Answer: 0.8749
Step-by-step explanation:
Given, The time, X minutes, taken by Tim to install a satellite dish is assumed to be a normal random variable with mean 127 and standard deviation 20.
Let x be the time taken by Tim to install a satellite dish.
Then, the probability that Tim will takes less than 150 minutes to install a satellite dish.
[tex]P(x<150)=P(\dfrac{x-\text{Mean}}{\text{Standard deviation}}<\dfrac{150-127}{20})\\\\=P(z<1.15)\ \ \ [z=\dfrac{x-\text{Mean}}{\text{Standard deviation}}]\\\\=0.8749\ [\text{By z-table}][/tex]
hence, the required probability is 0.8749.
To which number sets of numbers does the number 3.567...belong?
Answer:
It's irrational numberIf the decimal digits do not repeat in some known pattern, then the number is irrational. We cannot write it as a ratio or fraction of two integers. If it did have a pattern, then we can use algebra to find the fractional representation of that number. Based on what is shown, it looks like there is no pattern so that's why the value is irrational. The number is also a real number as this is the case with any number you'll encounter unless you're dealing with complex numbers (but your teacher may not have introduced that topic yet).
PLEASE HELPPPPP!!!!!!!!!!!!!!!Which relationships have the same constant of proportionality between y and x as the following graph?Choose two answers!!
Answer:
B, E
Step-by-step explanation:
You can use these strategies to compare the given graph and the other representations.
A & B) See if the point (x, y) = (8, 6) marked on the first graph works in the given equation.
A -- 6y = 8x ⇒ 6(6) = 8(8) . . . FALSE
B -- y = (3/4)x ⇒ 6 = (3/4)8 . . . True
__
C) Compare this graph to the given graph. They don't match.
__
D & E) Plot a point from the table on the given graph and see where it falls.
D -- The point (x, y) = (3, 4) lies above the line on the given graph.
E -- The point (x, y) = (4, 3) lies on the given graph.
_____
Choices B and E have the same constant of proportionality as shown in the given graph.
Answer:
B and E
Step-by-step explanation:
The difference between teenage female and male depression rates estimated from two samples is 0.07. The estimated standard error of the sampling distribution is 0.03. What is the 95% confidence interval
Answer:
The 95% confidence interval is [tex]0.0112 < \mu_m - \mu_f < 0.1288[/tex]
Step-by-step explanation:
From the question we are told that
The sample mean difference is [tex]\= x_m - \= x_f = 0.07[/tex]
The standard error is SE = 0.03
Given that the confidence interval is 95% then the level of significance is mathematically evaluated as
[tex]\alpha = 100 - 95[/tex]
[tex]\alpha = 5\%[/tex]
[tex]\alpha =0.05[/tex]
Next we obtain the critical value of [tex]\frac{\alpha }{2}[/tex] from the normal distribution table, the value is [tex]Z_{\frac{\alpha }{2} } = 1.96[/tex]
Generally the margin of error is mathematically represented as
[tex]E = Z_{\frac{ \alpha }{2} } * SE[/tex]
substituting values
[tex]E = 1.96 * 0.03[/tex]
[tex]E = 0.0588[/tex]
The 95% confidence interval is mathematically represented as
[tex](\= x_m - \= x_f ) - E < \mu_m - \mu_f <(\= x_m - \= x_f ) + E[/tex]
substituting values
[tex]0.07 - 0.0588 < \mu_m - \mu_f <0.07 + 0.0588[/tex]
[tex]0.0112 < \mu_m - \mu_f < 0.1288[/tex]
The difference between teenage female and male depression rates are given. The 95% percent confidence interval can be obtained using mean and standard error relation.
The confidence interval is (0.0016 , 0.1584).
Given:
The depression rates is [tex]0.07[/tex].
The standard error of sampling distribution is [tex]0.03[/tex].
The critical value [tex]z=1.96[/tex]
Write the relation for mean and standard error.
[tex]\mu\pm z_{\rm critical}+\rm standard\: error[/tex]
Substitute the value.
[tex]0.07\pm 1.96\times 0.03=(0.1288,\:0.0112)[/tex]
Therefore, the upper and lower boundary is [tex](0.1288,\:0.0112)[/tex]. Thus, The confidence interval is (0.0016 , 0.1584).
