Answer:
The expected value is of 5 green balls.
Step-by-step explanation:
For each experiment, there are only two possible outcomes. Either it is a green ball, or it is not. Since there is replacement, the probability of a green ball being taken in an experiment is independent of any other experiments, which means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
Probability of exactly x successes on n repeated trials, with p probability.
The expected value of the binomial distribution is:
[tex]E(X) = np[/tex]
20 experiments
This means that [tex]n = 20[/tex]
There is equal probability of selecting the red, black, green, or blue ball.
This means that 1 in 4 are green, so [tex]p = \frac{1}{4} = 0.25[/tex]
What is the expected value of getting a green ball out of 20 experiments with replacement?
[tex]E(X) = np = 20*0.25 = 5[/tex]
The expected value is of 5 green balls.
The expected value of getting a green ball out of 20 experiments with replacement is 5.
What is a binomial distribution?The binomial probability distribution of the number of successes in a sequence of n independent experiments is the binomial distribution with parameters n and p.
As it is given that the probability of all the balls coming out of the bag is equal. Therefore, the probability of a green ball coming can be written as,
[tex]\text{Probability of Green Ball} = 0.25[/tex]
Also, we can write the probability of not getting a green ball can also be written as,
[tex]\rm Probability(\text{Not coming Green Ball}) = P(Red\ ball)+P(Black\ ball)+P(Blue\ ball)[/tex]
[tex]=0.25+0.25+0.25\\\\=0.75[/tex]
Now, as there are only two outcomes possible, therefore, the distribution of the probability is a binomial distribution. And we know that the expected value of a binomial distribution is given as,
[tex]\rm Expected\ Value, E(x) = np[/tex]
where n is the number of trials while p represents the probability.
Now, substituting the values, we will get the expected value,
[tex]\rm Expected\ Value, E(Green\ ball) = 20 \times 0.25 = 5[/tex]
Hence, the expected value of getting a green ball out of 20 experiments with replacement is 5.
Learn more about Binomial Distribution:
https://brainly.com/question/12734585
Which of these tables represents a function
Answer:
W and X
Y and Z arent functions because some of their domains (x value) have different inputs. Each domain can only have one input.
In the following diagram HI || JK.
HELP MATES PLEASE WILL GIVE 15 POINTS
What is the measure of Zx?
Angles are not necessarily drawn to scale.
67°
H
K
46°
2°
I
A
Answer:
m∠ x = 67
Step-by-step explanation:
∠AJK = ∠AHI = 67 Corresponding Angles
180 - 67 - 46 = x
x = 67
Triangle Sum Theory - the sum of all angles in a triangle = 180
Also, when you see parallel lines look for Corresponding,
Alternate Interior or Same side Interiors.
Domain and function
Function or not a function
Answer:
Top left: not a function
Top right: not a function
Bottom left: function
Bottom right: not a function
Step-by-step explanation:
A function is a relationship where each x value has it's own y value ( note that domain = x values and range = y values)
For the one on the top left.
S and n have more than one y value.
Because s and n have more than one y value the relation is not a function
For the one of the top right.
There x value "c" has multiple y values therefore the relation is not a function
For the one on the bottom left
Each x value has it's own y value therefore it is a function ( note that the y values can repeat. It's only the x values that can't repeat. )
For the one on the bottom right
The x value "-5" has multiple y values therefore the relation is not a function
help please i don't know how to do this
I need this to pass summer school
Answer: The answer is b
The graph shows a line of best fit for data collected on the average temperature, in degrees Fahrenheit, during a month and the
number of inches of rainfall during that month.
у
90
801
70
Average Temp
20
10
Inches of Rain
The equation for the line of best fit is y=-3.32x +97.05.
Based on the line of best fit, what would be the prediction for the average temperature during a month with 13.25 inches of rainfall?
Answer:
53.06°F
Step-by-step explanation:
Given the equation of best fit :
y=-3.32x +97.05.
The average temperature for a month with 13.25 inches of Rainfall
Amount of Rainfall = x
Average temperature = y
To make our prediction ; put x = 13.25 in the equation and solve for y ;
y = -3.32x +97.05
Put x = 13.25
y = -3.32(13.25) +97.05
y = - 43.99 + 97.05
y = 53.06°F
The time to complete an exam in a statistics class is a normal random variable with a mean of 50 minutes and a standard deviation of 10 minutes. What is the probability, given a class size of 30 students, the average time to complete the test is less than 48.5 minutes
Answer:
0.2061 = 20.61% probability, given a class size of 30 students, the average time to complete the test is less than 48.5 minutes
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
Mean of 50 minutes and a standard deviation of 10 minutes.
