1}[/tex]
= [tex]50200 \ days[/tex]
What is the y component of a vector that is 673 m at -38o?
Answer:
D_y = 414.38m
Explanation:
D_y = D*sin(x)
D_y = 673m*sin(38°)
D_y = 414.38m
If you pull with your lower leg such that you exert a 90 N force on the cord attached to your ankle, determine the magnitude of the tension force of your hamstring on your leg and the compression force at the knee joint.
This question is incomplete, the missing diagram is uploaded along this answer below.
Answer:
- the magnitude of the tension force exerted by the hamstring muscles on the leg is 990 N
- the magnitude of compression force at the knee joint is 900 N
Explanation:
Given the data in the question and diagram below;
Net torque = 0
Torque = force × lever arm
so
F[tex]_{ConF[/tex] × ( 15.0 in + 1.5 in ) = T[tex]_{HonL[/tex] × 1.5 in
given that F[tex]_{ConF[/tex] = 90 N
90 × ( 15.0 in + 1.5 in ) = T[tex]_{HonL[/tex] × 1.5 in
90 N × 16.5 in = T[tex]_{HonL[/tex] × 1.5 in
T[tex]_{HonL[/tex] = ( 90 N × 16.5 in ) / 1.5 in
T[tex]_{HonL[/tex] = 990 N
Therefore, the magnitude of the tension force exerted by the hamstring muscles on the leg is 990 N
b) magnitude of compression force at the knee joint;
In equilibrium, net force = 0
along horizontal
F[tex]_{FonB[/tex] - T[tex]_{HonL[/tex] + F[tex]_{ConF[/tex] = 0
we substitute
F[tex]_{FonB[/tex] - 990 + 90 = 0
F[tex]_{FonB[/tex] - 900 = 0
F[tex]_{FonB[/tex] = 900 N
Therefore, the magnitude of compression force at the knee joint is 900 N
Its Acceleration during the upward Journey ?
What is this sport ⚽⚾
Answer:
sports are all forms of physical activity that contribute to physical fitness, mental well-being and social interaction.
hope it is helpful to you
If the temperature stays constant, which change would decrease the amount
of thermal energy in an object?
A. Decreasing its density
B. Increasing its velocity
c. Decreasing its mass
D. Increasing its mass
A meter stick has a mass of 0.30 kg and balances at its center. When a small chain is suspended from one end, the balance point moves 28.0 cm toward the end with the chain. Determine the mass of the chain.
Answer:
M L1 = m L2 torques must be zero around the fulcrum
M = m L2 / L1 = .3 kg * 28 cm / 22 cm = .382 kg
What is the electric field 3.9 m from the center of the terminal of a Van de Graaff with a 6.60 mC charge, noting that the field is equivalent to that of a point charge at the center of the terminal
Answer:
the electric field is 3.91 x 10⁶ N/C
Explanation:
Given the data in the question;
Electric field at a point due to point charge is;
E = kq/r²
where k is the constant, r is the distance from centre of terminal to point where electric field is, q is the excess charge placed on the centre of terminal of Van de Graff,a generator
Now, given that r = 3.9 m, k = 9.0 x 10⁹ Nm²/C², q = 6.60 mC = 6.60 x 10⁻³ C
so we substitute into the formula
E = [(9.0 x 10⁹ Nm²/C²)( 6.60 x 10⁻³ C)] / ( 3.9 )²
E = 59400000 / 15.21
E = 3.91 x 10⁶ N/C
Therefore, the electric field is 3.91 x 10⁶ N/C
For an object with a given mass on Earth, calculate the weight of the object with the mass equal in magnitude to the number representing the day given in part 3 in kilograms using the formula F=W=mg. On the surface of the Earth g=9.8m/s^2
Answer: The weight of the object is 29.4 N
Explanation:
To calculate the weight of the object, we use the equation:
[tex]W=m\times g[/tex]
where,
m = mass of the object = 3 kg
g = acceleration due to gravity = [tex]9.8m/s^2[/tex]
Putting values in above equation, we get:
[tex]W=3kg\times 9.8m/s^2\\\\W=29.4N[/tex]
Hence, the weight of the object is 29.4 N
To accurately describe the wind, the measurement should include
A) a direction, but not a speed
B)a speed, but not a direction
C) both a speed and a direction
D) neither a speed nor a direction
Answer:
C. both a speed and a direction