Answer:
Graph A
Step-by-step explanation:
correct answer on edge :)
The statement that represents the graphs of the functions f(x) and g(x) : On a coordinate plane y = g (x) starts at (0, 60) and curves up through (10, 70). Y = f (x) starts at (0, 50) and curves up through (10, 60).
What is a function?"It defines a relation between input and output values.""In function, for each input there is exactly one output."For given question,
The total sound power, in decibels, from x objects each producing 50 decibels of sound power is given by the function f(x) = 50 + 10 log x.
If each of the x objects increases its sound power by 10 decibels, then the new total sound power, in decibels, is given by the function
g(x) = f(x) + 10.
The graph of the function f(x) would starts at (0, 50)
For x = 10 the value of the function f(x) would be,
f(10) = 50 + 10 log (10)
f(10) = 50 + 10 (1)
f(10) = 60
This means, the graph of the function f(x) passes though point (10, 60)
Also, the graph of the function g(x) would starts at (0, 60)
For x = 10 the value of the function g(x) would be,
g(10) = f(10) + 10
g(10) = 60 + 10
g(10) = 70
This means, the graph of the function g(x) passes though point (10, 70)
Therefore, on a coordinate plane y = g (x) starts at (0, 60) and curves up through (10, 70). Y = f (x) starts at (0, 50) and curves up through (10, 60).
Learn more about the graph of a function here:
https://brainly.com/question/27757761
#SPJ2
one strip is cut into 9 equal bars shade 1/3:of strip
hiiksbsjxbxjsoahwjsissnsks
The following data show the number of cars passing through a toll booth during a certain time period over 15 days. 18 19 17 17 24 18 21 18 19 15 22 19 23 17 21 Identify the corresponding dotplot.
Answer: third from the top
Step-by-step explanation:
The correct answer is third from the top.
Arranging numbers in ascending order:
15 17 17 17 18 18 18 19 19 19 21 21 22 23 24
Let's count how many times each number occurs in this series of numbers.
row of numbers
15 +
16 not
17 + + +
18 + + +
19 + + +
20 not
21 + +
22 +
23 +
24 +
25 not
The sum of two numbers is 85. If four times the smaller number is subtracted from the larger number, the result is 5. Find the two numbers.
The larger number is
The smaller number is
Answer:
the larger number is 69
the smaller number is 16
Step-by-step explanation:
x is the smaller number
y is the larger number
x + y = 85
y - 4x = 5
y = 5 + 4x
x + 5 + 4x = 85
5x = 80
x = 16
y = 69
Need answer urgently
Answer:
x = -2; y = 1
Step-by-step explanation:
See picture below.
We are told matrices B is the inverse of matrix A.
The product of a matrix and its inverse is the identity matrix.
write an equation rectangular room 3 meters longer than it is wide and its perimeter is 18 meters
width = x
length = 3 + x
perimeter = x + x + ( 3 + x ) + (3+x)
18 = x + x + ( 3 + x ) + (3+x)
x + x + ( 3 + x ) + (3+x) = 18
6 + 4x = 18
4x = 12
x = 3
Which of the following is the result of the equation below after completing the square and factoring? x^2-4x+2=10
A. (x-2)^2=14
B. (x-2)^2=12
C. (x+2)^2=14
D. (x+2)^2=8
9514 1404 393
Answer:
B. (x-2)^2=12
Step-by-step explanation:
The constant that completes the square is the square of half the coefficient of the x-term. That value is (-4/2)^2 = 4.
There is already a constant of 2 on the left side of the equal sign, so we need to add 2 to both sides to bring that constant value up to 4.
x^2 -4x +2 = 10 . . . . . . . given
x^2 -4x +2 +2 = 10 +2 . . . . complete the square (add 2 to both sides)
(x -2)^2 = 12 . . . . . . . . . write as a square
Use the arithmetic progression formula to find the sum of integers from 75 to 100.75,76,77....99,100.
