The total resistance of a parallel circuit is 25 ohms. If the total current is 100mA, how much current is through a 220 ohm resistor that makes up part of the parallel circuit?

Answers

Answer 1

Answer:

The current across the resistance is 0.011 A.

Explanation:

Total resistance, R = 25 ohms

Total current, I = 100 mA = 0.1 A

Let the voltage is V.

By the Ohm's law

V = I R

V = 0.1 x 25 = 2.5 V

Now the resistance is R' = 220 ohm

As they are in parallel so the voltage is same. Let the current is I'.

V = I' x R'

2.5 = I' x 220

I' = 0.011 A


Related Questions

Three spheres (water, iron and ice) of the exact same volume are submerged in a tub of water. After the spheres are lined up, they are released. The spheres are made of plastic with the same density as water, ice, and iron.

Required:
a. Compare the weights of the three spheres.
b. Compare the buoyant forces on the three spheres.
c. What direction does the net force push on each of the spheres?
d. What happens to each sphere after it is released?

Answers

Answer:

(a) Iron > plastic > ice

(b) Same on all

(c) Iron downwards, plastic net force zero, ice upwards.

(d) Iron sphere sinks, plastic sphere is in equilibrium and ice sphere will floats.

Explanation:

Three spheres have same volume , plastic, ice and iron.

(a) The weight is given by

Weight = mass x gravity = volume x density x gravity

As the density of iron is maximum and the density of ice is least so the order of the weight is

Weight of iron > weight of plastic > weight of ice

(b) Buoyant force is given by

Buoyant force = Volume immersed x density of fluid x g

As they have same volume, density of fluid is same so the buoyant force is same on all the spheres.

(c) Net force is

F = weight - buoyant force  

So, the net force on the iron sphere is downwards

On plastic sphere is zero as the density of plastic sphere is same as water. On ice sphere it is upwards.

(d) Iron sphere sinks, plastic sphere is in equilibrium and ice sphere will floats.  

A 1.40-kg block is on a frictionless, 30 ∘ inclined plane. The block is attached to a spring (k = 40.0 N/m ) that is fixed to a wall at the bottom of the incline. A light string attached to the block runs over a frictionless pulley to a 60.0-g suspended mass. The suspended mass is given an initial downward speed of 1.60 m/s .
How far does it drop before coming to rest? (Assume the spring is unlimited in how far it can stretch.)
Express your answer using two significant figures.

Answers

Answer:

0.5

Explanation:

because the block is attached to the pulley of the string

A car accelerates at 2 meters/s/s. Assuming the car starts from rest how far will it travel in 10 seconds

Answers

Answer:

Distance = velocity x time, so 10 m/s X 10 s = 100 m

Explanation:

If you accelerate at 2 m/s^2 for 10 seconds, at the end of the 10 seconds you are moving at a rate of 20 m/s.

V(f) = V(i) + a*t

Final velocity = initial velocity + acceleration x time

Your average velocity will be half of your final, because you accelerated at a constant rate. So your average velocity is 10 m/s.

Distance = velocity x time, so 10 m/s X 10 s = 100 m

Answer:

100 m

Explanation:

Given,

Initial velocity ( u ) = 0 m/s

Acceleration ( a ) = 2 m/s^2

Time ( t ) = 10 sec s

To find : Displacement ( s ) = ?

By 2nd equation of motion,

s = ut + at^2 / 2

= ( 0 ) ( 10 ) + ( 2 ) ( 10 )^2 / 2

= 0 + ( 2 ) ( 100 ) / 2

= 200 / 2

s = 100 m

as the ball rises the vertical component of it's velocity_____. explain​

Answers

Answer:

Decreases

Explanation:

because its moving against gravitational attraction and at maximum height its velocity will be and it will decrease until it reaches maximum height and the start to increase again

A basketball of mass 0.608 kg is dropped from rest from a height of 1.37 m. It rebounds to a height of 0.626 m.
(a) How much mechanical energy was lost during the collision with the floor?
(b) A basketball player dribbles the ball from a height of 1.37 m by exerting a constant downward force on it for a distance of 0.132 m. In dribbling, the player compensates for the mechanical energy lost during each bounce. If the ball now returns to a height of 1.37 m, what is the magnitude of the force?

