==================================================
Explanation:
Dividing the side lengths, the scale factor is 6/3 = 2. This means the larger figure has a side length twice as long compared to its smaller counterpart.
How can we use this to figure out how the areas are connected? By simply squaring the scale factor to get 2^2 = 2*2 = 4, then we divide the larger area over 4 to get 24/4 = 6.
The longer side is 2 times longer
The larger area is 4 times larger
--------------------
Let's say we had a 3 by 3 square. It's area would be 9.
Also, let's say we had a 6 by 6 square. It's area is 36.
Notice the ratio of areas is 36/9 = 4, so the larger square is 4 times larger than the smaller. This 4 matches with what we got earlier.
----------------------
Another example:
square A is 7 by 7 with area 49
square B is 21 by 21 with area 441
ratio of areas is 441/49 = 9, which is exactly equal to 3^2, and the 3 comes from the ratio of the sides 21/7 = 3.
------------------------
So in short, you find the linear scale factor by dividing the sides. Then you square the result to get the area scale factor, which you use to find the smaller area.
linear scale factor = (new side)/(old side)
area scale factor = (linear scale factor)^2
smaller area = (larger area)/(area scale factor)
ASAP HELP WILL MARK BRAINLIEST
Answer:
c(x)=(3/4)^x
(3/4)^-2= 16/9
(3/4)^-1 =4/3
(3/4)^0=1
(3/4)^1 = 3/4
(3/4)^2= 9/16
5(y–3.8)=4.7(y–4) help help
Answer:
y = 2/3 or 0.667Step-by-step explanation:
5(y–3.8)=4.7(y–4)
Expand the terms in the bracket
That's
5y - 19 = 4.7y - 18.8
Group like terms
5y - 4.7y = 19 - 18.8
0.3y = 0.2
Divide both sides by 0.3
We have the final answer as
y = 2/3 or 0.667Hope this helps you
A certain vector in the xy plane has an x component of 4 m and a y component of 10 m. It is then rotated in the xy plane so its x component is doubled. Its new y component is about:
Answer:
New length of component y' = 7.2 m (Approx)
Step-by-step explanation:
Given:
Length of component x = 4 m
Length of component y = 10 m
New length of component x' = 8 m
Find:
New length of component y' = ?
Computation:
Length vector of rotation = √x² + y²
Length vector of rotation = √4² + 10²
Length vector of rotation = √16 + 100
Length vector of rotation = √116
Length vector of rotation = √x'² + y'²
√116 = √x'² + y'²
116 = x'² + y'²
116 = 8² + y'²
New length of component y' = 7.2 m (Approx)
determine the coordinator of the point
of intersection of lines
3x-2y=13 and 2y+x+1=0
Answer:
(3,-2)
Step-by-step explanation:
Given equations of line
3x-2y=13
2y+x+1=0
=> x = -1 -2y
Point of intersection will coordinates where both equation have same value of (x,y)
top get that we have to solve the both equations by using method of substitution of simultaneous equation.
using this value of x in 3x-2y=13, we have
3(-1-2y) -2y = 13
=> -3 -6y-2y = 13
=> -8y = 13+3 = 16
=> y = 16/-8 = -2
x = -1 - 2y = -1 -2(-2) = -1+4= 3
Thus, point of intersection of line is (3,-2)
PLEASE HELP ME WITH THIS QUESTION
Answer:
y-k
x-h
Step-by-step explanation:
Given E &D, F would be at (x, k).
That means E to F would be y-k.
And F to D would be x-h.
I assume you don’t need to find E to D, since that’s just r. (You could use the Distance Formula or Pythagoreans theorem to come up with and equation, but it wouldn‘t be one of those listed.)
3.85∙47.3+52.7∙3.85 PLSSSSS HELP
Answer:
385
Step-by-step explanation:
The local bowling alley pays you
$7.25 per hour to manage the desk.
Last week you worked 16 hours.
What is your straight-time pay?
Answer:
my straight time payment will be $116 for last week
Step-by-step explanation:
The local bowling alley pays
$7.25 per hour to manage the desk.
If worked 16 hours, my straight time payment will be
Rate= $7.25 per hour
Hour worked= 16 hours
my straight time payment = rate*hour worked
my straight time payment = 7.25*16
my straight time payment = 166.00
my straight time payment will be $116
Which relation is a function?
Answer:
The second graph is a function.
Step-by-step explanation:
This is the only one that passes the vertical line test.
