The vertices of the polygon are A (3,5), B (6,5), C (6, 9), and D (3,9). Find the distance between the vertices B and C.

Answers

Answer 1

Answer:

4

Step-by-step explanation:

B = (6,5)              C = (6,9)

√(x2 - x1)² + (y2 - y1)²

(6 - 6)² + (9 - 5)²

√(0)² + (4)²

√16

= 4


Related Questions

−30=5(x+1)

what is x?

Answers

[tex]\\ \rm\Rrightarrow -30=5(x+1)[/tex]

[tex]\\ \rm\Rrightarrow -30=5x+5[/tex]

[tex]\\ \rm\Rrightarrow 5x=-30-5[/tex]

[tex]\\ \rm\Rrightarrow 5x=-35[/tex]

[tex]\\ \rm\Rrightarrow x=\dfrac{-35}{-5}[/tex]

[tex]\\ \rm\Rrightarrow x=7[/tex]

Answer:

x = -7

Step-by-step explanation:

-30 = 5 (x -1 )

5 ( x + 1 ) =-30

5 (x + 1 ) = - 30

     5            5

x + 1 = -6

x + 1 -1 = -6 -1

x = - 7

help me pls??????? :)

Answers

Answer:4 in each bad 2 left over

Step-by-step explanation:

Answer:

4 in each bag and 2 left over

Step-by-step explanation:

divide 14 by 3

3 goes into 14, 4 times

14 - 12 = 2

4 in each bag and then 2 left over

Write the equation of the sinusoidal function shown?

A) y = cos x + 2

B) y = cos(3x) + 2

C) y = sin x + 2

D) y = sin(3x) + 2

Answers

Answer:

günah(3x) + 2

Step-by-step explanation:

Gösterilen sinüzoidal fonksiyonun denklemini yazınız? A) y = cos x + 2 B) y = cos(3x) + 2 C) y = günah x + 2 D) y =

Answer:

y = sin(3x) + 2

Determine three consecutive odd integers whose sum is 2097.

Answers

Answer:

first odd integer=x

second odd integer=x+2

third odd integer=x+4

x+x+2+x+4=2097

x+x+x+2+4=2097

3x+6=2097

3x=2097-6

3x=2091

3x/3=2091/3

x=697

therefore, x=697

x+2=697+2=699

x+4=697+4=701

what does this equal 2^3 + 6^5=

Answers

[tex]\\ \sf\longmapsto 2^3+6^5[/tex]

[tex]\\ \sf\longmapsto 2^3+(2\times 3)^5[/tex]

[tex]\\ \sf\longmapsto 8+2^5\times 3^5[/tex]

[tex]\\ \sf\longmapsto 8+32\times 243[/tex]

[tex]\\ \sf\longmapsto 40+7776[/tex]

[tex]\\ \sf\longmapsto 7784[/tex]

Answer:

2*2*2= 8

6*6*6*6*6= 7,776

7,776+8=

7,784

Find the volume of the cylinder please

ASAP

Answers

Answer:

33ft^3

Step-by-step explanation:

radius is half the diameter, half of 2=1 and 1^2=1

3(1)(11)=33

Answer: V = 33 ft³

Step-by-step explanation:

π = 3

r = (1/2)d = (1/2) (2) = 1 ft

h = 11 ft

Given Formula

V = π r² h

Substitute values into the formula

V = (3) (1)² (11)

Simplify exponents

V = (3) (1) (11)

Simplify by multiplication

V = 33 ft³

Hope this helps!! :)

Please let me know if you have any questions

ax^2-y^2-x-y factorize​

Answers

Answer:

x(ax-1)-y(y+1)

Step-by-step explanation:

you have to group the like terms

ax^2-x-y^2-y

x(ax-1)-y(y+1)

I hope this helps

If a line has a midpoint at (2,5), and the endpoints are (0,0) and (4,y), what is the value of y? Please explain each step for a better understanding:)

Answers

Answer:

y = 10

Step-by-step explanation:

To find the y coordinate of the midpoint, take the y coordinates of the endpoints and average

(0+y)/2 = 5

Multiply each  die by 2

0+y = 10

y = 10


Rationalise the denominator

Answers

Answer:

sqrt(3) /3

Step-by-step explanation:

1 / sqrt(3)

Multiply the top and bottom by sqrt(3)

1/ sqrt(3) * sqrt(3)/ sqrt(3)

sqrt(3) /  sqrt(3)*sqrt(3)

sqrt(3) /3

Answer:

[tex] = { \sf{ \frac{1}{ \sqrt{3} } }} \\ \\ { \sf{ = \frac{1}{ \sqrt{3} } . \frac{ \sqrt{3} }{ \sqrt{3} } }} \\ \\ = { \sf{ \frac{ \sqrt{3} }{ {( \sqrt{3}) }^{2} } = \frac{ \sqrt{3} }{3} }} [/tex]

result of 5 and 75 with dividid by 3

Answers

Answer:

your answer is 30

Step-by-step explanation:

I hope this help

Find the value of the sum 219+226+233+⋯+2018.

Assume that the terms of the sum form an arithmetic series.

Give the exact value as your answer, do not round.

Answers

Answer:

228573

Step-by-step explanation:

a = 219 (first term)

an = 2018 (last term)

Sn->Sum of n terms

Sn=n/2(a + an)         [Where n is no. of terms] -> eq 1

To find number of terms,

an = a + (n-1)d     [d->Common Difference] -> eq 2

d= 226-219 = 7

=> d=7

Substituting in eq 2,

2018 = 219 + (n-1)(7)

1799 = (n-1)(7)

1799 = 7n-7

1799 = 7(n-1)

1799/7 = n-1

257 = n-1

n=258

Substituting values in eq 1,

Sn = 258/2(219+2018)

    = 129(2237)

    = 228573

Classify the triangle as acute, right, or obtuse and as equilateral, isosceles, or scalene.​

Answers

9514 1404 393

Answer:

  (d)  Right, scalene

Step-by-step explanation:

The little square in the upper left corner tells you that is a right angle. Any triangle with a right angle is a right triangle. This one is scalene, because the sides are all different lengths.

__

Additional comment

An obtuse triangle cannot be equilateral, and vice versa.

An equilateral triangle has all sides the same length, and all angles the same measure: 60°. It is an acute triangle.

On two investments totaling $9,500, Peter lost 3% on one and earned 7% on the other. If his net annual receipts were $169, how much was each investment?

Answers

Answer:

23$ was each investment

Step-by-step explanation:

[tex]\sqrt{x} x^{2}[/tex] +3

Where did term “infinity” come from

Answers

the English mathematician John Wallis in 1655 invented the word infinity Infinity is from the Latin, infinitas. In general, the word signifies the state from an entity's not ending/limit.

Help ASAP please :))

Image attached

Answers

No Sophie made a mistake going from step one to two. (She should’ve multiplied 9*2 and 6*7 instead of dividing first, she didn’t follow PEMDAS)

Solve for x.

6(4x+2)= 3(8x+4)

Answers

Answer:

x = 1

Step-by-step explanation:

6(4x + 2) = 3(8x + 4)

24x + 12 = 24x + 12

x = 1
x = 1

6(4x+2) = 3(8x+4)
24x + 12 = 24x + 12
-12 -12
24x = 24x
-24 -24
x = x

Solve for x in the triangle. Round your answer to the nearest tenth.

Answers

Answer:

x = 6.2

Step-by-step explanation:

Since this is a right triangle, we can use trig functions

tan theta = opp / adj

tan 32 = x/ 10

10 tan 32 = x

x=6.24869

Rounding to the nearest tenth

x = 6.2

Answer:

x=6.2 (Rounded to the nearest tenth)

Step-by-step explanation:

This problem gives you an angle(32°), and ask for the dimension of the opposite side to that angle(x), along with another dimension the adjacent side(10).

Since you have the opposite and adjacent sides, you can use tangent. opposite (x) over adjacent (10). Tan(32) =[tex]\frac{x}{10}[/tex]. You want (x) so multiply tan(32) by 10. Then round to the nearest tenth.

Remember to put calculator in degree mode!

tan (32) = 0.6248693519 multiply by ten 6.248693519. Round to nearest 10th 6.2.

Hope this helps!

help help help help

Answers

Answer:

abc is a triangle so ,

a is ( 9,6 )

b is ( 9,3 )

and c is ( 3,3 )

Two observers are 300 ft apart on opposite sides of a flagpole. The angles of
elevation from the observers to the top of the pole are 20°
and 15°. Find the
height of the flagpole.