Answers

Answer:

a)[tex]|\Delta E|=4.58\: J[/tex]  

b)[tex]F=61.90\: N[/tex]

Explanation:

a)

We can use conservation of energy between these heights.

[tex]\Delta E=mgh_{2}-mgh_{1}=mg(h_{2}-h_{1})[/tex]  

[tex]\Delta E=0.608*9.81(0.6026-1.37)[/tex]

Therefore, the lost energy is:

[tex]|\Delta E|=4.58\: J[/tex]  

b)

The force acting along the distance create a work, these work is equal to the potential energy.

[tex]W=\Delta E[/tex]

[tex]F*d=mgh[/tex]

Let's solve it for F.

[tex]F=\frac{mgh}{d}[/tex]

[tex]F=\frac{0.608*9.81*1.37}{0.132}[/tex]

Therefore, the force is:

[tex]F=61.90\: N[/tex]

I hope is helps you!

The angular velocity of an object is given by the following equation: ω(t)=(5rads3)t2\omega\left(t\right)=\left(5\frac{rad}{s^3}\right)t^2ω(t)=(5s3rad​)t2 What is the angular displacement of the object (in rad) between t = 2 s and t = 4 s?

Answers

Answer:

The angular displacement of the object between [tex]t = 2\,s[/tex] and [tex]t = 4\,s[/tex] is 20 radians.

Explanation:

The angular velocity of the object ([tex]\omega[/tex]), in radians per second, is given by the following expression:

[tex]\omega(t) = 5\cdot t^{2}[/tex] (1)

Where [tex]t[/tex] is the time, measured in seconds.

The change in the angular displacement ([tex]\Delta \theta[/tex]), in radians, is found by means of the following definite integral:

[tex]\Delta \theta = \int\limits^{4}_{2} {5\cdot t^{2}} \, dt[/tex] (2)

Then we proceed to integrate on the function in time:

[tex]\Delta \theta = \frac{5}{3}\cdot (4^{2}-2^{2})[/tex]

[tex]\Delta \theta = 20\,rad[/tex]

The angular displacement of the object between [tex]t = 2\,s[/tex] and [tex]t = 4\,s[/tex] is 20 radians.

A copper wire 1.0 meter long and with a mass of .0014 kilograms per meter vibrates in two segments when under a tension of 27 Newtons. What is the frequency of this mode of vibration

Answers

Answer:

the frequency of this mode of vibration is 138.87 Hz

Explanation:

Given;

length of the copper wire, L = 1 m

mass per unit length of the copper wire, μ = 0.0014 kg/m

tension on the wire, T = 27 N

number of segments, n = 2

The frequency of this mode of vibration is calculated as;

[tex]F_n = \frac{n}{2L} \sqrt{\frac{T}{\mu} } \\\\F_2 = \frac{2}{2\times 1} \sqrt{\frac{27}{0.0014} }\\\\F_2 = 138.87 \ Hz[/tex]

Therefore, the frequency of this mode of vibration is 138.87 Hz

PLZ help asap :-/
............................ ​

Answers

Explanation:

[16]

[tex]\underline{\boxed{\large{\bf{Option \; A!! }}}} [/tex]

Here,

[tex]\rm { R_1} [/tex] = 2Ω[tex]\rm { R_2} [/tex] = 2Ω[tex]\rm { R_3} [/tex] = 2Ω[tex]\rm { R_4} [/tex] = 2Ω

We have to find the equivalent resistance of the circuit.

Here, [tex]\rm { R_1} [/tex] and [tex]\rm { R_2} [/tex] are connected in series, so their combined resistance will be given by,

[tex]\longrightarrow \rm { R_{(1,2)} = R_1 + R_2} \\ [/tex]

[tex]\longrightarrow \rm { R_{(1,2)} = (2 + 2) \; Omega} \\ [/tex]

[tex]\longrightarrow \rm { R_{(1,2)} = 4 \; Omega} \\ [/tex]

Now, the combined resistance of [tex]\rm { R_1} [/tex] and [tex]\rm { R_2} [/tex] is connected in parallel combination with [tex]\rm { R_3} [/tex], so their combined resistance will be given by,