This means that [tex]\mu = 50, \sigma = 10[/tex]
Class size of 30 students
This means that [tex]n = 30, s = \frac{10}{\sqrt{30}}[/tex]
What is the probability, given a class size of 30 students, the average time to complete the test is less than 48.5 minutes.
This is the p-value of Z when X = 48.5. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{48.5 - 50}{\frac{10}{\sqrt{30}}}[/tex]
[tex]Z = -0.82[/tex]
[tex]Z = -0.82[/tex] has a p-value of 0.2061
0.2061 = 20.61% probability, given a class size of 30 students, the average time to complete the test is less than 48.5 minutes
Using the table above. Which statement below is true?
9514 1404 393
Answer:
(d) 45% play basketball; 55% play soccer
Step-by-step explanation:
You just need a little number sense here. The total number who play sports is the number in the lower right of the table: 120.
The fraction who are males playing basketball is 42/120. Comparing that to 45/100, we see it cannot be 45%. (a) is false.
The fraction who are males is 72/120, more than half, so cannot be 40%. (b) is false.
Looking at males who play basketball, we have already determined the fraction 42/120 is well below 65%. (c) is false.
The fraction who play basketball is 54/120 = 45%. (d) is true.
I’m struggling with this question someone help ASAP plz
Answer:
The correct answer is:
30 = 10 + 3(h - 2)30 = 10 + 3h - 6
26 = 3h
h = 8.67
Step-by-step explanation:
We're gonna calculate by our part the hours a new costumer can rent a bike and pay a total of $30, using the original function:
f (h) = 10 + 3(h - 2)Where:
f (h) = Total cost. h = the number of hours.We know The total money spent must be $30, by this reason, the function change to:
30 = 10 + 3(h - 2)Now, we must clear the h variable, by this reason, we multiply 3 by h and 2:
30 = 10 + 3*h - 3*2 30 = 10 + 3h - 6We pass the 10 and the -6 to the left side of the equality:
30 - 10 + 6 = 3h (Remember to change the signs when you do this step) 26 = 3hFinally, we pass the 3 to the left side of the equality:
26 / 3 = h (the 3 pass to divide because is multiplying the x)
8.666666666667 = hIf we just use two decimals, the number of hours is:
h = 8.67How the third option is the one that shows this calculation and result, that is the correct answer.
convert 6.28km into metres
Answer:
8275382+9162672(7263382) 615-41+8162(71818)
Answer:
6280m
Step-by-step explanation:
6.28×1000m
=6280m
Cenntura was having fun playing poker she needed the next two cards out to be heart so she could make a flesh five cards of the same suit there are 10 cards left on the deck and three our hearts what is the probability that two cards doubt to Seterra without replacement will both be hearts answer choices are in percentage for format rounded to the nearest whole number
Answer:
7% probability that the next 2 cards are hearts.
Step-by-step explanation:
Cards are chosen without replacement, which means that the hypergeometric distribution is used to solve this question.
Hypergeometric distribution:
The probability of x successes is given by the following formula:
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}*C_{N-k,n-x}}{C_{N,n}}[/tex]
In which:
x is the number of successes.
N is the size of the population.
n is the size of the sample.
k is the total number of desired outcomes.
Combinations formula:
[tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
In this question:
10 cards, which means that [tex]N = 10[/tex]
3 are hearts, which means that [tex]k = 3[/tex]
Probability that the next 2 cards are hearts:
This is P(X = 2) when n = 2. So
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}*C_{N-k,n-x}}{C_{N,n}}[/tex]
[tex]P(X = 2) = h(2,10,2,3) = \frac{C_{3,2}*C_{7,0}}{C_{10,2}} = 0.0667[/tex]
0.0667*100% = 6.67%
Rounded to the nearest whole number, 7% probability that the next 2 cards are hearts.
angle P and angle Q are complementary. The measure of angle Q is 33.5°. What is the measure of angle P?
Answer:
56.5 degrees
Step-by-step explanation:
Because complementary angles are when their sum is 90, you get the equation:
P + Q = 90
Since Q is 33.5,
P + 33.5 = 90
Subtracting 33.5 from both sides,
P = 56.5
Keisha borrowed $400 from a bank for 5 years and was charged simple interest. The total interest that she paid on the loan was $120. As a percentage, what was the annual interest rate of her loan?
