Answer:
3. The scale factor is 3, which means the length of the image of segment KL will be 3 times as long.
Step-by-step explanation:
Transformation is the movement of a point from its initial location to a new location. Types of transformation are rotation, translation, reflection and dilation.
Dilation is the increase or decrease in the size of a figure. If a point A(x, y) is dilated about the center of dilation located at O(a, b), the new point is at A'[k(x - a) + a, k(y - b) + b].
Quadrilateral KLMN has vertices at K(2, 1), L(-1, -5), M(6, -5) and N(6, 1). If it is dilated by 3, about the center M(6, -5), the new points are:
K' = (3(2 - 6) + 6, 3(1 - (-5)) + (-5)) = (-6, 13)
L' = (3(-1 - 6) + 6, 3(-5 - (-5)) + (-5)) = (-15, -5)
M' = (3(6 - 6) + 6, 3(-5 - (-5)) + (-5)) = (6, -5)
N' = (3(6 - 6) + 6, 3(1 - (-5)) + (-5)) = (6, 13)
Therefore the image of segment KL will be 3 times long.
In a random sample of students at a university, stated that they were nonsmokers. Based on this sample, compute a confidence interval for the proportion of all students at the university who are nonsmokers. Then find the lower limit and upper limit of the confidence interval.
Answer:
(0.8165 ; 0.8819)
Lower boundary = 0.8165
Upper boundary = 0.8819
Step-by-step explanation:
Given :
Sample proportion. Phat = x/ n = 276/ 325 = 0.8492
Confidence interval :
Phat ± margin of error
Margin of Error = Zα/2* [√Phat(1 - Phat) / n]
Phat ± Zα/2* [√Phat(1 - Phat) / n]
The 90% Z critical value is = 1.645
0.8492 ± 1.645*[√0.8492(1 - 0.8492) / 325)
0.8492 ± 1.645*[√0.8492(0.1508) / 325]
0.8492 ± 1.645*√0.0003940288
0.8492 ± 0.0326535
Lower boundary = 0.8492 - 0.0326535 = 0.8165
Upper boundary = 0.8492 + 0.0326535 = 0.8819
Confidence interval = (0.8165 ; 0.8819)
What is the length of my
?
M
3x
X + 8
7639
630
N
¿
O
A. 8
B. 4
C. 16
a
D. 12
Answer:
The length of MN is 4
Choose B
How do I make people brainliest
Answer:
you have to wait until two people answer then you click their answer to make them brainliest
Step-by-step explanation:
i dont know
blah blah blah blah blah blah blah blah blah blah blah blah
On a map of a town, 3 cm represents 150 m. Two points in the town are 1 km apart. How far apart are the two points on the map?
Answer:
5000 km
Step-by-step explanation:
We are given that
3 cm represents on a map of a town=150 m
Distance between two points=1 km
We have to find the distance between two points on the map.
3 cm represents on a map of a town=150 m
1 cm represents on a map of a town=150/3 m
1 km=1000 m
1 m=100 cm
[tex]1km=1000\times 100=100000 cm[/tex]
100000 cm represents on a map of a town
=[tex]\frac{150}{3}\times 100000[/tex] m
100000 cm represents on a map of a town=5000000 m
100000 cm represents on a map of a town
=[tex]\frac{5000000}{1000} km[/tex]
100000 cm represents on a map of a town=5000 km
Hence, two points are separated by 5000 km on the map.
Agan Interior Design provides home and office decorating assistance to its customers. In normal operation, an average of 2.5 customers arrive each hour. One design consultant is available to answer customer questions and make product recommendations. The consultant averages 10 minutes with each customer. Compute the operating characteristics of the customer waiting line, assuming Poisson arrivals and exponential service times. Round your answers to four decimal places. Do not round intermediate calculations.
Answer:
the operating characteristics have been solved below
Step-by-step explanation:
we have an average of 10 minutes per customers
μ = mean service rate = 60/10 = 6 customers in one hr
the average number of customers that are waiting in line
mean arrival λ = 2.5
μ = 6
[tex]Lq = \frac{2.5^{2} }{6(6-2.5)} \\[/tex]
= 6.25/21
= 0.2976
we calculate the average number of customers that are in the system
[tex]L=Lq+\frac{2.5}{6}[/tex]
= 0.2976+0.4167
= 0.7143
we find the average time that a customer spends in waiting
[tex]Wq=\frac{0.2976}{2.5}[/tex]
= 0.1190 hours
when converted to minutes = 0.1190*60 = 7.1424 minutes
[tex]0.1190+\frac{1}{6}[/tex]
=0.2857
probability that arriving customers would wait for the service
= 2.5÷6 = 0.4167
A large on-demand, video streaming company is designing a large-scale survey to determine the mean amount of time corporate executives watch on-demand television. A small pilot survey of 10 executives indicated that the mean time per week is 12 hours, with a standard deviation of 3 hours. The estimate of the mean viewing time should be within 0.25 hour. The 95% level of confidence is to be used. How many executives should be surveyed? (Use z Distribution Table.)