[tex]\longrightarrow \rm {\dfrac{1}{ R_{(1,2,3)}} = \dfrac{1}{R_{(1,2)}} + \dfrac{1}{R_3} } \\ [/tex]

[tex]\longrightarrow \rm {\dfrac{1}{ R_{(1,2,3)}} = \Bigg ( \dfrac{1}{4} + \dfrac{1}{2} \Bigg ) \;\Omega} \\ [/tex]

[tex]\longrightarrow \rm {\dfrac{1}{ R_{(1,2,3)}} = \Bigg ( \dfrac{1 + 2}{4} \Bigg ) \;\Omega} \\ [/tex]

[tex]\longrightarrow \rm {\dfrac{1}{ R_{(1,2,3)}} = \Bigg ( \dfrac{3}{4} \Bigg ) \;\Omega} \\ [/tex]

Reciprocating both sides,

[tex]\longrightarrow \rm {R_{(1,2,3)}= \dfrac{4}{3} \;\Omega} \\ [/tex]

Now, the combined resistance of [tex]\rm { R_1} [/tex], [tex]\rm { R_2} [/tex] and [tex]\rm { R_3} [/tex] is connected in series combination with [tex]\rm { R_4} [/tex]. So, equivalent resistance will be given by,

[tex]\longrightarrow \rm {R_{(1,2,3,4)}= R_{(1,2,3)} + R_4} \\ [/tex]

[tex]\longrightarrow \rm {R_{(1,2,3,4)}= \Bigg ( \dfrac{4}{3} + 2 \Bigg ) \; \Omega} \\ [/tex]

[tex]\longrightarrow \rm {R_{(1,2,3,4)}= \Bigg ( \dfrac{4 + 6}{3} \Bigg ) \; \Omega} \\ [/tex]

[tex]\longrightarrow \rm {R_{(1,2,3,4)}= \Bigg ( \dfrac{10}{3} \Bigg ) \; \Omega} \\ [/tex]

[tex]\longrightarrow \bf {R_{(1,2,3,4)}= 3.33 \; \Omega} \\ [/tex]

Henceforth, Option A is correct.

_________________________________

[17]

[tex]\underline{\boxed{\large{\bf{Option \; B!! }}}} [/tex]

Here, we have to find the amount of flow of current in the circuit. By using ohm's law,

[tex] \longrightarrow [/tex] V = IR

[tex] \longrightarrow [/tex] 3 = I × 3.33

[tex] \longrightarrow [/tex] 3 ÷ 3.33 = I

[tex] \longrightarrow [/tex] 0.90 Ampere = I

Henceforth, Option B is correct.

____________________________

[tex] \tt \purple{Hope \; it \; helps \; you, Army! \heartsuit } \\ [/tex]

Your cell phone typically consumes about 300 mW of power when you text a friend. If the phone is operated using a lithium-ion battery with a voltage of 3.5 V, what is the current (in A) flowing through the cell-phone circuitry under these circumstances

Answers

Answer:

I = 0.0857 A

Explanation:

Given that,

Power consumed by the cellphone, P = 300 mW

The voltage of the battery, V = 3.5 V

Let I is the current flowing through the cell-phone. We know that,

P = VI

Where

I is the current

So,

[tex]I=\dfrac{P}{V}\\\\I=\dfrac{300\times 10^{-3}}{3.5}\\\\I=0.0857\ A[/tex]

So, the current flowing the cell-phone is 0.0857 A.

A generator is designed to produce a maximum emf of 190 V while rotating with an angular speed of 3800 rpm. Each coil of the generator has an area of 0.016 m2. If the magnetic field used in the generator has a magnitude of 0.052 T, how many turns of wire are needed

Answers

Answer:

The number of turns of wire needed is 573.8 turns

Explanation:

Given;

maximum emf of the generator, = 190 V

angular speed of the generator, ω = 3800 rev/min =

area of the coil, A = 0.016 m²

magnetic field, B = 0.052 T

The number of turns of the generator is calculated as;

emf = NABω

where;

N is the number of turns

[tex]\omega = 3800 \frac{rev}{min} \times \frac{2\pi}{1 \ rev} \times \frac{1 \min}{60 \ s } = 397.99 \ rad/s[/tex]