Answers

I know similar questions and have answers. do you want

PLEASE HELP I WILL GIVE BRAINLIEST

Answers

Step-by-step explanation:

A natural number is a positive whole number.

A whole number is a positive number with no fractions or decimals.

A interger is a whole number negative or positive.

A rational number is a number that terminates or continue with repeating digits.

A irrational number is a number that doesn't terminate or continue with repeating digits.

1. Rational Number

2. Natural,Whole,Interger,Rational

3. Whole,Rational,Interger

4. Rational

5.Irrational

6.Rational

7.Natural,Whole,Interger,Rational

8.Interger,Rational

9.Irrational

Please help I’ll mark as brainlist

Answers

Answer:

Ekta and Preyal

Step-by-step explanation:

Answer: Ekta and Preyal

Originally the cubes have a perimeter of 15, both Ekta and Preyal have a perimeter of 17 which is exactly a 2 unit increase

If LM = 9x + 27 and RS = 135, find x.

Answers

Answer:

x=12

Step-by-step explanation:

LM = RS

9x+27 = 135

Subtract 27 from each side

9x+27-27 =135-27

9x=108

Divide each side by 9

9x/9 = 108/9

x = 12

the boxes are equivalent so the one with a single dash is equal to the other with a single dash.

the one with 2 dashes is equal to the other with 2 dashes so on and so forth

SR=LM

LM=9x+27

RS=135

9x+27=135

so I solve it in my own weird way but you can solve it differently. 135-27=108

108/9=12

so your answer is 12

How do we derive the sum rule in differentiation? (ie. (u+v)' = u' + v')

Answers

It follows from the definition of the derivative and basic properties of arithmetic. Let f(x) and g(x) be functions. Their derivatives, if the following limits exist, are

[tex]\displaystyle f'(x) = \lim_{h\to0}\frac{f(x+h)-f(x)}h\text{ and }g'(x)\lim_{h\to0}\frac{g(x+h)-g(x)}h[/tex]

The derivative of f(x) + g(x) is then

[tex]\displaystyle \big(f(x)+g(x)\big)' = \lim_{h\to0}\big(f(x)+g(x)\big) \\\\ \big(f(x)+g(x)\big)' = \lim_{h\to0}\frac{\big(f(x+h)+g(x+h)\big)-\big(f(x)+g(x)\big)}h \\\\ \big(f(x)+g(x)\big)' = \lim_{h\to0}\frac{\big(f(x+h)-f(x)\big)+\big(g(x+h)-g(x)\big)}h \\\\ \big(f(x)+g(x)\big)' = \lim_{h\to0}\frac{f(x+h)-f(x)}h+\lim_{h\to0}\frac{g(x+h)-g(x)}h \\\\ \big(f(x)+g(x)\big)' = f'(x) + g'(x)[/tex]

convert 10.09% to a decimal

Answers

Answer:

0.1009

Step-by-step explanation:

To convert percentage into decimal, you need to divide the percentage by 100

10.09/100

= 0.1009

To convert 10.09% to a decimal, we need to decide it by 100 like so:

10.09 ÷ 100 = 0.1009

Therefore, the answer is 0.1009

Two lateral faces of a rectangular pyramid have a base length of 10 inches and a height of 15 inches. The other two lateral faces have a base length of 18 inches and a height of 13 inches. What is the surface area of the rectangular pyramid?

Answers

The surface area of the rectangular pyramid is the sum of the area of its individual surface. The surface area of the pyramid is 384 square inches.

Each surface of the rectangular pyramid has the shape of a triangle.

So that the area of each surface of the pyramid = [tex]\frac{1}{2}[/tex] x base x height.