How many executives should be surveyed? (Round the final answer to the next whole number.)
Answer:
554 executives should be surveyed.
Step-by-step explanation:
We have that to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:
[tex]\alpha = \frac{1 - 0.95}{2} = 0.025[/tex]
Now, we have to find z in the Z-table as such z has a p-value of [tex]1 - \alpha[/tex].
That is z with a pvalue of [tex]1 - 0.025 = 0.975[/tex], so Z = 1.96.
Now, find the margin of error M as such
[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]
In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.
Standard deviation of 3 hours.
This means that [tex]\sigma = 3[/tex]
The 95% level of confidence is to be used. How many executives should be surveyed?
n executives should be surveyed, and n is found with [tex]M = 0.25[/tex]. So
[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]
[tex]0.25 = 1.96\frac{3}{\sqrt{n}}[/tex]
[tex]0.25\sqrt{n} = 1.96*3[/tex]
[tex]\sqrt{n} = \frac{1.96*3}{0.25}[/tex]
[tex](\sqrt{n})^2 = (\frac{1.96*3}{0.25})^2[/tex]
[tex]n = 553.2[/tex]
Rounding up:
554 executives should be surveyed.
Geometry Oddsseseyware
I need help with this word problem.
Answer:
$3.22 per square feet
Step-by-step explanation:
To solve, I usually set up an equation:
sq ft = 12 1/2 = 1
$ 40.21 x
Then, use cross multiplication.
(12 1/2)x=40.21
Divide both sides by 12 1/2 or 12.5
x = 3.2168
Round to the hundredths place [because we're dealing with money]
$3.22
I hope this helps!
Answer:
3.22 per sq ft
Step-by-step explanation:
Take the total cost and divide by the amount of tiles
40.21 / 12.5
3.2168 per sq ft
Rounding to the nearest cent
3.22 per sq ft
Help asap please!!..
Answer:
9x² - 4/3x + ¼
Step-by-step explanation:
(3x - ½)²
(3x - ½)(3x -½)
9x² - ⅔x - ⅔x + ¼
9x² - 4/3x + ¼
19.Find dy/dx
of the function y = f(x) definded by x²+xy-y2 = 4.
Answer:
2x + y
Step-by-step explanation:
x² + xy - y² = 4
→ Remember the rule, bring the power down then minus 1
2x + y
How would I solve the question below? In what order would I solve it?
4 ⋅ 3 + 2 ⋅ 9 − 40
Step-by-step explanation:
You would multiply 4 and 3, and 2 and 9 separately, then add them, then subtract 40. Remember PEMDAS.
(4*3) + (2*9) - 40
12 + 18 - 40
-10
Hope that helps
the campus bookshop sells exercise books and textbooks, where, the total cost of 10 exercise books and 2 textbooks is $1400.00. One also finds the total cost of 3 textbooks and 30 exercise books is $3000. Then determine the price of 1 exercise book?
Answer:
The price of 1 exercise book is $122.45.
Step-by-step explanation:
This question is solved using a system of equations.
I am going to say that:
x is the price of one exercise book.
y is the price of one textbook.
Total cost of 10 exercise books and 2 textbooks is $1400.00.
This means that:
[tex]10x + 2y = 1400[/tex]
Since we want x:
[tex]2y = 1400 - 10x[/tex]
[tex]y = 700 - 5x[/tex]
One also finds the total cost of 3 textbooks and 30 exercise books is $3000.
This means that:
[tex]3x + 30y = 3000[/tex]
Since [tex]y = 700 - 5x[/tex]
[tex]3x + 30(700 - 5x) = 3000[/tex]
[tex]3x + 21000 - 150x = 3000[/tex]
[tex]147x = 18000[/tex]
[tex]x = \frac{18000}{147}[/tex]
[tex]x = 122.45[/tex]
The price of 1 exercise book is $122.45.