[tex]N = \frac{emf}{AB\omega } \\\\N = \frac{190}{0.016 \times 0.052\times 397.99} \\\\N = 573.8 \ turns[/tex]

Therefore, the number of turns of wire needed is 573.8 turns

Suppose a power plant uses a Carnot engine to generate electricity, using the atmosphere at 300 K as the low-temperature reservoir. Suppose the power plant produces an amount of electric energy with the hot reservoir at 500 K during Day One and then produces the same amount of electric energy with the hot reservoir at 600 K during Day Two. The thermal pollution was:

Answers

Answer: hello your question lacks some vital information below is the complete question

Suppose a power plant uses a Carnot engine to generate electricity, using the atmosphere at 300 K as the low-temperature reservoir. Suppose the power plant produces 1 × 106 J of electricity with the hot reservoir at 500 K during Day One and then produces 1 × 106 J of electricity with the hot reservoir at 600 K during Day Two. The thermal pollution was

answer:

Total thermal pollution = 2.5 * 10^6 J

Explanation:

Low temperature reservoir = 300 K

hot reservoir temperature = 500 K

Electrical energy produced by plant ( W ) = 1 * 10^6 J

lets assume ; Q1 = energy absorbed , Q2 = energy emitted

W = Q1 - Q2  or  Q2 = Q1 - W  ( we will apply this as the formula for determining thermal pollution )

For day 1

T1 = 500k , T2 = 300k

applying Carnot engine formula

W / Q1 = 1 - T2/T1

∴ Q1 = 10^6 / ( 1 - (300/500)) = 2.5 * 10^6 J

thermal pollution ; Q2 = Q1 - W = ( 2.5 * 10^6 - 1 * 10^6 ) = 1.5 * 10^6 J

for Day 2

T1 = 600k,  T2 = 300k

Q1 = 10^6 / ( 1 - (300/600)) = 2 * 10^6 J

Thermal pollution; Q2 = Q1 - W  = 1 * 10^6 J

Therefore the Total thermal pollution =  1 * 10^6  + 1.5 * 10^6  = 2.5 * 10^6 J

What are the differences among elements, compounds, and mixtures?

Answers

Answer:

Elements have a characteristic number of electrons and protons.Both Hydrogen(H) and oxygen(O) are two different elements.

••••••••••••••••

Compounds are chemical substances where the atoms atoms of two different elements are combined together. It is made of .Hydrogen(H) and Oxygen(O) both qr4 naturally gases,but they react to form water(H2O),which is liquid compound.

•••••••••••••••

A mixture is made of atleast two parts》 solid,liquid or gas.The difference is that it's not a chemical substance that's bonded by other elements. 

------------------------------

Hope it helps...

Have a great day!!!

Answer: Elements have a characteristic number of electrons and protons. Both Hydrogen(H) and oxygen(O) are two different elements. Compounds are chemical substances where the atoms atoms of two different elements are combined together. It is made of.Hydrogen(H) and Oxygen(O) both qr4 naturally gases, but they react to form water(H2O), which is liquid compound. A mixture is made of at least two parts solid, liquid, or gas. The difference is that it's not a chemical substance that's bonded by other elements.

Assuming the atmospheric pressure is 1 atm at sea level, determine the atmospheric pressure at Badwater (in Death Valley, California) where the elevation is 86.0 m below sea level.

Answers

Answer:

Atmospheric pressure at Badwater is 1.01022 atm

Explanation:

Data given:

1 atmospheric pressure (Pi) = 1.01 * 10[tex]^{5}[/tex] Pa

Elevation (h) = 86m

gravity (g) = 9.8 m/s2

Density of air P = 1.225 kg/m3

Therefore pressure at bad water Pb = Pi + Pgh

Pb = (1.01 * 10[tex]^{5}[/tex]) + (1.225 * 9.8 * 86)

Pb = (1.01 * 10[tex]^{5}[/tex]) + 1032.43 = 102032 Pa

hence:

Pb = 102032 /1.01 * 10[tex]^{5}[/tex] = 1.01022 atm

A charge Q exerts a 1.2 N force on another charge q. If the distance between the charges is doubled, what is the magnitude of the force exerted on Q by q

Answers

Answer:

0.3 N

Explanation:

Electromagnetic force is F= Kq1q2/r^2, where r is the distance between charges. If r is doubled then the force will be 1/4F which is 0.3 N.

