Answer:
[tex]P_d=6203.223062W/mm^2[/tex]
Explanation:
From the question we are told that:
Voltage [tex]V=45kV[/tex]
Current [tex]I=50mAmp[/tex]
Diameter [tex]d=0.50mm[/tex]
Heat transfer factor [tex]\mu= 0.87.[/tex]
Generally the equation for Power developed is mathematically given by
[tex]P=VI\\\\P=45*10^3*50*10^{-3}[/tex]
[tex]P=2.250[/tex]
Therefore
Power in area
[tex]P_a=1400*0.87[/tex]
[tex]P_a=1218watt[/tex]
Power Density
[tex]P_d=\frac{P_a}{Area}[/tex]
[tex]P_d=\frac{1218}{\pi(0.5^2/4)}[/tex]
[tex]P_d=6203.223062W/mm^2[/tex]
Two distinct systems have the same amount of stored internal energy. 500 J are added by heat to the first system and 300 J are added by heat to the second system. What will be the change in internal energy of the first system if it does 200 J of work? How much work will the second system have to do in order to have the same internal energy?
Answer:
The change in the internal energy of the first system is 300 J
The second system will do zero work in order to have the same internal energy.
Explanation:
Given;
heat added to the first system, Q₁ = 500 J
heat added to the second system, Q₂ = 300 J
work done by the first system, W₁ = 200 J
The change in the internal energy of the system is given by the first law of thermodynamics;
ΔU = Q - W
where;
ΔU is the change in internal energy of the system
The change in the internal energy of the first system is calculated as;
ΔU₁ = Q₁ - W₁
ΔU₁ = 500 J - 200 J
ΔU₁ = = 300 J
The work done by the second system to have the same internal energy with the first.
ΔU₁ = Q₂ - W₂
W₂ = Q₂ - ΔU₁
W₂ = 300 J - 300 J
W₂ = 0
The second system will do zero work in order to have the same internal energy.
Object A has a mass m and a speed v, object B has a mass m/2 and a speed 4v, and object C has a mass 3m and a speed v/3. Rank the objects according to the magnitude of their momentum.
Required:
Rank from smallest to largest.
Answer:
Momentum of object A = Momentum of object C < momentum of B.
Explanation:
The momentum of an object is equal to the product of mass and velocity.
Object A has a mass m and a speed v. Its momentum is :
p = mv
Object B has a mass m/2 and a speed 4v. Its momentum is :
p = (m/2)×4v = 2mv
Object C has a mass 3m and a speed v/3. Its momentum is :
p = (3m)×(v/3) = mv
So,
Momentum of object A = Momentum of object C < momentum of B.
A T-shirt cannon launches a shirt at 5.30 m/s from a platform height of 4.00 m from ground level. How fast (in m/s) will the shirt be traveling if it is caught by someone whose hands are at 5.20 m from ground level (b) 4.00 m from ground level?
Answer:
(a) the velocity of the shirt is 2.14 m/s
(b) the velocity of the shirt is 5.3 m/s
Explanation:
Given;
initial velocity of the shirt, u = 5.3 m/s
height of the platform above the ground, h = 4.00 m
(a) When the shirt is caught by someone whose hand is 5.20 m from the ground level, the height traveled by the shirt = 5.2 m - 4.0 m = 1.2 m
The velocity at this position is calculated as;
[tex]v^2 = u^2 + 2(-g)h\\\\v^2 = u^2 - 2gh\\\\v^2 = 5.3^2 - (2\times 9.8 \times 1.2)\\\\v^2 = 4.57\\\\v= \sqrt{4.57} \\\\v = 2.14 \ m/s[/tex]
(b) When the shirt is caught by someone whose hand is 4.00 m from the ground level, the height traveled by the shirt = 4.00 m - 4.00 m = 0 m
The velocity at this position is calculated as;
[tex]v^2 = u^2 + 2(-g)h\\\\v^2 = u^2 - 2gh\\\\v^2 = 5.3^2 - (2\times 9.8 \times 0)\\\\v^2 = 28.09\\\\v= \sqrt{28.09} \\\\v = 5.3 \ m/s[/tex]
A 0.20 kg mass on a horizontal spring is pulled back a certain distance and released. The maximum speed of the mass is measured to be 0.30 m/s. If, instead, a 0.40 kg mass were used in this same experiment, choose the correct value for the maximum speed.
a. 0.40 m/s.
b. 0.20 m/s.
c. 0.28 m/s.
d. 0.14 m/s.
e. 0.10 m/s.