(If there exits a vertical line which passes through more than one point, then the relation is NOT a function).
The dance team is selling headbands to raise
money for dance team jackets. They need
to sell 1,260 headbands. The headbands must
be divided equally among the three coaches.
Each coach is in charge of 10 dancers. If all
the headbands must be sold, how many
headbands will each dancer on the team
need to sell?
Answer:
42 headbands per dancer
Step-by-step explanation:
Selling 1260 headband
Divide by the three coaches
1260/3
420 per coach
Divide by each dancer under a coach
420/10 = 42
Each dancer must sell 42 headbands
Calculate the derivative of the function. Then find the value of the derivative as specified:
f(x) = 5x + 9; f "(2)
A) f "(x) 0,f , (2)-0
B) f , (x)-9; f , (2) = 9
C)f"(x) = 5; f "(2) = 5
D) f '(x) 5x; f '(2) 10
The correct question is;
Calculate the derivative of the function. Then find the value of the derivative as specified:
f(x) = 5x + 9; f '(2)
A) f'(x) = 0; f'(2) = 0
B) f'(x) = 9; f '(2) = 9
C)f'(x) = 5; f'(2) = 5
D) f '(x) = 5x; f '(2) = 10
Answer:
Option C: f'(x) = 5 and f '(2) = 5
Step-by-step explanation:
We want to find the derivative of f(x) = 5x + 9.
Now, the derivative with respect to x will be;
f'(x) = 5
Now,we also want to find out f'(2)
This means we are to put 2 for x in the derivative function.
In the derivative function, we don't have x as we have just 5.
Thus,f'(2) = 5
To which set of numbers does the number sqr rt-16 belong? Select all that apply
Answer:
The square root of -16 is an imaginary number and a complex number. Sqrt(-16)=4i. We use the i to indicate that the number is imaginary since there is no number that can be multiplied by itself to get a negative number (a negative times a negative is a positive, and a positive times a positive is also a positive). So the use of i tells you immediately that it's an imaginary number. You can tell the number is complex because it has both a real and an imaginary part and could be written in the form a+bi, where a is a real number and bi is an imaginary number. In this specific case, the real part (a) is 0 and the imaginary part (bi) is 4i.
Step-by-step explanation:
Write the null and alternative hypotheses you would use to answer this question. Are Americans getting fatter? Researchers interested in this question take a random sample of 500 people and record an average weight of 190 pounds. Ten years ago, the average weight was 185 pounds.
Answer:
H0: u = 185 against Ha: u > 185
or
H0: u ≤ 185 against Ha: u > 185
Step-by-step explanation:
The null and alternative hypotheses for this experiment would be
H0: u = 185 against Ha: u > 185
or
H0: u ≤ 185 against Ha: u > 185
This is a one tailed test .
If the results are such that we reject the null hypothesis and accept the alternative hypothesis it means that the Americans are getting fatter as the mean weight is increasing day by day.
The null hypothesis deals with all the values equal to or less than 185 pounds and the alternative with all the values greater than 185 pounds.
Use the graph of f to estimate the local maximum and local minimum. Local maximum: (0,1); local minimum: three pi over two, negative 1 and negative pi, negative 1 Local maximum: (0,0) and approx (0,1); local minimum: negative three pi over two, negative 1 Local maximum: (0,0); local minimum: three pi over two, negative 1 Local maximum: (0,1); local minimum: approx. (0,0) and three pi over two, negative 1
Answer:
The answer is A.
Step-by-step explanation:
Local maximums are whenever the graph reaches it's highest y value.
Local minimums are whenever the graph reaches it's lowest y value.
From the graph, we can see that the maximum y-value the graph reaches is y=1. And this happens when x=0.
This only happens once (from the graph shown). Thus, the local maximum would be:
[tex](0,1)[/tex]
The minimum values we can see from the graph is at y=-1. This happens twice from the graph, once at -π and again at 3π/2.
Thus, the local minimums are:
[tex](-\pi,-1), (3\pi/2,-1)[/tex]
These two triangles are congruent by the Hypotenuse-Leg Theorem.