Answer:
The sum is 2275
Step-by-step explanation:
Given
[tex]75,76,77....99,100[/tex]
Required
The sum
Using arithmetic progression, we have:
[tex]S_n = \frac{n}{2}(T_1 + T_n)[/tex]
Where:
[tex]T_1 = 75[/tex] --- first term
[tex]T_n = 100[/tex] --- last term
[tex]n = T_n - T_1 + 1[/tex]
[tex]n = 100 - 75 + 1 = 26[/tex]
So, we have:
[tex]S_n = \frac{n}{2}(T_1 + T_n)[/tex]
[tex]S_n = \frac{26}{2}*(75 + 100)[/tex]
[tex]S_n = 13*175[/tex]
[tex]S_n = 2275[/tex]
what is true for f (x) = 4 times 2x
Answer:
f(x) = 8x
Explanation:
4 x 2 =8
What is the meaning proportion between 3 and 27?
Answer:
you mean the mean not the meaning right?
The mean proportional of 3 and 27 = +√3×27 = +√81 = 9.
What is the inverse of function f? f(x)=10/9+11
Answer:
Option D is answer.
Step-by-step explanation:
Hey there!
Given;
f(x) = 10/9 X + 11
Let f(X) be "y".
y = (10/9) X + 11
Interchange "X" and "y".
x = (10/9) y + 11
or, 9x = 10y + 99
or, y = (9x-99)/10
Therefore, f'(X) = (9x-99)/10.
Hope it helps!
What is the next three-term of the geometric sequence? 60, 30, 15...?
Answer:
7.5
Step-by-step explanation:
it is feometeic progression
r=0.5
There are 48 students o the school bus, 28 girls and 20 boys. what is the ratio of boys ad girls on the bus ?
Step-by-step explanation:
28:20
Once simplified its 7:5
What is the value of x if 2/ 3 - 2 = -4 ?
Answer:
x= -3
Step-by-step explanation:
(2x/3)-2=-4
Add 2 to both sides
2x/3=-2
multiply both sides by 3
2x=-6
divide both sides by 2
x= -3
Answer:
x = -3
Step-by-step explanation:
2x/3 - 2 = -4
Add 2 to both sides.
2x/3 = -2
Multiply both sides by 3/2.
x = -2 * 3/2
x = -3
Matthew participates in a study that is looking at how confident students at SUNY Albany are. The mean score on the scale is 50. The distribution has a standard deviation of 10 and is normally distributed. Matthew scores a 65. What percentage of people could be expected to score the same as Matthew or higher on this scale?
a) 93.32%
b) 6.68%
c) 0.07%
d) 43.32%
Answer:
b) 6.68%
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
The mean score on the scale is 50. The distribution has a standard deviation of 10.
This means that [tex]\mu = 50, \sigma = 10[/tex]
Matthew scores a 65. What percentage of people could be expected to score the same as Matthew or higher on this scale?
The proportion is 1 subtracted by the p-value of Z when X = 65. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{65 - 50}{10}[/tex]
[tex]Z = 1.5[/tex]
[tex]Z = 1.5[/tex] has a p-value of 0.9332.
1 - 0.9332 = 0.0668
0.0668*100% = 6.68%
So the correct answer is given by option b.
in a school project you need to provide a blueprint of the schools rectangular playground .the blueprint dimensions of the playground are 23/147 yd x 3/14 yd after reducing them by the factor of 2/147 what are the original dimensions if the playground in yards
Answer:
L = 0.16 yd, W = 0.22 yd
Step-by-step explanation:
Dimensions of play ground 23/147 yd x 3/14 yd
reducing factor 2/147
Let the original length is L.
[tex]L - \frac{2L}{147} = \frac{23}{147}\\\\L\frac{143}{147} = \frac{23}{147}\\\\L=\frac{23}{143} yd[/tex]
L = 0.16 yd
Let the width is W.