The magnitude of the force exerted on Q by q when the distance between them is doubled is 0.3 N

Coulomb's law equation

F = Kq₁q₂ / r²

Where

F is the force of attraction K is the electrical constant q₁ and q₂ are two point charges r is the distance apart

Data obtained from the question Initial distance apart (r₁) =  rInitial force (F₁) = 1.2 NFinal distance apart (r₂) = 2rFinal force (F₂) =?

How to determine the final force

From Coulomb's law,

F = Kq₁q₂ / r²

Cross multiply

Fr² = Kq₁q₂

Kq₁q₂ = constant

F₁r₁² = F₂r₂²

With the above formula, we can obtain the final force as follow:

F₁r₁² = F₂r₂²

1.2 × r² = F₂ × (2r)²

1.2r² = F₂ × 4r²

Divide both side by 4r²

F₂ = 1.2r² / 4r²

F₂ = 0.3 N

Learn more about Coulomb's law:

https://brainly.com/question/506926

Four equal-value resistors are in series with a 5 V battery, and 2.23 mA are measured. What isthe value of each resistor

Answers

Answer:

560.54 Ω

Explanation:

Applying,

V = IR'............... Equation 1

Where V = Voltage of the battery, I = currrent, R' = Total resistance of the resistors

make R' the subject of the equation

R' = V/I............ Equation 2

From the question,

Given: V = 5 V, I = 2.23 mA = 2.23×10⁻³ A

Substitute these values into equation 2

R' = 5/(2.23×10⁻³ )

R' = 2242.15 Ω

Since the fours resistor are connected in series and they are equal,

Therefore the values of each resistor is

R = R'/4

R = 2242.15/4

R = 560.54 Ω

A football quarterback runs 15.0 m straight down the playing field in 3.00 s. He is then hit and pushed 3.00 m straight backward in 1.71 s. He breaks the tackle and runs straight forward another 24.0 m in 5.20 s. Calculate his average velocity (in m/s) for the entire motion. (Assume the quarterback's initial direction is positive. Indicate the direction with the sign of your answer.)

Answers

Answer:

Average Velocity = 3.63 m/s

Explanation:

First, we will calculate the total displacement of the quarterback, taking forward direction as positive:

Total Displacement = 15 m - 3 m + 24 m = 36 m

Now, we will calculate the total time taken for this displacement:

Total Time = 3 s + 1.71 s + 5.2 s = 9.91 s

Therefore, the average velocity will be:

[tex]Average\ Velocity = \frac{Total\ Displacement}{Total\ Time}\\\\Average\ Velocity = \frac{36\ m}{9.91\ s}[/tex]

Average Velocity = 3.63 m/s

The correct equation for the x component of a vector named A with an angle measured from the x axis would be which of the following?

Answers

Answer:

Acosθ

Explanation:

The x-component of a vector is defined as :

Magnitude * cosine of the angle

Maginitude * cosθ

The magnitude is represented as A

Hence, horizontal, x - component of the vector is :

Acosθ

Furthermore,

The y-component is taken as the sin of the of the angle multiplied by the magnitude

Vertical, y component : Asinθ

A charge of 0.20uC is 30cm from a point charge of 3.0uC in vacuum. what work is required to bring the 0.2uC charge 18cm closer to the 3.0uC charge?​

Answers

Answer:

The correct answer is "[tex]4.49\times 10^{10} \ joules[/tex]".

Explanation:

According to the question,

The work will be:

⇒ [tex]Work=-\frac{kQq}{R}[/tex]

              [tex]=-\frac{1}{4 \pi \varepsilon \times (18-30)\times 3\times 0.2}[/tex]

              [tex]=-\frac{1}{4 \pi \varepsilon \times (-12)\times 3\times 0.2}[/tex]

              [tex]=\frac{0.3978}{\varepsilon }[/tex]

              [tex]=4.49\times 10^{10} \ joules[/tex]

Thus the above is the correct answer.    