Answer:
b. 0.20 m/s.
Explanation:
Given;
initial mass, m = 0.2 kg
maximum speed, v = 0.3 m/s
The total energy of the spring at the given maximum speed is calculated as;
K.E = ¹/₂mv²
K.E = 0.5 x 0.2 x 0.3²
K.E = 0.009 J
If the mass is changed to 0.4 kg
¹/₂mv² = K.E
mv² = 2K.E
[tex]v = \sqrt{\frac{2K.E}{m} } \\\\v = \sqrt{\frac{2\times 0.009}{0.4} } \\\\v = 0.21 \ m/s\\\\v \approx 0.20 \ m/s[/tex]
Therefore, the maximum speed is 0.20 m/s
The thermal efficiency (in %) of a system that undergoes a power cycle while receiving 1000 kJ of energy by heat transfer from a hot reservoir at 1000 K and discharging 500 kJ of energy by heat transfer to a cold reservoir at 400 K is:
Answer:
η = 0.5 = 50%
Explanation:
The efficiency of the power cycle is given by the following formula:
[tex]\eta = \frac{W}{Q_1}\\\\\eta = \frac{Q_1-Q_2}{Q_1}[/tex]
where,
where,
η = efficiency = ?
Q₁ = heat received from hot reservoir = 1000 KJ
Q₂ = heat discharged to cold reservoir = 500 KJ
Therefore,
[tex]\eta = \frac{1000\ KJ-500\ KJ}{1000\ KJ}[/tex]
η = 0.5 = 50%
A baseball pitcher brings his arm forward during a pitch, rotating the forearm about the elbow. If the velocity of the ball in the pitcher's hand is 34.0 m/s and the ball is 0.310 m from the elbow joint, what is the angular velocity (in rad/s) of the forearm
Answer:
[tex]\omega=109.67\ rad/s[/tex]
Explanation:
Given that,
The speed of the ball, u = 34 m/s
The ball is 0.310 m from the elbow joint.
We need to find the angular velocity (in rad/s) of the forearm.
We know that,
[tex]v=r\omega\\\\\omega=\dfrac{v}{r}\\\\\omega=\dfrac{34}{0.31}\\\\\omega=109.67\ rad/s[/tex]
So, the required angular velocity of the forearm is 109.67 rad/s.
A car starting at rest accelerates at 3m/seconds square How far has the car travelled after 4s?
Answer:
24 meters
Explanation:
Find the final velocity. 12m/s
d=[final-initial]/2×time
D=(6m/s)×4=24 m/s
Put the balloon near (BUT NOT TOUCHING) the wall. Leave about as much space as the width of your pinky finger between the balloon and wall. Does the balloon move, if so which way
Answer:
Move towards the wall.
Explanation:
When the balloon is kept near to the wall not touching the wall, there is a force of electrostatic attraction so that the balloon moves towards the wall and stick to it.
As there is some charge on the balloon and the wall is uncharged so the force is there due to which the balloon moves towards the wall.
A long, current-carrying solenoid with an air core has 1550 turns per meter of length and a radius of 0.0240 m. A coil of 200 turns is wrapped tightly around the outside of the solenoid, so it has virtually the same radius as the solenoid. What is the mutual inductance of this system
Answer:
[tex]M=7.05*10^{-4}[/tex]
Explanation:
From the question we are told that:
Coil one turns N_1=1550 Turns/m
Radius [tex]r=0.0240m[/tex]
Turns 2 [tex]N_2=200N[/tex]
Generally the equation for area is mathematically given by
[tex]A=\pi*r^2[/tex]
[tex]A=\pi*0.024^2[/tex]
[tex]A=\1.81*10^{-3} m^2[/tex]
Therefore
The mutual inductance of this system is
[tex]M=\mu*N_1*N_2*A[/tex]
[tex]M=(4 \pi*10^{-7})*1550*200*1.81*10^{-3}[/tex]
[tex]M=7.05*10^{-4}[/tex]
the product 17.10 ✕
Explanation:
pls write the full question
Nhiệt dung riêng của một chất là ?