Learn more mean and standard error here:
https://brainly.com/question/20215215
cindy was asked by her teacher to subtract 3 from a certain number and then divide the result by 6 instead, she subtracted 6 and then divided the result by 3 giving an answer of 25 what would her answer have been if she had worked the problem correctly?
Answer:
13
Step-by-step explanation:
let the number be x
how Cindy worked it out :
(x -6) ÷ 3 = 25
x -6 = 75
x = 81
How she should have worked it out:
(x - 3) ÷ 6
(81 - 3) ÷ 6
78 ÷ 6 = 13
solve for x: -3(x + 1)= -3(x + 1) - 5
Answer:
No solution : 0= -5Step-by-step explanation:
[tex]-3\left(x+1\right)=-3\left(x+1\right)-5\\\\\mathrm{Add\:}3\left(x+1\right)\mathrm{\:to\:both\:sides}\\\\-3\left(x+1\right)+3\left(x+1\right)=-3\left(x+1\right)-5+3\left(x+1\right)\\\\\mathrm{Simplify}\\\\0=-5\\\\\mathrm{The\:sides\:are\:not\:equal}\\\\\mathrm{No\:Solution}[/tex]
Suppose that 80% of all registered California voters favor banning the release of information from exit polls in presidential elections until after the polls in California close. A random sample of 25 registered California voters is selected.
Required:
a. Calculate the mean and standard deviation of the number of voters who favor the ban.
b. What is the probability that exactly 20 voters favor the ban?
Answer:
a. Mean = 20
Sd = 4
b. Probability of X = 20 = 0.1960
Step-by-step explanation:
we have
n = 25
p = 80% = 0.8
mean = np
= 0.8 * 25
= 20
standard deviation = √np(1-p)
= √25*0.8(1-0.8)
=√4
= 2
probability that exactly 20 favours ban
it follows a binomial distribution
= 25C20 × 0.8²⁰ × 0.2⁵
= 53130 × 0.01153 × 0.00032
= 0.1960
Probability of X = 20 = 0.1960
The lines shown below are perpendicular. If the green line has a slope of 2/5
, what is the slope of the red line?
A.
B.
C.
-
D.
-
Answer:
C. [tex] -\frac{5}{2}} [/tex]
Step-by-step explanation:
If two lines on a graph are perpendicular to each other, their slope is said to be negative reciprocals of each other. This means the slope of one, is the negative reciprocal of the other.
This can be represented as [tex] m_1 = \frac{-1}{m_2} [/tex]
Where, [tex] m_1, m_2 [/tex] are slopes of 2 lines (i.e. the red and green lines given in the question) that are perpendicular to one another.
Thus, the slope of the red line would be:
[tex] m_1 = \frac{-1}{\frac{2}{5}} [/tex]
[tex] m_1 = -1*\frac{5}{2}} [/tex]
[tex] m_1 = -\frac{5}{2}} [/tex]
The slope of the red line = [tex] -\frac{5}{2}} [/tex]
A study was conducted to compare the effect of three diet types on the milk yield of cows (in lbs). The sample size, sample mean, and sample variance for each method are given below.
Diet A: n1 = 9, X1 = 39.1, s21 = 24.6
Diet B: n2 = 8, X2 = 29.9, s22 = 16.4
Diet C: n3 = 10, X3 = 45.9, s21 = 10.3
(a) Construct an ANOVA table including all relevant sums of squares, mean squares, and degrees of freedom.
(b) Perform an overall F test to determine whether the population means of milk yield are the same or not among the three diet types.
Answer:
(a) Anova table is attached below.
(b) The population means of milk yield are different among the three diet types
Step-by-step explanation:
In this case we need to perform a One-way ANOVA to determine whether the effect of three diet types on the milk yield of cows are significantly different or not.
The hypothesis can be defined as follows:
H₀: The effect of three diet types on the milk yield of cows are same.
Hₐ: The effect of three diet types on the milk yield of cows are significantly different.