We have that the workdone  is mathematically given as

W=4.49*10e10 J

From the question we are told

A charge of 0.20uC is 30cm from a point charge of 3.0uC in vacuum. what work is required to bring the 0.2uC charge 18cm closer to the 3.0uC charge?​

Workdone

Generally the equation for the workdone   is mathematically given as

W=-kQq/R

Therefore

0.3978/ε0 =-1/(4πε0*(18-30)*3*0.2

Hence

W=4.49*10e10 J

For more information on Charge visit

https://brainly.com/question/9383604

A 6.0-cm-diameter horizontal pipe gradually narrows to 4.0 cm. When water flows through this pipe at a certain rate, the gauge pressure in these two sections is 32.0 kPa and 24.0 kPa, respectively. What is the volume rate of flow?

Answers

Answer:

a n c

Explanation:

why is it wrong to leave our light on​

Answers

Answer:

you will get huge electricity bills ............

3. You have a variable-voltage power supply and a capacitor in the form of two metal disks of radius 0.6 m, held a distance of 1 mm apart. What is the largest voltage you can apply to the capacitor without the air becoming highly conductive

Answers

Answer:

The breakdown of air occurs at a maximum voltage of 3kV/mm.

Explanation:

The breakdown of air occurs at a maximum voltage of 3kV/mm.

At this level of voltage the air between the plates become highly ionised and breakdown occurs. Since, the distance held between the plates is 1mm , it can withstand a maximum voltage of 3 kV.

After this voltage the air will become conductive in nature and will form ions in the air between the plates and ultimately breakdown will take place with a flash.

a microwave operates at a frequency of 2400 MHZ. the height of the oven cavity is 25 cm and the base measures 30 cm by 30 cm. assume that microwave energy is generated uniformly on the uipper surface. What is the power output of the oven

Answers

Complete question is;

A microwave oven operates at a frequency of 2400 MHz. The height of the oven cavity is 25 cm and the base measures 30 cm by 30 cm. Assume that microwave energy is generated uniformly on the upper surface of the cavity and propagates directly

downward toward the base. The base is lined with a material that completely absorbs microwave energy. The total microwave energy content of the cavity is 0.50 mJ.

Answer:

Power ≈ 600,000 W

Explanation:

We are given;

Frequency; f = 2400 Hz

height of the oven cavity; h = 25 cm = 0.25 m

base area; A = 30 cm by 30 cm = 0.3m × 0.3m = 0.09 m²

total microwave energy content of the cavity; E = 0.50 mJ = 0.5 × 10^(-3) J

We want to find the power output and we know that formula for power is;

P = workdone/time taken

Formula for time here is;

t = h/c

Where c is speed of light = 3 × 10^(8) m/s

Thus;

t = 0.25/(3 × 10^(8))

t = 8.333 × 10^(-10) s

Thus;

Power = (0.5 × 10^(-3))/(8.333 × 10^(-10))

Power ≈ 600,000 W

How are elastic and inelastic collisions different?


A: Elastic collisions occur when the colliding objects move separately after the collision; after inelastic collisions, the objects are connected and move together.

B: Elastic collisions occur when the objects are going the same direction when they collide; inelastic collisions occur when the objects are going in opposite directions when they collide.

C: Momentum is conserved in elastic collisions; momentum is not conserved in inelastic collisions.

D: Elastic collisions occur between objects of the same mass; inelastic collisions occur between different masses.

Answers

Answer:

a

Explanation:

Answer:

the answer is c

'

Explanation:

Which of the following statements is correct about the magnitude of the static friction force between an object and a surface?

a. Static friction depends on the mass of the object.
b. Static friction depends on the shape of the object.
c. Static friction depends on what the object is made of but not what the surface is made of.
d. None of the above is correct.

Answers

Answer:

Static friction depends on the mass of the object.

Explanation:

Friction is the force between two surfaces in contact. The force of friction between two surfaces in contact depends on;

1) nature of the object and the surface(how rough or smooth the surfaces are)

2)surface area of the object and the surface

3) mass of the object

Since;

F=μmg

Where;

μ= coefficient of static friction

m= mass of the object

g= acceleration due to gravity

Hence, as the mass of the object increases, the magnitude of static friction force between an object and a surface increases and vice versa.

A wheel rotates about a fixed axis with an initial angular velocity of 13 rad/s. During a 8-s interval the angular velocity increases to 57 rad/s. Assume that the angular acceleration was constant during this time interval. How many revolutions does the wheel turn through during this time interval

Answers

Answer:

The number of revolutions is 44.6.