Answer:
enchantment table language
Explanation:
The mass of a hot-air balloon and its occupants is 381 kg (excluding the hot air inside the balloon). The air outside the balloon has a pressure of 1.01 x 105 Pa and a density of 1.29 kg/m3. To lift off, the air inside the balloon is heated. The volume of the heated balloon is 480 m3. The pressure of the heated air remains the same as that of the outside air. To what temperature in kelvins must the air be heated so that the balloon just lifts off
Answer:
In order to lift off the ground, the air in the balloon must be heated to 710.26 K
Explanation:
Given the data in the question;
P = 1.01 × 10⁵ Pa
V = 480 m³
ρ = 1.29 kg/m³
M = 381 kg
we know that; R = 8.31 J/mol.K and the molecular mass of air μ = 29 × 10⁻³ kg/mol
let F represent the force acting upward.
Now in a condition where the hot air balloon is just about to take off;
F - Mg - m[tex]_g[/tex]g = 0
where M is the mass of the balloon and its occupants, m[tex]_g[/tex] is the mass of the hot gas inside the balloon.
the force acting upward F = Vρg
so
Vρg - Mg - m[tex]_g[/tex]g = 0
solve for m[tex]_g[/tex]
m[tex]_g[/tex] = ( Vρg - Mg ) / g
m[tex]_g[/tex] = Vρg/g - Mg/g
m[tex]_g[/tex] = ρV - M ------- let this be equation 1
Now, from the ideal gas law, PV = nRT
we know that number of moles n = m[tex]_g[/tex] / μ
where μ is the molecular mass of air
so
PV = (m[tex]_g[/tex]/μ)RT
solve for T
μPV = m[tex]_g[/tex]RT
T = μPV / m[tex]_g[/tex]R -------- let this be equation 2
from equation 1 and 2
T = μPV / (ρV - M)R
so we substitute in our values;
P = 1.01 × 10⁵ Pa
V = 480 m³
ρ = 1.29 kg/m³
M = 381 kg
we know that; R = 8.31 J/mol.K and the molecular mass of air μ = 29 × 10⁻³ kg/mol
T = [ (29 × 10⁻³) × (1.01 × 10⁵) × 480 ] / [ (( 1.29 × 480 ) - 381)8.31 ]
T = 1405920 / 1979.442
T = 710.26 K
Therefore, In order to lift off the ground, the air in the balloon must be heated to 710.26 K
The temperature required for the air to be heated is 710.26 K.
Given data:
The mass of a hot air-balloon is, m = 381 kg.
The pressure of air outside the balloon is, [tex]P = 1.01 \times 10^{5} \;\rm Pa[/tex].
The density of air is, [tex]\rho = 1.29 \;\rm kg/m^{3}[/tex].
The volume of heated balloon is, [tex]V = 480 \;\rm m^{3}[/tex].
The condition where the hot air balloon is just about to take off is as follows:
[tex]F-mg - m'g =0[/tex]
Here,
m' is the mass of hot gas inside the balloon and g is the gravitational acceleration and F is the force acting on the balloon in upward direction. And its value is,
[tex]F = V \times \rho \times g[/tex]
Solving as,
[tex](V \times \rho \times g)-mg - m'g =0\\\\ m'=(V \rho )-m[/tex]
Now, apply the ideal gas law as,
PV = nRT
here, R is the universal gas constant and n is the number of moles and its value is,
[tex]n=\dfrac{m'}{M}[/tex]
M is the molecular mass of gas. Solving as,
[tex]PV = \dfrac{m'}{M} \times R \times T\\\\\\T=\dfrac{P \times V\times M}{m'R}\\\\\\T=\dfrac{P \times V\times M}{(V \rho - m)R}[/tex]
Since, the standard value for the molecular mass of air is, [tex]M = 29 \times 10^{-3} \;\rm kg/mol[/tex]. Then solve for the temperature as,
[tex]T=\dfrac{(1.01 \times 10^{5}) \times 480\times 381}{(480 \times (1.29) - 381)8.31}\\\\\\T = 710.26 \;\rm K[/tex]
Thus, we can conclude that the temperature required for the air to be heated is 710.26 K.