Divide the following complex numbers:
[tex](2 + i) \div (1 - 4i)[/tex]
Answer:
[tex]-\dfrac{2}{17} + \dfrac{9}{17}i[/tex]
Step-by-step explanation:
[tex] (2 + i) \div (1 - 4i) = [/tex]
[tex] = \dfrac{2 + i}{1 - 4i} [/tex]
[tex] = \dfrac{2 + i}{1 - 4i} \times \dfrac{1 + 4i}{1 + 4i} [/tex]
[tex] = \dfrac{(2 + i)(1 + 4i)}{(1 - 4i)(1 + 4i)} [/tex]
[tex] = \dfrac{2 + 8i + i + 4i^2}{1 + 16} [/tex]
[tex] = \dfrac{2 + 9i - 4}{17} [/tex]
[tex] = \dfrac{-2 + 9i}{17} [/tex]
[tex]= -\dfrac{2}{17} + \dfrac{9}{17}i[/tex]
if y = k where k is a constant and y =24 when x =6 what is the value of y when x= 5
Answer:
20
Step-by-step explanation:
y=kx
24=6k
k=4
y=4*5=20
Prove that the square of an odd number is always 1 more than a multiple of 4
Answer:
By these examples you are able to see that the square of an odd number is always 1 more than a multiple of 4.
Step-by-step explanation:
For examples,
Let's consider squares of 3, 11, 25, 37 and 131.
[tex] {3}^{2} = 9[/tex]
8 is a multiple of 4, and 9 is more than 8.
[tex] {11}^{2} = 121[/tex]
120 is a multiple of 4 and 121 is one more than it.
[tex] {25}^{2} = 625[/tex]
624 is a multiple of 4 and 625 is one more than it.
[tex] {37}^{2} = 1369[/tex]
1368 is a multiple of 4 and 1369 is one more than 1368.
[tex] {131}^{2} = 17161[/tex]
17160 is a multiple of 4.
simplify 6 x + 3y /3
Answer:
6x + y
Step-by-step explanation:
6x + 3y/3
6x + y
Answer:
6x + y
Step-by-step explanation:
6x + 3y / 3
cancel 3y by 3
6x + y
We roll a pair dice 10,000 times. Estimate the probability that the number of times we get snake eyes (two ones) is between 280 and 300.
Answer:
0.3573 = 35.7%
Step-by-step explanation:
We roll a pair of dice 10,000 times so the mean and standard deviation is,
μ = 10000/36 =277.7 σ = [tex]\sqrt{10000*\frac{35}{36^{2} } } =16.4[/tex]
[tex]z_{1}[/tex] = (280 - 277.7)/16.4 = .14
[tex]z_{2}[/tex] = (300 - 277.7)/16.4 = 1.35
Probablity (range)
0.3573
Z(low)=0.14 0.555766357
Z(upper)=1.36 0.91304644
Marla scored 70% on her last unit exam in her statistics class. When Marla took the SAT exam, she scored at the 70th percentile in mathematics. Explain the difference in these two scores.
Answer:
The difference is that Marla's exam in her statistics class was graded by percent of correct answers, in her case 70%, while the SAT is graded into a curve, taking other students' grades also into account, and since she scored in the 70th percentile, Marla scored better than 70% of the students.
Step-by-step explanation:
Marla scored 70% on her last unit exam in her statistics class.
This means that in her statistics class, Marla got 70% of her test correct.
When Marla took the SAT exam, she scored at the 70th percentile in mathematics.
This means that on the SAT exam, graded on a curve, Marla scored better than 70% of the students.
Explain the difference in these two scores.
The difference is that Marla's exam in her statistics class was graded by percent of correct answers, in her case 70%, while the SAT is graded into a curve, taking other students' grades also into account, and since she scored in the 70th percentile, Marla scored better than 70% of the students.
Can someone help me out?
Answer:
Terms:
-5x4-x-1Like Terms:
-5x and -x4 and -1Coefficients:
The coefficient of -5x is -5.The coefficient of -x is -1.Constants:
4-1You simplify the expression by combining like terms:
-5x + 4 - x - 1 = -6x + 5
(7b - 4) + (-2b + a + 1) = 7b - 4 - 2b + a + 1 = 5b + a - 3
Х/10 is between 1/5
and 0.6. What could the value of x be?