Explanation:

We can find the revolutions of the wheel with the following equation:

[tex]\theta = \omega_{0}t + \frac{1}{2}\alpha t^{2}[/tex]

Where:

[tex]\omega_{0}[/tex]: is the initial angular velocity = 13 rad/s              

t: is the time = 8 s

α: is the angular acceleration

We can find the angular acceleration with the initial and final angular velocities:

[tex] \omega_{f} = \omega_{0} + \alpha t [/tex]

Where:

[tex] \omega_{f} [/tex]: is the final angular velocity = 57 rad/s

[tex] \alpha = \frac{\omega_{f} - \omega_{0}}{t} = \frac{57 rad/s - 13 rad/s}{8 s} = 5.5 rad/s^{2} [/tex]

Hence, the number of revolutions is:

[tex] \theta = \omega_{0}t + \frac{1}{2}\alpha t^{2} = 13 rad/s*8 s + \frac{1}{2}*5.5 rad/s^{2}*(8 s)^{2} = 280 rad*\frac{1 rev}{2\pi rad} = 44.6 rev [/tex]

Therefore, the number of revolutions is 44.6.

       

I hope it helps you!

Define relative density.​

Answers

Relative density is the ratio of the density of a substance to the density of a given material.


If an electrical component with a resistance of 53 Q is connected to a 128-V source, how much current flows through the component?

Answers

Answer:

the current that flows through the component is 2.42 A

Explanation:

Given;

resistance of the electrical component, r = 53 Ω

the voltage of the source, V = 128 V

The current that flows through the component is calculated using Ohm's Law as demonstrated below;

[tex]V = IR\\\\I = \frac{V}{R} = \frac{128 \ V}{53 \ ohms} = 2.42 \ A[/tex]

Therefore, the current that flows through the component is 2.42 A

The bulk modulus of water is B = 2.2 x 109 N/m2. What change in pressure ΔP (in atmospheres) is required to keep water from expanding when it is heated from 10.9 °C to 40.0 °C?

Answers

Answer:

A change of 160.819 atmospheres is required to keep water from expanding when it is heated from 10.9 °C to 40.0 °C.

Explanation:

The bulk modulus of water ([tex]B[/tex]), in newtons per square meters, can be estimated by means of the following model:

[tex]B = \rho_{o}\cdot \frac{\Delta P}{\rho_{f} - \rho_{o}}[/tex] (1)

Where:

[tex]\rho_{o}[/tex] - Water density at 10.9 °C, in kilograms per cubic meter.

[tex]\rho_{f}[/tex] - Water density at 40 °C, in kilograms per cubic meter.

[tex]\Delta P[/tex] - Pressure change, in pascals.

If we know that [tex]\rho_{o} = 999.623\,\frac{kg}{m^{3}}[/tex], [tex]\rho_{f} = 992.219\,\frac{kg}{m^{3}}[/tex] and [tex]B = 2.2\times 10^{9}\,\frac{N}{m^{2}}[/tex], then the bulk modulus of water is:

[tex]\Delta P = B\cdot \left(\frac{\rho_{f}}{\rho_{o}}-1 \right)[/tex]

[tex]\Delta P = \left(2.2\times 10^{9}\,\frac{N}{m^{3}} \right)\cdot \left(\frac{992.219\,\frac{kg}{m^{3}} }{999.623\,\frac{kg}{m^{3}} }-1 \right)[/tex]

[tex]\Delta P = -16294943.19\,Pa \,(-160.819\,atm)[/tex]

A change of 160.819 atmospheres is required to keep water from expanding when it is heated from 10.9 °C to 40.0 °C.

find out the odd one and give reason (length, volume, time, mass​

Answers

Answer:

Time

Explanation:

The answer to the question is actually time. Time is not needed when you calculate the mass or volume of an object, a square, sphere, rectangle, or any other 3D shape. You must also calculate the length to know what numbers you will be multiplying by. The answer to the question is time.

You are driving to the grocery store at 20 m/s. You are 150 m from an intersection when the traffic light turns red. Assume that your reaction time is 0.50 s and that your car brakes with constant acceleration.