Learn more about the ideal gas equation here:
https://brainly.com/question/18518493
A building is being knocked down with a wrecking ball, which is a big metal sphere that swings on a 15-m-long cable. You are (unwisely!) standing directly beneath the point from which the wrecking ball is hung when you notice that the ball has just been released and is swinging directly toward you. How much time do you have to move out of the way? answer in seconds.
Answer:
Time to move out of the way = 1.74 s
Explanation:
Time to move out of the way is one fourth of period = 6.95/4 = 1.74 seconds.
Time to move out of the way = 1.74 s
A possible means for making an airplane invisible to radar is to coat the plane with an antireflective polymer. If radar waves have a wavelength of 3.00 cm and the index of refraction of the polymer is n = 1.50, how thick would you make the coating?
Answer:
[tex]t=0.50cm[/tex]
Explanation:
From the question we are told that:
Wavelength [tex]\lamda=3c[/tex]m
Refraction Index [tex]n=1.50[/tex]
Generally the equation for Destructive interference for Normal incidence is mathematically given by
[tex]2nt=m(\frac{1}{2})\lambda[/tex]
Since Minimum Thickness occurs at
At [tex]m=0[/tex]
Therefore
[tex]t=\frac{\lambda}{2}[/tex]
[tex]t=\frac{3}{4(1.50)}[/tex]
[tex]t=0.50cm[/tex]
The patellar tendon attaches to the tibia at a 20 deg angle 3 cm from the axis of rotation at the knee. If the force generated in the patellar tendon is 400 N, what is the resulting angular acceleration, in rad/s2), if the lower leg and foot have a combined mass of 4.2kg and a given radius of gyration of 25 cm
Answer:
the resulting angular acceleration is 15.65 rad/s²
Explanation:
Given the data in the question;
force generated in the patellar tendon F = 400 N
patellar tendon attaches to the tibia at a 20° angle 3 cm( 0.03 m ) from the axis of rotation at the knee.
so Torque produced by the knee will be;
T = F × d⊥
T = 400 N × 0.03 m × sin( 20° )
T = 400 N × 0.03 m × 0.342
T = 4.104 N.m
Now, we determine the moment of inertia of the knee
I = mk²
given that; the lower leg and foot have a combined mass of 4.2kg and a given radius of gyration of 25 cm ( 0.25 m )
we substitute
I = 4.2 kg × ( 0.25 m )²
I = 4.2 kg × 0.0626 m²
I = 0.2625 kg.m²
So from the relation of Moment of inertia, Torque and angular acceleration;
T = I∝
we make angular acceleration ∝, subject of the formula
∝ = T / I
we substitute
∝ = 4.104 / 0.2625
∝ = 15.65 rad/s²
Therefore, the resulting angular acceleration is 15.65 rad/s²
A barge is hauled along a straight-line section of canal by two horses harnessed to tow ropes and walking along the tow paths on
either side of the canal. Each horse pulls with a force of 839 N at an angle of 15° with the centerline of the canal. Find the sum of these
two forces on the barge.
answer in ___kN
Answer:
1.621 kN
Explanation:
Since each horse pulls with a force of 839 N at an angle of 15° with the centerline of the canal, the horizontal component of the force due to the first horse along the canal is F= 839cos15° N and its vertical component is F' = 839sin15° N(it is positive since it is perpendicular to the centerline of the canal and points upwards).