(a)
The formulas are as follows:
[tex]\text{Grand Mean}=\bar x=\frac{1}{3}\sum \bar x_{i}\\\\SSB=\sum n_{i}(\bar x_{i}-\bar x)^{2}\\\\SSW=\sum (n_{i}-1)S^{2}_{i}\\\\N=\sum n_{i}\\\\DF_{B}=k-1\\\\DF_{W}=N-k\\\\DF_{T}=N-1\\[/tex]
The F critical value is computed using the Excel formula:
F critical value=F.INV.RT(0.05,2,24)
The ANOVA table is attached below.
(b)
The rejection region is defined as follows:
F > F (2, 24) = 3.403
The computed F statistic value is:
F = 34.069
F = 34.269 > F (2, 24) = 3.403
The null hypothesis will be rejected.
Thus, concluding that the population means of milk yield are different among the three diet types
A standard deck of cards contains 52 cards. One card is randomly selected from the deck: Compute the probability of randomly selecting a queen or club from a deck of cards.
Answer:
The probability of randomly selecting a queen or club from a deck of cards = 17/52
Step-by-step explanation:
Here in this question, we are concerned with computing the probability of randomly selecting a queen or club form a deck of cards
Mathematically, the probability is;
Probability of selecting a queen + Probability of selecting a club
Probability of selecting a queen = number of queens/total card number
The number of queens = 4
Probability of selecting a queen = 4/52
Probability of selecting a club card = number of club cards/ total number of cards
Number of club cards = 13
Probability of selecting a club card = 13/52
The probability of selecting a queen or club from a deck of cards = 4/52 + 13/52 = 17/52
Find the product . Write your answer in exponential form 8^-2•8^-9
Answer:
8^-11
Step-by-step explanation:
The applicable rule of exponents is ...
(a^b)(a^c) = a^(b+c)
Then we have ...
(8^(-2))·(8^(-9)) = 8^(-2-9) = 8^-11
One more than three times a number is the same as four less than double a number
Answer:
3x + 1 = 2x - 4. x = -5
Step-by-step explanation:
20 POINTS ANSWER QUICK
Justine graphs the function f(x) = (x – 7)2 – 1. On the same grid, she graphs the function g(x) = (x + 6)2 – 3. Which transformation will map f(x) on to g(x)? left 13 units, down 2 units right 13 units, down 2 units left 13 units, up 2 units right 13 units, up 2 units
Answer:
Justine graphs the function f(x) = (x – 7)2 – 1. On the same grid, she graphs the function
g(x) = (x + 6)2 – 3. Which transformation will map f(x) on to g(x)?
left 13 units, down 2 units
right 13 units, down 2 units
left 13 units, up 2 units
right 13 units, up 2 units
Claire has to go to the movie theater the movie starts at 4:15 pm it is a 25min walk to the theater from her home what time dose the have to leave the house to get there on time
Answer:
claire has to leave at 3:50 from her house.
Answer:
She needs to leave by 3:50 to get there on time.
Step-by-step explanation:
4:15 - 0:25 = 3:50.
two identical rubber balls are dropped from different heights. Ball 1 is dropped from a height of 109 feet, and ball 2 is dropped from a height of 260 feet. Use the function f(t) -16t^2+h to determine the current height, f(t), of a ball from a height h, over given time t.
When does ball 1 reach the ground? Round to the nearest hundredth
Answer: 5.22 seconds
Step-by-step explanation:
t represents time and y represents the height.
Since we want to know when the ball hits the ground, find t when y = 0
Ball 1 starts at a height of 109 --> h = 109
0 = -16t² + 109
16t² = 109
[tex]t^2=\dfrac{109}{16}\\[/tex]
[tex]t=\sqrt{\dfrac{109}{16}}[/tex]
[tex]t=\dfrac{\sqrt{109}}{2}[/tex]
t = 5.22
=> H = 109
=> 0 = -16t² + 109
=> 16t² = 109
=> t² = 109/16
=> t = 109/2
=> t = 5.22 sec
Therefore, 5.22 second is the answer.
Will Give Brainliest Please Answer Quick
Answer:
Option (2)
Step-by-step explanation:
If a perpendicular is drawn from the center of a circle to a chord, perpendicular divides the chord in two equal segments.
By using this property,
Segment MN passing through the center Q will be perpendicular to chords HI ans GJ.