[tex]W - \frac{2W}{147} = \frac{3}{14}\\\\W\frac{143}{147} = \frac{3}{14}\\\\W=0.22 yd[/tex]
An airplane flies 105 miles in ½ hour. How far can it fly in 1 ¼ hours at the same rate of speed?
Answer:
262.5 miles
Step-by-step explanation:
Correct me if I am wrong
Sam works at a shoe store. He earns $300 every week plus $15 for every pair of shoes that he sells. How many pairs of shoes would he need to sell to make $500 in a week?
Answer:
300 + 15x = 500
15x = 200
x = 200/15
x=13.333
14 pair of shoes
Step-by-step explanation:
At what x value does the function given below have a hole?
f(x)=x+3/x2−9
Answer:
hole at x=-3
Step-by-step explanation:
The hole is the discontinuity that exists after the fraction reduces. (Still doesn't exist for original of course)
The discontinuities for this expression is when the bottom is 0. x^2-9=0 when x=3 or x=-3 since squaring either and then subtracting 9 would lead to 0.
So anyways we have (x+3)/(x^2-9)
= (x+3)/((x-3)(x+3))
Now this equals 1/(x-3) with a hole at x=-3 since the x+3 factor was "cancelled" from the denominator.
If four pounds of potatoes cost $6.00, how much would 10 pounds of potatoes cost.
SHOW ALL YOUR WORK!!!!!
Answer:
10 pounds of potatoes would cost $15.
Step-by-step explanation:
Set up proportion.
4/6=10/x
simplify 4/6 into 2/3,
2/3=10/x
cross product,
2*x=3*10
2x=30
x=30/2
x=15
lemme just add some to the great reply above,
[tex]\begin{array}{ccll} lbs&\$\\ \cline{1-2} 4&6\\ 10&x \end{array}\implies \cfrac{4}{10}=\cfrac{6}{x}\implies 4x = 60\implies x = \cfrac{60}{4}\implies x = 15[/tex]
Peter is 8 years younger than Alex. In 9 years time, the sum of their ages will be 76 . How old is Alex now?
Answer:
Peter is a-8 in 9 years, (a-8)+ 9+ a+ 9= 76
Answer:
P = 25
A = 33
Step-by-step explanation:
P + 8 = A
P + 9 + A + 9 = 76
P + A = 58
~~~~~~~~~~~~~~
P = 58 - A
P = 58 - P - 8
2 P = 50
P = 25
A = 33
16. Risa wants to order business cards. A print-
ing company determines the cost (C) to
the customer using the following function,
where b the number of boxes of cards and
n= the number of ink colors.
C= $25.60b + $14.00b(n - 1)
If Risa orders 4 boxes of cards printed in 3
colors, how much will the cards cost?
OA. $214.40
OB. $168.00
C. $144.40
OD. $102.40
Answer:
A - $214.40
Step-by-step explanation:
Since b is the number of boxes of cards and n is the number of ink colors, and we're given the number of boxes of cards, and number of ink colors, we plug in:
4= b
and
3 = n
into the given equation to solve for C.
Using the order of operations we start inside our parentheses and work from there:
C= $25.60*4 + $14.00*4(3 - 1)
C= $25.60*4 + $14.00*4(2)
C= $102.40 + $112
C= $214.40
NEED HELP
The average amount of money spent for lunch per person in the college cafeteria is $6.75 and the standard deviation is $2.28. Suppose that 18 randomly selected lunch patrons are observed. Assume the distribution of money spent is normal, and round all answers to 4 decimal places where possible.
C. For a single randomly selected lunch patron, find the probability that this
patron's lunch cost is between $7.0039 and $7.8026.