Answer:
6%
Step-by-step explanation:
Answer:
you need to divide 120 by 5
Step-by-step explanation:
the percentage is 16.6 and it goes on that is for 1 year
Add. Please show work too.
Answer:
-36m^3-21n^3+85mn^2+36m^2n
Step-by-step explanation:
That's what the calculator says:).
How many orders are possible to view 6 videos from a stack of 8 videos?
Answer:
28
Step-by-step explanation:
We know that ,
n C r = n! / ( n - r)! r! 8! / ( 8 - 6)! 6!8! / 2! × 6! 7 × 8 / 2 × 1 28What is the solution to the following inequality X/-2 > 5
Answer:
x < -10
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
Brackets Parenthesis Exponents Multiplication Division Addition Subtraction Left to RightEquality Properties
Multiplication Property of Equality Division Property of Equality Addition Property of Equality Subtraction Property of EqualityStep-by-step explanation:
Step 1: Define
Identify
x/-2 > 5
Step 2: Solve for x
[Multiplication Property of Equality] Multiply -2 on both sides: x < -10[tex]\large {\mathsf {\red{\underbrace {\overbrace{\blue{ {\pink}{Answєr}}}}}}} \: [/tex]
x > - 10
[tex] \large \mathtt \green{Step-by-step \: explanation : }[/tex]
[tex] \small \sf \frac{x}{ - 2} > 5 \\ [/tex]
Solve for x
[tex] \small \sf \frac{x}{ - 2} > 5 \\ [/tex]
common denominator is 2
[tex]\small \sf ➪ \frac{2x}{ - 2} >2 \times 5 \\ [/tex]
[tex]\small \sf ➪ \frac{ \cancel{2}x}{ - \cancel{ 2}} >2 \times 5 \\ [/tex]
➪ - x > 2 × 5
➪ - x > 10
multiply by - 1
➪ - x × - 1 > 10 × - 1
x > - 10
Which statement best describes why the value of the car is a function of the number of years since it was purchased?
A. Each car value, y, is associated with exactly one time, t.
B. Each time, t, is associated with exactly one car value, y.
C. The rate at which the car decreases in value is not constant.
D. There is no time, t, at which the value of the car is 0.
Answer:
B
Step-by-step explanation:
The definition of a function is that any input will only have one output. Here, the input is the number of years, and the output is the value of the car. We know this because the question is asking why the value of the car is a function of the number of years. Therefore, based on the number of years, the value of the car is given.
Going back to the definition of a function, we can apply this year to say that any number of years will only have one car value. Another way to say this is that each time is associated with exactly one car value.
Eight less than four times a number is less than 56. What are the possible values of that number?
X> 12
x < 12
ООО
x < 16
O x> 16
Answer:
x < 16
Step-by-step explanation:
Let the number be x
Four time the number = 4x
Eight less than four times the number = 4x - 8
Eight less than four times the number is less than 56,
that is , 4x - 8 < 56
4x - 8 + 8 < 56 + 8 [ adding both sides by 8 ]
4x + 0 < 64
4x < 64 [ divide both sides by 4 ]
x < 16
divide 18/7 by 8/26. Pls give the correct ans
Answer:
8.35714285714
Step-by-step explanation:
Hope it help you
This is the graph of y = -x2 - 2x + 8.
What is the range of this function?
Hi there!
[tex]\large\boxed{(-\infty, 9)}[/tex]
We can find the range using completing the square:
y = -x² - 2x + 8
Factor out a -1:
y = -(x² + 2x) + 8
Use the first two terms. Take the second term's coefficient, divide by 2, and square:
y = -(x² + 2x + 1) + 8
Remember to add by 1 because we cannot randomly add an additional number into the equation:
y = -(x² + 2x + 1) + 8 + 1
Simplify:
y = -(x + 1)² + 9
Since the graph opens downward (negative coefficient), the range is (-∞, 9)
A rectangle is four times as long as it is wide. If it has an area of 36 square inches, what are its dimension?
a. 6 by 6
c4 by 9
b. 3 by 12
d. 4 and 8
Answer:
C
Step-by-step explanation:
here in the question it is given that it is four times as long as wide and its area is 36 square inches
now as we onow 3×4 =12
therefore here the side becomes four time
now area of rectangle is equal to 12 ×3 =36
For the following inequality, find a solution for the variable. Show all of your work and use complete sentences to explain the solving process that you used to find a solution for the inequality. Be sure to include at least two terms from the word bank. 1/4 x ≤-3
Answer:
x ≤ -12
Step-by-step explanation:
To get x by itself you simply multiply both sides by 4, since 1/4 * 4 = 1.