The horizontal component of the force due to the second horse along the canal is f = 839cos15° N and its vertical component is f' = -839sin15° N (it is negative since it is perpendicular to the centerline of the canal and points downwards).
So, the resultant horizontal component of force R = F + f = 839cos15° N + 839cos15° N = 2(839cos15°) N = 2(839 × 0.9659) = 2 × 810.412 = 1620.82 N
So, the resultant vertical component of force R' = F' + f' = 839sin15° N + (-839sin15° N) = 839sin15° N - 839sin15° N = 0 N
The magnitude of the resultant force which is the sum of the two forces is R" = √(R² + R'²)
= √(R² + 0²) (since R' = 0)
= √R²
= R
= 1620.82 N
= 1.62082 kN
≅ 1.621 kN
So, the sum of these two forces on the barge is 1.621 kN
Place each description under the correct theory
Gravity is an attractive force.
Universal Law of Gravitation
General Theory of Relativity
Mass and distance affect force.
Time and space are absolute,
Time and space are relative.
Gravity is due to space-time curving.
Mass affects space-time curving.
Answer:
1) Law of Universal Gravitation Gravity is an attractive force
5) General relativity Gravity is due to the curvature of spacetime
Explanation:
In this exercise you are asked to relate the correct theory and its explanation
Theory Explanation
1) Law of Universal Gravitation Gravity is an attractive force
2) Law of universal gravitation Mass and distance affect force
3) Classical mechanics time and space are absolute
4) Special relativity Time and space are relative
5) General relativity Gravity is due to the curvature of
spacetime
6) General relativity Mass affects the curvature of space - time
Answer:
Explanation:
edge2022
The mass is released from the top of the incline and slides down the incline. The maximum velocity (taken the instant before the mass reaches the bottom of the incline) is 1.06 m/s. What is the kinetic energy at that time
Answer:
0.28 J
Explanation:
Let the mass of the object is 0.5 kg
The maximum velocity of the object is 1.06 m/s.
We need to find the kinetic energy at that time. It is given by :
[tex]K=\dfrac{1}{2}mv^2\\\\=\dfrac{1}{2}\times 0.5\times (1.06)^2\\\\K=0.28\ J[/tex]
So, the required kinetic energy is equal to 0.28 J.
An infinite plane lies in the yz-plane and it has a uniform surface charge density.
The electric field at a distance x from the plane
a.) decreases as 1/x^2
b.) increases linearly with x
c.) is undertermined
d.) decreases linearly with x
e.) is constant and does not depend on x
Answer:
So the correct answer is letter e)
Explanation:
The electric field of an infinite yz-plane with a uniform surface charge density (σ) is given by:
[tex]E=\frac{\sigma }{2\epsilon_{0}}[/tex]
Where ε₀ is the electric permitivity.
As we see, this electric field does not depend on distance, so the correct answer is letter e)
I hope it helps you!
Question 4 of 5
How can the Fitness Logs help you in this class?
O A. They can't; the Fitness Logs are only useful to your teacher.
B. They show your parents how much you're learning.
C. They let you keep track of your thoughts, feelings, and progress.
D. They help you evaluate yourself for your final grade.
SUBMIT
Answer:
C is the right answer
Explanation:
fitness logs is a great way to track your progress. You can easily look back and see how you have progressed over time. In addition, it can help you plan and prepare for future workouts, as well as identify patterns of what seems to work well for you and when you have the most success
hope it was useful for you
An object moves in a direction parallel to its length with a velocity that approaches the velocity of light. The length of this object, as measured by a stationary observer:________
a. approaches infinity.
b. approaches zero.
c. increases slightly.
d. does not change.
Answer:
b. approaches zero.
Explanation:
The phenomenon is known as length contraction.