D. For the group of 18 patrons, find the probability that the average lunch cost is between $7.0039 and $7.8026.
Answer:
C.[tex]P(7.0039<x<7.8026)=0.1334[/tex]
D.[tex]P(7.0039<\bar{x}<7.8026)\approx 0.2942[/tex]
Step-by-step explanation:
We are given that
n=18
Mean, [tex]\mu=6.75[/tex]
Standard deviation, [tex]\sigma=2.28[/tex]
c.
[tex]P(7.0039<x<7.8026)=P(\frac{7.0039-6.75}{2.28}<\frac{x-\mu}{\sigma}<\frac{7.8026-6.75}{2.28})[/tex]
[tex]P(7.0039<x<7.8026)=P(0.11<Z<0.46)[/tex]
[tex]P(a<z<b)=P(z<b)-P(z<a)[/tex]
Using the formula
[tex]P(7.0039<x<7.8026)=P(Z<0.46)-P(Z<0.11)[/tex]
[tex]P(7.0039<x<7.8026)=0.67724-0.54380[/tex]
[tex]P(7.0039<x<7.8026)=0.1334[/tex]
D.[tex]P(7.0039<\bar{x}<7.8026)=P(\frac{7.0039-6.75}{2.28/\sqrt{18}}<\frac{x-\mu}{\frac{\sigma}{\sqrt{n}}})<\frac{7.8026-6.75}{2.28/\sqrt{18}})[/tex]
[tex]P(7.0039<\bar{x}<7.8026)=P(0.47<Z<1.96)[/tex]
[tex]P(7.0039<\bar{x}<7.8026)=P(Z<1.96)-P(Z<0.47)[/tex]
[tex]P(7.0039<\bar{x}<7.8026)=0.97500-0.68082[/tex]
[tex]P(7.0039<\bar{x}<7.8026)=0.29418\approx 0.2942[/tex]
Use reduction of order to find a second linearly independent solution
(2x+5)y′′−4(x+3)y′+4y=0,x>−52,y1=e2x
Given that exp(2x) is a solution, we assume another solution of the form
y(x) = v(x) exp(2x) = v exp(2x)
with derivatives
y' = v' exp(2x) + 2v exp(2x)
y'' = v'' exp(2x) + 4v' exp(2x) + 4v exp(2x)
Substitute these into the equation:
(2x + 5) (v'' exp(2x) + 4v' exp(2x) + 4v exp(2x)) - 4 (x + 3) (v' exp(2x) + 2v exp(2x)) + 4v exp(2x) = 0
Each term contains a factor of exp(2x) that can be divided out:
(2x + 5) (v'' + 4v' + 4v) - 4 (x + 3) (v' + 2v) + 4v = 0
Expanding and simplifying eliminates the v term:
(2x + 5) v'' + (4x + 8) v' = 0
Substitute w(x) = v'(x) to reduce the order of the equation, and you're left with a linear ODE:
(2x + 5) w' + (4x + 8) w = 0
w' + (4x + 8)/(2x + 5) w = 0
I'll use the integrating factor method. The IF is
µ(x) = exp( ∫ (4x + 8)/(2x + 5) dx ) = exp(2x - log|2x + 5|) = exp(2x)/(2x + 5)
Multiply through the ODE in w by µ :
µw' + µ (4x + 8)/(2x + 5) w = 0
The left side is the derivative of a product:
[µw]' = 0
Integrate both sides:
∫ [µw]' dx = ∫ 0 dx
µw = C
Replace w with v', then integrate to solve for v :
exp(2x)/(2x + 5) v' = C
v' = C (2x + 5) exp(-2x)
∫ v' dx = ∫ C (2x + 5) exp(-2x) dx
v = C₁ (x + 3) exp(-2x) + C₂
Replace v with y exp(-2x) and solve for y :
y exp(-2x) = C₁ (x + 3) exp(-2x) + C₂
y = C₁ (x + 3) + C₂ exp(2x)
It follows that the second fundamental solution is y = x + 3. (The exp(2x) here is already accounted for as the first solution.)