By applying Pythagoras theorem in right triangle KNJ,
(KJ)² = (KN)² + (NJ)²
(33)² = (6√10)² + (NJ)²
NJ = [tex]\sqrt{1089-360}[/tex]
NJ = [tex]\sqrt{729}[/tex]
= 27 units
Since, GJ = 2(NJ)
GJ = 2 × 27
GJ = 54 units
Option (2) will be the answer.
∠ACB is a circumscribed angle. Solve for x. 1) 46 2) 42 3) 48 4) 44
Answer:
[tex]\Huge \boxed{x=44}[/tex]
Step-by-step explanation:
The circumscribed angle and the central angle are supplementary.
∠ACB and ∠AOB add up to 180 degrees.
Create an equation to solve for x.
[tex]3x+10+38=180[/tex]
Add the numbers on the left side of the equation.
[tex]3x+48=180[/tex]
Subtract 48 from both sides of the equation.
[tex]3x=132[/tex]
Divide both sides of the equation by 3.
[tex]x=44[/tex]
Answer:
4)44
Step-by-step explanation:
Find the equation of the circle in standard form for the given center (h, k) and radius R:(H,K)=(4/3,-8/8),R=1/3
Answer:
The answer is option BStep-by-step explanation:
Equation of a circle is given by
( x - h)² + ( y - k)² = r²
where r is the radius and
( h , k) is the center of the circle
From the question the radius R = 1/3
the center ( h ,k ) = (4/3 , -8/3)
Substituting the values into the above equation
We have
[tex](x - \frac{4}{3} )^{2} + {(y - - \frac{8}{3}) }^{2} = ({ \frac{1}{3} })^{2} [/tex]
We have the final answer as
[tex](x - \frac{4}{3} )^{2} + {(y + \frac{8}{3}) }^{2} = \frac{1}{9} [/tex]
Hope this helps you
Different varieties of field daisies have numbers of petals that follow a Fibonacci sequence. Three varieties have 13, 21, and 34 petals.
Answer:
A. 55, 89
Step-by-step explanation:
In a Fibonacci sequence, you start with 2 given numbers. Then each subsequent number is the sum of the last two numbers.
12, 21, 34
12 + 21 = 34
34 + 21 = 55
55 + 34 = 89
Answer: 55, 89
What is the error in this problem
Answer:
10). m∠x = 47°
11). x = 30.96
Step-by-step explanation:
10). By applying Sine rule in the given triangle DEF,
[tex]\frac{\text{SinF}}{\text{DE}}=\frac{\text{SinD}}{\text{EF}}[/tex]
[tex]\frac{\text{Sinx}}{7}=\frac{\text{Sin110}}{9}[/tex]
Sin(x) = [tex]\frac{7\times (\text{Sin110})}{9}[/tex]
Sin(x) = 0.7309
m∠x = [tex]\text{Sin}^{-1}(0.7309)[/tex]
m∠x = 46.96°
m∠x ≈ 47°
11). By applying Sine rule in ΔRST,
[tex]\frac{\text{SinR}}{\text{ST}}=\frac{\text{SinT}}{\text{RS}}[/tex]
[tex]\frac{\text{Sin120}}{35}=\frac{\text{Sin50}}{x}[/tex]
x = [tex]\frac{35\times (\text{Sin50})}{\text{Sin120}}[/tex]
x = 30.96
Simplify 3m2 (−6m3 )
Answer:
3m2(-6m3)
since it's a term you have to multiply it by the number in bracket
6m(-6m3)
6m(-18m)
-108m²
Divide write the quotient in lowest term 1 1/3 divided by 1 3/4
Answer:
7/3 or 2 1/3
Step-by-step explanation:
1 1/3 ÷ 1 3/4
Change to improper fractions
(3*1+1)/3 ÷ (4*1+3)/4
4/3 ÷ 7/4
Copy dot flip
4/3 * 7/4
Rewriting
4/4 * 7/3
7/3
As a mixed number
2 1/3
Answer:
11/3÷13/4
11/3×4/13
44/39=
1.1282
Find the interquartile range of the following data set.