Required:
a. How far are you from the intersection when you begin to apply the brakes?
b. What acceleration will bring you to rest right at the intersection?
c. How long does it take you to stop?

Answers

Hi there!

a.

Use the formula d = st to solve:

d = 20 × 0.5 = 10m

150 - 10 = 140m away when brakes are applied

b.

Use the following kinematic equation to solve:

vf² = vi² + 2ad

Plug in known values:

0 = 20² + 2(150)(a)

Solve:

0 = 400 + 300a

-300a = 400

a = -4/3 (≈ -1.33) m/s² required

c.

Use the following kinematic equation to solve:

vf = vi + at

0 = 20 - 4/3t

Solve:

4/3t = 20

Multiply both sides by 3/4 for ease of solving:

t = 15 sec

Other Questions
Please help me i will give you brainlest Which ordered pairs are in the solution set of the system of linear inequalities?y > Negative one-thirdx + 2y < 2x + 3 On a coordinate plane, 2 straight lines are shown. The first solid line has a negative slope and goes through (0, 2) and (6, 0. Everything to the right of the line is shaded. The second dashed line has a positive slope and goes through (negative 3, negative 3) and (0, 3). Everything above the line is shaded. 6. Find the value of x to the nearest tenth. Accounts receivable $ 18,000 Long-term notes payable $ 21,000 Accounts payable 11,000 Office supplies 2,800 Buildings 45,000 Prepaid insurance 3,560 Cash 7,000 Unearned services revenue 3,000 Compute Chavez Company's current ratio using the above information. Peter owned a juice shop. He sold a cup of lemon juice for $1.25 and a cup of apple juice for $2.50. If Peter sold a total of 155 cups of juice and collected a total of $256 approximately, how many cups of each type did he sell? is there a big difference between european portuguese and brazilian portuguese than to europeans portuguese? NO LINKS OR ANSWERING WHAT YOU DON'T KNOW!!!9. Suppose y varies inversely with x, and y = 49 when x = 1/7. What is the value of x when y = 7?a. 14b. 2c. 1d. 710. Suppose y varies inversely with x, and y = 5 when x = 3. What is the inverse variation equation that relates x and y?a. y = 3/xb. y = 5/xc. y = 15/xd. y = 15x The time that it takes to fold 1,000 origami cranes varies inversely with the number of people folding the cranes. If a class of 25 students work together to fold the 1,000 cranes, it will take 3 hours. Write an equation to show the relationship between time (t) and the number of people (n) folding cranes.ASAP!!!! A 64-ka base runner begins his slide into second base when he is moving at a speed of 3.2 m/s. The coefficient of friction between his clothes and Earth is 0.70. He slides so that his speed is zero just as he reaches the base.Required:a. How much mechanical energy is tout due to friction acting on the runner? b, How far does he slide? The reaction from NaOH and CH3COOH gives a. Basic Salt b. Acidic Salt c. Normal Salt d. Neutral Salt PLS PLS HELP!! Why did President Truman relieve General MacArthur of his command duties?A. MacArthur was too inexperienced to lead the UN forces.B. The US was losing the war under MacArthurs command.C. Truman disagreed with how MacArthur wanted to fight the war.D. Truman had another important job he wanted MacArthur to do. difine scalar quantity g Although the Humid Continental and Marine climates are at similar latitudes, they have very different annual temperature ranges. What factor is responsible this difference A certain liquid has a normal boiling point of and a boiling point elevation constant . A solution is prepared by dissolving some urea () in of . This solution boils at . Calculate the mass of that was dissolved. Round your answer to significant digits. You bought a car that was $25500 and the value depreciates by 4.5% each year. How much will the car be worth after 5 years?How much after 8 years? The work function for silver is 4.73 eV. (a) Convert the value of the work function from electron volts to joules. When individuals migrate, alleles can be transfered from one population to another population. This commonly referred to as An automobile purchased for $38000 is worth $2300 after 7 years. Assuming that the car's value depreciated steadily from year to year, what was it worth at the end of the third year?The value 3 years after it was purchased is Jenny's grandmother holds the newspaper at arm' length when reading it. i. What is most likely the cause of this condition? Name 3 events that occurred leading to Americas involvement in World War II