There are four different colored balls in a bag. There is equal probability of selecting the red, black, green, or blue ball.What is the expected value of getting a green ball out of 20 experiments with replacement?
Answer:
The expected value is of 5 green balls.
Step-by-step explanation:
For each experiment, there are only two possible outcomes. Either it is a green ball, or it is not. Since there is replacement, the probability of a green ball being taken in an experiment is independent of any other experiments, which means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
Probability of exactly x successes on n repeated trials, with p probability.
The expected value of the binomial distribution is:
[tex]E(X) = np[/tex]
20 experiments
This means that [tex]n = 20[/tex]
There is equal probability of selecting the red, black, green, or blue ball.
This means that 1 in 4 are green, so [tex]p = \frac{1}{4} = 0.25[/tex]
What is the expected value of getting a green ball out of 20 experiments with replacement?
[tex]E(X) = np = 20*0.25 = 5[/tex]
The expected value is of 5 green balls.
The expected value of getting a green ball out of 20 experiments with replacement is 5.
What is a binomial distribution?The binomial probability distribution of the number of successes in a sequence of n independent experiments is the binomial distribution with parameters n and p.
As it is given that the probability of all the balls coming out of the bag is equal. Therefore, the probability of a green ball coming can be written as,
[tex]\text{Probability of Green Ball} = 0.25[/tex]
Also, we can write the probability of not getting a green ball can also be written as,
[tex]\rm Probability(\text{Not coming Green Ball}) = P(Red\ ball)+P(Black\ ball)+P(Blue\ ball)[/tex]
[tex]=0.25+0.25+0.25\\\\=0.75[/tex]
Now, as there are only two outcomes possible, therefore, the distribution of the probability is a binomial distribution. And we know that the expected value of a binomial distribution is given as,
[tex]\rm Expected\ Value, E(x) = np[/tex]
where n is the number of trials while p represents the probability.
Now, substituting the values, we will get the expected value,
[tex]\rm Expected\ Value, E(Green\ ball) = 20 \times 0.25 = 5[/tex]
Hence, the expected value of getting a green ball out of 20 experiments with replacement is 5.
Learn more about Binomial Distribution:
https://brainly.com/question/12734585
Life Expectancies In a study of the life expectancy of people in a certain geographic region, the mean age at death was years and the standard deviation was years. If a sample of people from this region is selected, find the probability that the mean life expectancy will be less than years. Round intermediate -value calculations to decimal places and round the final answer to at least decimal places.
Answer:
The probability that the mean life expectancy of the sample is less than X years is the p-value of [tex]Z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex], in which [tex]\mu[/tex] is the mean life expectancy, [tex]\sigma[/tex] is the standard deviation and n is the size of the sample.
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
We have:
Mean [tex]\mu[/tex], standard deviation [tex]\sigma[/tex].
Sample of size n:
This means that the z-score is now, by the Central Limit Theorem:
[tex]Z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
Find the probability that the mean life expectancy will be less than years.
The probability that the mean life expectancy of the sample is less than X years is the p-value of [tex]Z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex], in which [tex]\mu[/tex] is the mean life expectancy, [tex]\sigma[/tex] is the standard deviation and n is the size of the sample.
Match the graph with the correct equation.
A. Y-1 = -1/4(x+5)
B. Y+1= -1/4(x+5)
C. Y-1= -4(x+5)
D. Y-1 =-1/4 (x-5)
Answer:
y - 1 = -1/4(x+5)
Step-by-step explanation:
Answer the following.
(a) Find an angle between and that is coterminal with .
(b) Find an angle between and that is coterminal with . Give exact values for your answers.
I believe this is your question:
A.) find an angle between 0 degrees and 360 degrees that is coterminal with 570 degrees.
Answer:
210 degrees
Explanation:
Coterminal angles begin on the same initial side and end or terminate on the same side as an angle. Example 45 degrees and 405 degrees are coterminal angles because they both begin and end on the same side.