Number of Points Scored at Ten Basketball Games
57 63 44 29 36 62 48 50 42 34
a .21
B.28
C. 6
D. 34
Answer:
b.28 its ans is no.b
Step-by-step explanation:
no point score in basketball
average age of 15 students of iub 11years if teacher is also included average age becomes 13 years how old is teachers
Answer: the teacher is 43
Step-by-step explanation: if you take 11 and multiply it by 15 you get 165 if you take 208 and divide it by 16 you get 13.
so basically you subtract 208 from 165 to get 43
Which defines a line segment?
two rays with a common endpoint
O a piece of a line with two endpoints
O a piece of a line with one endpoint
all points equidistant from a given point
Answer:
O a piece of a line with two endpoints
Step-by-step explanation:
O a piece of a line with two endpoints
A piece of a line with two endpoints.
What is a line segment?In geometry, a line segment is a part of a line this is bounded by distinct end points and includes every point on the line this is between its endpoints.
What are the examples of line segments in real life?A ruler, a scale, a stick, a boundary line.Learn more about line segments here https://brainly.com/question/2437195
#SPJ2
Please help look at the question in image
Answer:
In part 1, the value for D is given. Putting D as 1 gives us the answer 17/20
In part 2, the value of E is given as 1, putting E as 1 gives us D = 20/17
Suppose that y varies directly with x and y=20 when x=2 Find y when x=8
Answer:
80
Step-by-step explanation:
x y
2 = 20
8 = x
cross multiply( 8*20)/2
= 4 * 20
= 80
Y=-×+1 and y=2×+4 how many solutions when graphed
Answer:
One solution (-1,2)
Step-by-step explanation:
Since these two linear equations have different slopes, different y-intercepts, and are indeed linear, these equations will only have one crossing when graphed, and hence one solution.
To find that solution, we can simply set the equations equal to each other.
y = -x + 1
y = 2x + 4
-x + 1 = 2x + 4
-3 = 3x
-1 = x
Now plug that value back into one of the equations:
y = -x + 1
y = -(-1) + 1
y = 2
So now you know the crossing for these two equations occurs at (-1,2).
Cheers.
Let the sample size of leg strengths to be 7 and the sample mean and sample standard deviation be 630 watts and 32 watts, respectively.
(a) Is there evidence that leg strength exceeds 600 watts at significance level 0.05? Find the P-value. There is_________ evidence that the leg strength exceeds 600 watts at ? = 0.05.
A. 0.001 < P-value < 0.005
B. 0.10 < P-value < 0.25
C. 0.010 < P-value < 0.025
D. 0.05 < P-value < 0.10
(b) Compute the power of the test if the true strength is 610 watts.
(c) What sample size would be required to detect a true mean of 610 watts if the power of the test should be at least 0.9? n=
Answer:
a. There is_sufficient evidence that the leg
C. 0.010 < P-value < 0.025
b. Power of test = 1- β=0.2066
c. So the sample size is 88
Step-by-step explanation:
We formulate the null and alternative hypotheses as
H0 : u1= u2 against Ha : u1 > u2 This is a right tailed test
Here n= 7 and significance level ∝= 0.005
Critical value for a right tailed test with 6 df is 1.9432
Sample Standard deviation = s= 32
Sample size= n= 7
Sample Mean =x`= 630
Degrees of freedom = df = n-1= 7-1= 6
The test statistic used here is
Z = x- x`/ s/√n
Z= 630-600 / 32 / √7
Z= 2.4797= 2.48
P- value = 0.0023890 > ∝ reject the null hypothesis.
so it lies between 0.010 < P-value < 0.025
b) Power of test if true strength is 610 watts.
For a right tailed test value of z is = ± 1.645
P (type II error) β= P (Z< Z∝-x- x`/ s/√n)
Z = x- x`/ s/√n
Z= 610-630 / 32 / √7
Z=0.826
P (type II error) β= P (Z< 1.645-0.826)
= P (Z> 0.818)
= 0.7933
Power of test = 1- β=0.2066
(c)
true mean = 610
hypothesis mean = 600
standard deviation= 32
power = β=0.9
Z∝= 1.645
Zβ= 1.282
Sample size needed
n=( (Z∝ +Zβ )*s/ SE)²
n= ((1.645+1.282) 32/ 10)²
Putting the values and solving we get 87.69
So the sample size is 88
Let f(x) = - 4x + 5. Find and simplify f(x + 2).
Answer:
-4x - 3.
Step-by-step explanation:
f(x) = -4x + 5.
f(x + 2) = -4(x + 2) + 5
= -4x - 8 + 5
= -4x - 3.