Length contraction is a result of Einstein's special theory of relativity. This theory states that an observer in an inertial frame of reference will observe a decrease in the length of any moving object placed at another inertial frame of reference.
let the length of the train = L
Let the length observed when the train is in motion = L₀
Apply Einstein's special theory of relativity;
[tex]L_0 = L \times \sqrt{1 - \frac{v^2}{c^2} } \\\\where;\\\\v \ is \ the \ velocity \ of \ the \ train\\\\c \ is \ the \ speed \ of \ light\\\\[/tex]
from the equation above, when v = 0, the length observed is equal to the initial length of the train. (L₀ = L)
As the velocity of the train (v) approaches the speed of light (c), the length of the train observed (L₀) becomes smaller than the initial length of the train (L). (L₀ < L)
Eventually, when v equals c, we will have a square root of zero (0), and the length observed will become zero. (L₀ = 0)
Thus, the length of this object, as measured by a stationary observer approaches zero
The human eye can readily detect wavelengths from about 400 nm to 700 nm. Part A If white light illuminates a diffraction grating having 910 lines/mm , over what range of angles does the visible m
Answer:
The correct answer is "[tex]21.344^{\circ}[/tex]" and "[tex]39.56^{\circ}[/tex]".
Explanation:
According to the question,
Slit width,
[tex]d=\frac{1}{910 \ lines/mm}[/tex]
[tex]=\frac{1}{910\times 10^3}[/tex]
[tex]=1.099\times 10^{-6} \ m[/tex]
The condition far first order maxima will be:
⇒ [tex]d Sin \theta = 1 \lambda[/tex]
Now,
⇒ [tex]\Theta_{min} = Sin^{-1} (\frac{\lambda}{d} )[/tex]
[tex]=Sin^{-1} (\frac{400\times 10^{-9}}{1.099\times 10^{-6}} )[/tex]
[tex]=21.344^{\circ}[/tex]
⇒ [tex]\Theta_{max} = Sin^{-1} (\frac{\lambda}{d} )[/tex]
[tex]=Sin^{-1} (\frac{700\times 10^{-9}}{1.099\times 10^{-6}} )[/tex]
[tex]=39.56^{\circ}[/tex]
During a particular thunderstorm, the electric potential difference between a cloud and the ground is Vcloud - Vground = 4.20 108 V, with the cloud being at the higher potential. What is the change in an electron's electric potential energy when the electron moves from the ground to the cloud?
Answer:
The electric potential energy is 6.72 x 10^-11 J.
Explanation:
Potential difference, V = 4.2 x 10^8 V
charge of electron, q = - 1.6 x 10^-19 C
Let the potential energy is U.
U = q V
U = 1.6 x 10^-19 x 4.2 x 10^8
U = 6.72 x 10^-11 J
The elastic extensibility of a piece of string is .08. If the string is 100 cm long, how long will the string be when it is stretched to the point where it becomes plastic?
Answer:
The elastic extensibility of a piece of string is .08. If the string is 100 cm long, how long will the string be when it is stretched to the point where it becomes plastic? is your ansewer dont take tension
The string will be 108 cm long when it is stretched to the point where it becomes plastic.
What is elasticity?Elasticity in physics and materials science refers to a body's capacity to withstand a force that causes distortion and to recover its original dimensions once the force has been withdrawn.
When sufficient loads are applied, solid objects will deform; if the material is elastic, the object will return to its original size and shape after the weights have been removed. Unlike plasticity, which prevents this from happening and causes the item to stay deformed,
Given parameters:
The elastic extensibility of a piece of string is 0.08.
The string is 100 cm long.
Hence, it becomes plastic, after it is stretched up to = 100 × 0.08 cm = 8 cm. The string will be 108 cm long.
Learn more about elasticity here:
https://brainly.com/question/28790459
#SPJ5
In a large chemical factory, a feed pipe carries a liquid at a speed of 5.5 m/s. A pump pushes the liquid along at a gauge pressure of 140,000 Pa. The liquid travels upward 6.0 m and enters a tank at a gauge pressure of 2,000 Pa. The diameter of the pipe remains constant. At what speed does the liquid enter the tank
Answer:
v₂ = 15.24 m / s
Explanation:
This is an exercise in fluid mechanics
Let's write Bernoulli's equation, where the subscript 1 is for the factory pipe and the subscript 2 is for the tank.