To find an angle between 0 and 360 that is coterminal with 570 degrees, w simply subtract 360 degrees from 570, hence:
570-360=210 degrees
570 degrees is coterminal with 210 degrees
A person is standing close to the edge on a 56 foot building and throws the ball vertically upward. The quadratic function h(t)=-16^2+104t+56 models the balls height above the ground,h(t),in feet, T seconds after it was thrown
what is the maximum height of ball.=
How many seconds did it take to hit the ground=
Please help!
Answer:
Part 1)
225 feet.
Part 2)
7 seconds.
Step-by-step explanation:
The height h(t) of the ball above the ground after t seconds is modeled by the function:
[tex]h(t)=-16t^2+104t+56[/tex]
Part 1)
We want to determine the maximum height of the ball.
Notice that the function is a quadratic with a negative leading coefficient, so its maximum will be at its vertex point.
The vertex of a parabola is given by:
[tex]\displaystyle \text{Vertex} = \left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)[/tex]
In this case, a = -16, b = 104, and c = 56.
Find the x- (or rather t-) coordinate of the vertex. So:
[tex]\displaystyle t=-\frac{(104)}{2(-16)}=\frac{104}{32}=\frac{13}{4}=3.25\text{ seconds}[/tex]
In other words, the ball reaches its maximum height after 3.25 seconds.
To find the maximum height, substitute this value back into the function. Hence:
[tex]\displaystyle h(3.25)=-16(3.25)^2+104(3.25)+56=225\text{ feet}[/tex]
The maximum height of the ball is 225 feet in the air.
Part 2)
We want to find the amount of time it took for the ball to hit the ground.
When the ball hit the ground, its height above the ground is zero. Therefore, we can set h(t) to 0 and solve for t:
[tex]0=-16t^2+104t+56[/tex]
We can simplify a bit. Divide both sides by -8:
[tex]0=2t^2-13t-7[/tex]
We can factor. Find two numbers that multiply to 2(-7) = -14 and add to -13.
-14 and 1 works! Therefore, split the second term into -14 and 1:
[tex]\displaystyle 0=2t^2-14t+t-7[/tex]
Factor out a 2t from the first two terms and group the last two terms:
[tex]0=2t(t-7)+(t-7)[/tex]
Factor by grouping:
[tex]0=(2t+1)(t-7)[/tex]
Zero Product Property:
[tex]2t+1=0\text{ or } t-7=0[/tex]
Solve for each case:
[tex]\displaystyle t=-0.5\text{ or } t=7[/tex]
Since time cannot be negative, we can ignore the first case.
Therefore, it takes seven seconds for the ball to hit the ground.
The sum of three numbers is 3. The first number minus the second plus the third is -3. The first minus the third is 1 more than the second.
Find the numbers. What is the first number? What is the second number? What is the third number?
Answer: The first number is 2, the second number is 3 and the third number is -2
Step-by-step explanation:
Let the first number be 'x', the second number be 'y' and the third number be 'z'
The equations according to the question becomes:
⇒ x + y + z = 3 ....(1)
⇒ x - y + z = -3 ....(2)
⇒ x - z = 1 + y ....(3)
Rearranging equation 3:
⇒ x - y = 1 + z .....(4)
Putting in equation 2:
⇒ 1 + z + z = -3
⇒ 1 + 2z = -3
⇒ z = -2
Putting this value in equation 4 and equation 1, we get:
⇒ x - y = -1
⇒ x + y = 5
Cancelling 'y' by eliminiation method and equation becomes:
⇒ 2x = 4
⇒ x = 2
Putting value of 'x' and 'z' in equation 1:
⇒ 2 + y - 2 = 3
⇒ y = 3
Hence, the first number is 2, the second number is 3 and the third number is -2
what is the formula for triangle
Answer:
BH/2
Step-by-step explanation:
For the area of the triangle, (BH)/2. B=base and H=height