Hope this helps!
Answer:
f(x+2)=-4x-3
Step-by-step explanation:
We are given:
[tex]f(x)= -4x+5[/tex]
and asked to find f(x+2). Therefore, we must substitute x+2 for each x in the function.
[tex]f(x+2)=-4(x+2)+5[/tex]
Now, simplify. First, distribute the -4. Multiply each term inside the parentheses by -4.
[tex]f(x+2)=(-4*x)+(-4*2)+5\\f(x+2)=-4x+(-4*2)+5\\f(x+2)=-4x-8+5[/tex]
Next, combine like terms. There are 2 constants (terms without a variable) that can be added. Add -8 and 5.
[tex]f(x+2)=-4x(-8+5)\\f(x+2)=-4x-3[/tex]
f(x+2) is -4x-3.
generate a continuous and differentiable function f(x) with the following properties: f(x) is decreasing at x=−5 f(x) has a local minimum at x=−3 f(x) has a local maximum at x=3
Answer:
see details in graph and below
Step-by-step explanation:
There are many ways to generate the function.
We'll generate a function whose first derivative f'(x) satisfies the required conditions, say, a quadratic.
1. f(x) has a local minimum at x = -3, and
2. a local maximum at x = 3
Therefore f'(x) has to cross the x-axis at x = -3 and x=+3.
Furthermore, f'(x) must be increasing at x=-3 and decreasing at x=+3.
f'(x) = -x^2+9
will satisfy the above conditions.
Finally f(x) must be decreasing at x= -5, which implies that f'(-5) must be negative.
Check: f'(-5) = -(-5)^2+9 = -25+9 = -16 < 0 so ok.
f(x) can then be obtained by integrating f'(x) :
f(x) = integral of -x^2+9 = -x^3/3 + 9x = 9x - x^3/3
A graph of f(x) is attached, and is found to satisfy all three conditions.
A function is differentiable at [tex]x = a[/tex], if the function is continuous at [tex]x = a[/tex]. The function that satisfy the given properties is [tex]f(x) = 9x - \frac{x^3}{3} + 3[/tex]
Given that:
The function decreases at [tex]x = -5[/tex] means that: [tex]f(-5) < 0[/tex]
The local minimum at [tex]x = -3[/tex] and local maximum at [tex]x = 3[/tex] means that:
[tex]x = -3[/tex] or [tex]x = 3[/tex]
Equate both equations to 0
[tex]x + 3 = 0[/tex] or [tex]3 - x = 0[/tex]
Multiply both equations to give y'
[tex]y' = (3 - x) \times (x + 3)[/tex]
Open bracket
[tex]y' = 3x + 9 - x^2 - 3x[/tex]
Collect like terms
[tex]y' = 3x - 3x+ 9 - x^2[/tex]
[tex]y' = 9 - x^2[/tex]
Integrate y'
[tex]y = \frac{9x^{0+1}}{0+1} - \frac{x^{2+1}}{2+1} + c[/tex]
[tex]y = \frac{9x^1}{1} - \frac{x^3}{3} + c[/tex]
[tex]y = 9x - \frac{x^3}{3} + c[/tex]
Express as a function
[tex]f(x) = 9x - \frac{x^3}{3} + c[/tex]
[tex]f(-5) < 0[/tex] implies that:
[tex]9\times -5 - \frac{(-5)^3}{3} + c < 0[/tex]
[tex]-45 - \frac{-125}{3} + c < 0[/tex]
[tex]-45 + \frac{125}{3} + c < 0[/tex]
Take LCM
[tex]\frac{-135 + 125}{3} + c < 0[/tex]
[tex]-\frac{10}{3} + c < 0[/tex]
Collect like terms
[tex]c < \frac{10}{3}[/tex]
[tex]c <3.33[/tex]
We can then assume the value of c to be
[tex]c=3[/tex] or any other value less than 3.33
Substitute [tex]c=3[/tex] in [tex]f(x) = 9x - \frac{x^3}{3} + c[/tex]
[tex]f(x) = 9x - \frac{x^3}{3} + 3[/tex]
See attachment for the function of f(x)
Read more about continuous and differentiable function at:
https://brainly.com/question/19590547