Answer:
2 < x < 6
Step-by-step explanation:
x/10
1/5 = 2/10
.6 = 6/10
2 < x < 6
Sketch the graph of y = 2(x – 2)2 and identify the axis of symmetry
Answer:
x = 2
Step-by-step explanation:
The minimum point of the curve is (2, 0). Hence, axis of symmetry is x = 2
What is the rate of change of the line on the graph
Answer:
A. ¼
Step-by-step explanation:
Rate of change (m) = [tex] \frac{y_2 - y_1}{x_2 - x_1} [/tex]
Using two points on the line, (4, 1) and (-4, -1), find the rate of change using the formula stated above:
Where,
[tex] (4, 1) = (x_1, y_1) [/tex]
[tex] (-4, -1) = (x_2, y_2) [/tex]
Plug in the values
Rate of change (m) = [tex] \frac{-1 - 1}{-4 - 4} [/tex]
= [tex] \frac{-2}{-8} [/tex]
= [tex] \frac{1}{4} [/tex]
Rate of change = ¼
26.3 times 1.2 please do with explanation worth 15 points
Answer - It’s 31.56
Step-by-step explanation: You just do regular multiplication and then add the decimal point
Compare the subtraction problems (6/8-5/8=1/8) and (6/9-7/9=-1/9) why is the answer to the first problem positive nad the answer to the second problem negative select all that apply
6/9 - 7/9 = -1/9
is a negative number.
The sum of two six-digit numbers is a seven-digit number
Answer
500,000 + 500,000 = 1,000,000
Step-by-step explanation:
Restaurants sales totaled $38,676 for the week your customer count was $7,325 what did the average customer spend for the week
solve 5x^2-2=-12 by taking the square root
Answer:
[tex]x = \sqrt{-2} = 2i[/tex]
Step-by-step explanation:
[tex]5x^2-2=-12[/tex]
[tex]5x^2 =-10[/tex]
[tex]x^2 =-2[/tex]
[tex]x = \sqrt{-2} = 2i[/tex]
hello can anyone help with this?
Answer:
<2 and <13 are alternate exterior angles.
In simple form, alternate exterior angles are the opposite angle on the opposing parallel line. So, to make you understand better, <4 and <15 are alternate exterior angles.
Hope this helps :D
Find the third term of a geometric progression if the sum of the first three terms is equal to 12, and the sum of the first six terms is equal to (−84).
Given:
The sum of the first three terms = 12
The sum of the first six terms = (−84).
To find:
The third term of a geometric progression.
Solution:
The sum of first n term of a geometric progression is:
[tex]S_n=\dfrac{a(r^n-1)}{r-1}[/tex]
Where, a is the first term and r is the common ratio.
The sum of the first three terms is equal to 12, and the sum of the first six terms is equal to (−84).
[tex]\dfrac{a(r^3-1)}{r-1}=12[/tex] ...(i)
[tex]\dfrac{a(r^6-1)}{r-1}=-84[/tex] ...(ii)
Divide (ii) by (i), we get
[tex]\dfrac{r^6-1}{r^3-1}=\dfrac{-84}{12}[/tex]
[tex]\dfrac{(r^3-1)(r^3+1)}{r^3-1}=-7[/tex]
[tex]r^3+1=-7[/tex]
[tex]r^3=-7-1[/tex]
[tex]r^3=-8[/tex]
Taking cube root on both sides, we get
[tex]r=-2[/tex]
Putting [tex]r=-2[/tex] in (i), we get
[tex]\dfrac{a((-2)^3-1)}{(-2)-1}=12[/tex]
[tex]\dfrac{a(-8-1)}{-3}=12[/tex]
[tex]\dfrac{-9a}{-3}=12[/tex]
[tex]3a=12[/tex]
Divide both sides by 3.
[tex]a=4[/tex]
The nth term of a geometric progression is:
[tex]a_n=ar^{n-1}[/tex]
Where, a is the first term and r is the common ratio.
Putting [tex]n=3,a=4,r=-2[/tex] in the above formula, we get
[tex]a_3=4(-2)^{3-1}[/tex]
[tex]a_3=4(-2)^{2}[/tex]
[tex]a_3=4(4)[/tex]
[tex]a_3=16[/tex]
Therefore, the third term of the geometric progression is 16.
stuck on this problem
Answer:
B
Step-by-step explanation:
When we reflect something across the y axis, the y axis stays the same but the x values change by a factor of -1.
B is the Answer
Answer:
c. switch the x-values and y-values in the table
Step-by-step explanation:
For any table or graph reflection over the line y=x
The rule is (x,y) ----> (y,x)
f(x) is reflected over the line y=x, so the coordinates of f(x) becomes
(-2,-31) becomes (-31,-2)
(-1,0) becomes (0,-1)
(1,2) becomes (2,1)
(2,33) becomes (33,2)
As per the rule, we switch the x-values and y-values in the table
For reflection over the line y=x , the coordinate becomes
(-31,-2)
(0,-1)
(2,1)
(33,2)