From the given question;

The area of one of the two lateral faces = [tex]\frac{1}{2}[/tex] x b x h

                                                                 = [tex]\frac{1}{2}[/tex] x 10 x 15

The area of one of the two lateral faces = 75 square inches

Thus,

the area of the first two given lateral faces = 2 x 75

                                                            = 150 square inches

The area of the first two given lateral faces = 150 square inches

Also,

The area of one of the other two lateral faces = [tex]\frac{1}{2}[/tex] x b x h

                                                                             = [tex]\frac{1}{2}[/tex] x 18 x 13

The area of one of the other two lateral faces =  117 square inches

So that;

the area of the first two other lateral faces = 2 x 117

                                                            = 234 square inches

The area of the first two other lateral faces = 234 square inches

Thus,

the surface area of the pyramid = 150 + 234

                                                              = 384 square inches

Therefore, the surface area of the rectangular pyramid is 384 square inches.

For more clarifications: https://brainly.com/question/23564399

Answer:

Step-by-step explanation:

The surface area of the rectangular pyramid is the sum of the area of its individual surface. The surface area of the pyramid is 384 square inches.

Each surface of the rectangular pyramid has the shape of a triangle.

So that the area of each surface of the pyramid =  x base x height.

From the given question;

The area of one of the two lateral faces =  x b x h

                                                                =  x 10 x 15

The area of one of the two lateral faces = 75 square inches

Thus,

the area of the first two given lateral faces = 2 x 75

                                                           = 150 square inches

The area of the first two given lateral faces = 150 square inches

Also,

The area of one of the other two lateral faces =  x b x h

                                                                            =  x 18 x 13

The area of one of the other two lateral faces =  117 square inches

So that;

the area of the first two other lateral faces = 2 x 117

                                                           = 234 square inches

The area of the first two other lateral faces = 234 square inches

The area of the rectangle is B x H = 18 x 10 = 180 square inches

Thus,

the surface area of the pyramid = 150 + 234+180

                                                             = 564 square inches

Therefore, the surface area of the rectangular pyramid is 564 square inches.

Determine the sum of the first 33 terms of the following series:

−52+(−46)+(−40)+...

Answers

Answer:

1320

Step-by-step explanation:

Use the formula for sum of series, s(a) = n/2(2a + (n-1)d)

The terms increase by 6, so d is 6

a is the first term, -56

n is the terms you want to find, 33

Plug in the numbers, 33/2 (2(-56)+(32)6)

Simplify into 33(80)/2 and you get 1320

100 POINTS AND BRAINLIEST FOR THIS WHOLE SEGMENT

a) Find zw, Write your answer in both polar form with ∈ [0, 2pi] and in complex form.

b) Find z^10. Write your answer in both polar form with ∈ [0, 2pi] and in complex form.

c) Find z/w. Write your answer in both polar form with ∈ [0, 2pi] and in complex form.

d) Find the three cube roots of z in complex form. Give answers correct to 4 decimal

places.

Answers

Answer:

See Below (Boxed Solutions).

Step-by-step explanation:

We are given the two complex numbers:

[tex]\displaystyle z = \sqrt{3} - i\text{ and } w = 6\left(\cos \frac{5\pi}{12} + i\sin \frac{5\pi}{12}\right)[/tex]

First, convert z to polar form. Recall that polar form of a complex number is:

[tex]z=r\left(\cos \theta + i\sin\theta\right)[/tex]

We will first find its modulus r, which is given by:

[tex]\displaystyle r = |z| = \sqrt{a^2+b^2}[/tex]

In this case, a = √3 and b = -1. Thus, the modulus is:

[tex]r = \sqrt{(\sqrt{3})^2 + (-1)^2} = 2[/tex]

Next, find the argument θ in [0, 2π). Recall that:

[tex]\displaystyle \tan \theta = \frac{b}{a}[/tex]

Therefore:

[tex]\displaystyle \theta = \arctan\frac{(-1)}{\sqrt{3}}[/tex]

Evaluate:

[tex]\displaystyle \theta = -\frac{\pi}{6}[/tex]

Since z must be in QIV, using reference angles, the argument will be:

[tex]\displaystyle \theta = \frac{11\pi}{6}[/tex]

Therefore, z in polar form is:

[tex]\displaystyle z=2\left(\cos \frac{11\pi}{6} + i \sin \frac{11\pi}{6}\right)[/tex]

Part A)

Recall that when multiplying two complex numbers z and w:

[tex]zw=r_1\cdot r_2 \left(\cos (\theta _1 + \theta _2) + i\sin(\theta_1 + \theta_2)\right)[/tex]

Therefore:

[tex]\displaystyle zw = (2)(6)\left(\cos\left(\frac{11\pi}{6} + \frac{5\pi}{12}\right) + i\sin\left(\frac{11\pi}{6} + \frac{5\pi}{12}\right)\right)[/tex]

Simplify. Hence, our polar form is:

[tex]\displaystyle\boxed{zw = 12\left(\cos\frac{9\pi}{4} + i\sin \frac{9\pi}{4}\right)}[/tex]

To find the complex form, evaluate:

[tex]\displaystyle zw = 12\cos \frac{9\pi}{4} + i\left(12\sin \frac{9\pi}{4}\right) =\boxed{ 6\sqrt{2} + 6i\sqrt{2}}[/tex]

Part B)

Recall that when raising a complex number to an exponent n:

[tex]\displaystyle z^n = r^n\left(\cos (n\cdot \theta) + i\sin (n\cdot \theta)\right)[/tex]

Therefore:

[tex]\displaystyle z^{10} = r^{10} \left(\cos (10\theta) + i\sin (10\theta)\right)[/tex]

Substitute:

[tex]\displaystyle z^{10} = (2)^{10} \left(\cos \left(10\left(\frac{11\pi}{6}\right)\right) + i\sin \left(10\left(\frac{11\pi}{6}\right)\right)\right)[/tex]

Simplify:

[tex]\displaystyle z^{10} = 1024\left(\cos\frac{55\pi}{3}+i\sin \frac{55\pi}{3}\right)[/tex]

Simplify using coterminal angles. Thus, the polar form is:

[tex]\displaystyle \boxed{z^{10} = 1024\left(\cos \frac{\pi}{3} + i\sin \frac{\pi}{3}\right)}[/tex]

And the complex form is:

[tex]\displaystyle z^{10} = 1024\cos \frac{\pi}{3} + i\left(1024\sin \frac{\pi}{3}\right) = \boxed{512+512i\sqrt{3}}[/tex]

Part C)

Recall that:

[tex]\displaystyle \frac{z}{w} = \frac{r_1}{r_2} \left(\cos (\theta_1-\theta_2)+i\sin(\theta_1-\theta_2)\right)[/tex]

Therefore:

[tex]\displaystyle \frac{z}{w} = \frac{(2)}{(6)}\left(\cos \left(\frac{11\pi}{6} - \frac{5\pi}{12}\right) + i \sin \left(\frac{11\pi}{6} - \frac{5\pi}{12}\right)\right)[/tex]

Simplify. Hence, our polar form is:

[tex]\displaystyle\boxed{ \frac{z}{w} = \frac{1}{3} \left(\cos \frac{17\pi}{12} + i \sin \frac{17\pi}{12}\right)}[/tex]

And the complex form is:

[tex]\displaystyle \begin{aligned} \frac{z}{w} &= \frac{1}{3} \cos\frac{5\pi}{12} + i \left(\frac{1}{3} \sin \frac{5\pi}{12}\right)\right)\\ \\ &=\frac{1}{3}\left(\frac{\sqrt{2}-\sqrt{6}}{4}\right) + i\left(\frac{1}{3}\left(- \frac{\sqrt{6} + \sqrt{2}}{4}\right)\right) \\ \\ &= \boxed{\frac{\sqrt{2} - \sqrt{6}}{12} -\frac{\sqrt{6}+\sqrt{2}}{12}i}\end{aligned}[/tex]

Part D)

Let a be a cube root of z. Then by definition:

[tex]\displaystyle a^3 = z = 2\left(\cos \frac{11\pi}{6} + i\sin \frac{11\pi}{6}\right)[/tex]

From the property in Part B, we know that:

[tex]\displaystyle a^3 = r^3\left(\cos (3\theta) + i\sin(3\theta)\right)[/tex]

Therefore:

[tex]\displaystyle r^3\left(\cos (3\theta) + i\sin (3\theta)\right) = 2\left(\cos \frac{11\pi}{6} + i\sin \frac{11\pi}{6}\right)[/tex]

If two complex numbers are equal, their modulus and arguments must be equivalent. Thus:

[tex]\displaystyle r^3 = 2\text{ and } 3\theta = \frac{11\pi}{6}[/tex]

The first equation can be easily solved:

[tex]r=\sqrt[3]{2}[/tex]