P₁ + ½ ρ v₁² + ρ g y₁ = P₂ + ½ ρ v₂² + ρ g y₂
They indicate the pressure in the factory P₁ = 140000 Pa, the velocity
v₁ = 5.5 m / s and the initial height is zero y₁ = 0
the tank is at a pressure of P2 = 2000 Pa and a height of y₂ = 6.0 m
P₁ -P₂ + ρ g (y₁ -y₂) + ½ ρ v₁² = ½ ρ v₂²
let's calculate
140,000 - 2000 + ρ 9.8 (0- 6) + ½ ρ 5.5² = ½ ρ v₂²
138000 - ρ 58.8 + ρ 15.125 = ½ ρ v2²
v₂² = 2 (138000 /ρ - 58.8 + 15.125)
v₂ = [tex]\sqrt{\frac{276000}{\rho } - 43.675 }[/tex]
In the exercise they do not indicate what type of liquid is being used, suppose it is water with
ρ = 1000 kg / m³
v₂ = [tex]\sqrt{\frac{276000}{1000} - 43.675}[/tex]
v₂ = 15.24 m / s
A 12.0 g sample of gas occupies 19.2 L at STP. what is the of moles and molecular weight of this gas?
At STP, 1 mole of an ideal gas occupies a volume of about 22.4 L. So if n is the number of moles of this gas, then
n / (19.2 L) = (1 mole) / (22.4 L) ==> n = (19.2 L•mole) / (22.4 L) ≈ 0.857 mol
If the sample has a mass of 12.0 g, then its molecular weight is
(12.0 g) / n ≈ 14.0 g/mol
friction between two flat surfaces can be divided into two categories. what are the two most common kinds of friction?
Answer:
kinetic and static
Explanation:
hope it helps! ^w^
Do all substances conduct heat ?Why/ Why not ?
Answer:
no, all substances doesnot conduct heat
Answer:
No, all substances do not conduct heat easily because it depends on the nature of the substance. Some are good conductors of heat and some are bad. Therefore, it depends on their characteristics and their ability to conduct heat.
The bad conductors of heat are water, air, plastic, wood, etc.
Gold, Silver, Copper, Aluminium, Iron, etc. are good heat conductors as well as electrical conductors.
A 3.00-kg ball swings rapidly in a complete vertical circle of radius 2.00 m by a light string that is fixed at one end. The ball moves so fast that the string is always taut and perpendicular to the velocity of the ball. As the ball swings from its lowest point to its highest point Group of answer choices the work done on it by gravity is -118 J and the work done on it by the tension in the string is zero. the work done on it by gravity is -118 J and the work done on it by the tension in the string is 118 J. the work done on it by gravity and the work done on it by the tension in the string are both equal to -118 J. the work done on it by gravity is 118 J and the work done on it by the tension in the string is -118 J. the work done on it by gravity and the work done on it by the tension in the string are both equal to zero.
Answer:
The ball moves from lowest to highest point:
W = M g h = 3 * 9.8 * 4 = 118 J
This is work done "against" gravity so work done by gravity is -118 J
The tension of the string does no work because the tension does not
move thru any distance W = T * x = 0 because the length of the string is fixed.
Question 1 of 10
Which nucleus completes the following equation?
239UHe+?
A. 228 Th
B. 2220
c. 23. Pu
D. 78Th
SUBMIT
Answer:
Option D. ²²²₉₀Th
Explanation:
Let the unknown be ⁿₘZ. Thus, the equation becomes:
²²⁶₉₂U —> ⁴₂He + ⁿₘZ
Next, we shall determine n, m and Z. This can be obtained as follow:
For n:
226 = 4 + n
Collect like terms
226 – 4 = n
222 = n
n = 222
For m:
92 = 2 + m
Collect like terms
92 – 2 = m
90 = m
m = 90
For Z:
ⁿₘZ => ²²²₉₀Z => ²²²₉₀Th
Therefore, the complete equation becomes:
²²⁶₉₂U —> ⁴₂He + ⁿₘZ
²²⁶₉₂U —> ⁴₂He + ²²²₉₀Th
Thus, the unknown is ²²²₉₀Th