Which of the following is a true statement?
Answer:
The last choice: 68/5 - 22/5 = 9 1/5
Step-by-step explanation:
Solve each problem:
9 3/7 = 10 3/7
The fractions are the same so look at the whole numbers.
Does 9 equal 10? No, it doesn't so this is a false statement.
332/4 = 1/83
Simplify 332/4:
332/4 = 83/1
83 does not equal 1/83 so this is a false statement.
37/5 = 5 2/5
Convert the improper fraction into a mixed number:
7 2/5 = 5 2/5
These numbers do not equal each other so this is a false.
68/5 - 22/5 = 9 1/5
Subtract the numerators on the left side of the equation:
46/5 = 9 1/5
Convert the improper fraction into a mixed number:
9 1/5 = 9 1/5
These numbers equal each other so this is a true statement!
I want my answer please help
Answer:
This is pretty simple
Step-by-step explanation:
So the only thing you need to know about negatives and positives is that if your multiplying or dividing a number with 1 negative in the expreession/equation The answer will always result in a negative. If its 2 negatives its always positive. Thats all you need to know and then just solve it from there.
Answer:
See explanation and picture below.
Step-by-step explanation:
In both multiplication and division of 2 numbers, different signs give you negative and equal signs give you positive.
In other words, positive & positive or negative and negative give you a positive answer.
Negative and positive or positive and negative give you negative answer.
Item 16
What is the area of the triangle in the coordinate plane?
36 units²
38 units²
66 units²
72 units²
What is this expression in simplified form?
Answer:
16 √(3)
and then the decimal form if needed is: 27.7128129211
Step-by-step explanation:
NEED ANSWER WITH WORK PLEASEEEEE QUICK !!
Answer:
Step-by-step explanation:
the equation has the form of y = mx + b (slope intercept form)
where m = - 1/5
start with the point-slope form and work it to the slope-intercept form
y-y1 = m(x-x1) (point-slope form)
y-5 = -1/5(x-(-5))
y-5 = -1/5(x+5)
y-5 = -1/5(x) + -1/5(5)
y-5 = -x/5 + - 5/5
y-5 = -[tex]\frac{1}{5}[/tex] X -1
y = -[tex]\frac{1}{5}[/tex] X - 1 +5
y = -[tex]\frac{1}{5}[/tex] X +4
there you go :)
Find the total amount that must be repaid on the following note described.
$8,593 borrowed at 15.5% simple interest
What is the total amount to be repaid 3 years, 125 days later? (Round your answer to the nearest cent.)
Answer:
simple interest=principal x rate x time÷100
amount borrowed=$8593
125days to year
365 days=1 year
125=125/365x1
0.3424657534246575year
in all there is 3+0.3424657534246575=3.3424657534246575years
I=$8593 x 15.5 x 3.3424657534246575÷100
I= $4451.8802739726026941125
total amount to be repaid=amount borrowed+interest
$8593+$ 4451.8802739726026941125
$13044.8802739726026941125
rounded to the nearest cent=$13045.00
Last year Nancy weighted 37( 5)/(8) pounds. This year she weighed 42.7 pounds. How much did she gain?
Answer:
22.7 pounds
Step-by-step explanation:
Simply just subtract 42.7 with 37 (5/8) to get the answer. If done correctly, you should get 22.7 pounds.
So, the final answer is 22.7 pounds.
Hope this helped!
Life Expectancies In a study of the life expectancy of people in a certain geographic region, the mean age at death was years and the standard deviation was years. If a sample of people from this region is selected, find the probability that the mean life expectancy will be less than years. Round intermediate -value calculations to decimal places and round the final answer to at least decimal places.
Answer:
The probability that the mean life expectancy of the sample is less than X years is the p-value of [tex]Z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex], in which [tex]\mu[/tex] is the mean life expectancy, [tex]\sigma[/tex] is the standard deviation and n is the size of the sample.
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
We have:
Mean [tex]\mu[/tex], standard deviation [tex]\sigma[/tex].
Sample of size n:
This means that the z-score is now, by the Central Limit Theorem:
[tex]Z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
Find the probability that the mean life expectancy will be less than years.
The probability that the mean life expectancy of the sample is less than X years is the p-value of [tex]Z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex], in which [tex]\mu[/tex] is the mean life expectancy, [tex]\sigma[/tex] is the standard deviation and n is the size of the sample.