For the second equation, 3θ must equal 11π/6 and any other rotation. In other words:

[tex]\displaystyle 3\theta = \frac{11\pi}{6} + 2\pi n\text{ where } n\in \mathbb{Z}[/tex]

Solve for the argument:

[tex]\displaystyle \theta = \frac{11\pi}{18} + \frac{2n\pi}{3} \text{ where } n \in \mathbb{Z}[/tex]

There are three distinct solutions within [0, 2π):

[tex]\displaystyle \theta = \frac{11\pi}{18} , \frac{23\pi}{18}\text{ and } \frac{35\pi}{18}[/tex]

Hence, the three roots are:

[tex]\displaystyle a_1 = \sqrt[3]{2} \left(\cos\frac{11\pi}{18}+ \sin \frac{11\pi}{18}\right) \\ \\ \\ a_2 = \sqrt[3]{2} \left(\cos \frac{23\pi}{18} + i\sin\frac{23\pi}{18}\right) \\ \\ \\ a_3 = \sqrt[3]{2} \left(\cos \frac{35\pi}{18} + i\sin \frac{35\pi}{18}\right)[/tex]

Or, approximately:

[tex]\displaystyle\boxed{ a _ 1\approx -0.4309 + 1.1839i,} \\ \\ \boxed{a_2 \approx -0.8099-0.9652i,} \\ \\ \boxed{a_3\approx 1.2408-0.2188i}[/tex]

Please help me solve this problem guys

Answers

Answer:

17%

Step-by-step explanation:

Again, as the amount of years increase, the population of bees gets multiplied by 0.83. We can rewrite this to 83%, and then again rewrite this to 100%-17%. We can see now that the population of bees decreases by 17% each year.

Which value of x makes this equation true?-9x+15=3(2-x)

Answers

Step-by-step explanation:

-9x+15=3(2-x)

expand the bracket by the right hand side

6-6x

2. collect like terms

-9x+15= 6-6x

15-6 = 6x+9x

11= 15x

3. divide both sides by the coefficient of X which is 15

x= 11/15

Select the correct answer from each drop-down menu.
A company makes cylindrical vases. The capacity, in cubic centimeters, of a cylindrical vase the company produces is given by the
function C() = 6.2873 + 28.26x2, where x is the radius, in centimeters. The area of the circular base of a vase, in square
centimeters, is given by the function A () = 3.14.2
To find the height of the vase, divide
represents the height of the vase.
the expressions modeling functions C(x) and A(z). The expression

Answers

Answer:

divide, 2x+9

Step-by-step explanation:

got it right

Other Questions
If s = 6 and t = 4, find the value of x.x = 4 + s - t Higher demand for goods and services _______ to higher imports from abroad. A. lead B. leads C. have led D. have been leading The perimeter of a rectangle is 74 inches. If the length is five more than the width, what are the rectangle's measurements? When is followed by la, it stays___When is followed by I, it stays___When is followed by les, it changes to___and is pronounced like the letter__ Who is the congressman/woman of union city nj 1 and a half to 2 pages is ideal. 7. Solve for x: x/6 - y/3 = 1Please give steps! Trong cc qu trnh nn xy ra trong my nn piston , qu trnh nn no c cng ca my nn l nh nht v ln nht ? He remembered the story very well because he (read) the book several times. Answer my question im being timed Do you think that interest and capacity play a great role to get success in a profession?Give your opinion. Which description matches the function represented by the values in thistable?X 141256224489653584O A. exponential decayOB. linear growthO C. linear decayD. exponential growth Question 4 James Bennett also allocates wealth between youth and old age. He has no cash currently (in his youth), but will inherit $3000 in his old age. He can lend and borrow at the bank at 18% (that is, lending $1 in youth will give him $1.18 in old age). He has an investment opportunity that costs $12,000 now in his youth and has a payoff of $15,000 in his old age. This is the only investment opportunity available to him. What is the most he can consume in his youth what is |x-4| if x>4 X = [?]Dr.X As140BC What year was it when I was a freshman if I graduated this year(2021)? What is 15.4624 divided by 0.32 name a factor tht affects the value of electron affinity c. The element in group 2 and period 3 is - What is the value of x in the equation 1/5x - 2/3y=30, when y = 15?