Answer:
[tex] y = - 2 [/tex]
Step-by-step explanation:
Given that the 2 triangles are congruent based on the Hypotenuse-leg theorem, this implies that:
[tex] x - y = x + 2 [/tex] , and [tex] 2x - y = 4x + 2y [/tex]
Using the expression, [tex] x - y = x + 2 [/tex], solve for y:
[tex] x - y - x = x + 2 - x [/tex]
[tex] - y = 2 [/tex]
[tex] y = - 2 [/tex]
Find the reciprocal of the sum of the reciprocals of (1)/(-5) and -(1)/(6)
Answer:
-11
Step-by-step explanation:
Write out the original fractions: [tex]\frac{1}{-5} and \frac{-1}{6}[/tex] Flip the fractions around to get the reciprocal: [tex]\frac{-5}{1} + \frac{6}{-1}[/tex] Simplify: -5 and -6Add together: -5 + -6 = -11Find the missing side or angle.
Round to the nearest tenth.
Answer:
65.8
Step-by-step explanation:
Use the sin formula
100/sin (28) = x/ sin (18)
(sin (18) (100))/ sin (28) = x
x = 65.8223
x = 65.8
Answer:
65.8
Step-by-step explanation:
Accellus Correct
Suppose x varies directly with the square root of y and inversely with the cube root of z. What equation models this combined variation?
Answer:
[tex]\huge\boxed{x = k \frac{\sqrt{y} }{\sqrt[3]{z} }}[/tex]
Step-by-step explanation:
Given that:
1) x ∝ √y
2) x ∝ [tex]\frac{1}{\sqrt[3]{z} }[/tex]
Combining the proportionality
=> x ∝ [tex]\frac{\sqrt{y} }{\sqrt[3]{z} }[/tex]
=> [tex]x = k \frac{\sqrt{y} }{\sqrt[3]{z} }[/tex]
Where k is the constant of proportionality.
What fraction of a pound is an ounce?
Answer:
1/16
Step-by-step explanation:
there are 16 ounces in a pound
Answer:
1/16 pounds
Step-by-step explanation:
At the beginning of March, a store bought a fancy watch at a cost of $250 and marked it up 20%. At the end of the month, the fancy watch had not sold, so the store marked it down 10%. What was the discounted price?
Answer:
$270
Step-by-step explanation:
Price after markup was 1.20($250) = $300
Price after discounting: (1.00 - 0.10)($300) = $270
in the diagram,QOS and ROU are straight lines.OT is the bisector of angle UOS. Angle POQ and angle QOR are complementary angles. Find the values of x and y.pleaseeee answer sooonnn
Answer:
x=50° and y=45°
Step-by-step explanation:
x=QU(90°)-QP(40°)
x=50°
y=SU(90°)/2
y=45°
A special mixed-nut blend at a store cost $1.35 per lb, and in 2010 the blend cost $1.83 per lb. Let y represent the cost of a pound of the mixed-nut blend x years after 2005. Use a linear equation model to estimate the cost of a pound of the mixed-nut blend in 2007.
Answer:
y = $1.542 per lb
Step-by-step explanation:
given data
mixed-nut blend store cost 2005 = $1.35 per lb
blend cost in 2010 = $1.83 per lb
solution
we consider here y = cost of a pound
and x year = after 2005
we will use here linear equation model
so
[tex]\frac{y - 1.35}{1.83-1.35} = \frac{x-10}{5 - 0}[/tex] .........................1
solve it we get
5y - 6.75 = .48 x
so
at 2007 year here x wil be 2
so
[tex]y = \frac{0.48 \times 2 + 6.75}{5}[/tex]
solve it we get
y = $1.542 per lb
Identify which equations have one solution, infinitely many solutions, or no solution. No solution: One solution: Infinitely solution:
Answer:
Top left: no
Top middle: one
Top right: no
Bottom left: infinite
Bottom middle: one
Bottom right: one
Step-by-step explanation:
Top left: no
Top middle: one
Top right: no
Bottom left: infinite
Bottom middle: one
Bottom right: one
(x−1)(x−7)=0 PLEASE HELP
Answer:
1, 7
Step-by-step explanation:
Because the product is 0, either (x-1) or (x-7) is equal to 0. That means that x = 1, or 7
convert 407 in base 8 to decimal
[tex]4\cdot8^2+0\cdot8^1+7\cdot8^0=256+7=263[/tex]
[tex]407_8=263_{10}[/tex]
A customer can pay GH➣900.00 per month on a mortgage payment.
Interest rate is 12% annually compounded continuously, and mortgage
terms is 15 years. Determine the maximum amount the customer can pay within
the period.
Answer:
$74,748.11
Step-by-step explanation:
In order to make use of the amortization formula, we need to find the equivalent monthly interest rate.
When 12% interest is compounded continuously, the annual multiplier is ...
e^0.12 ≈ 1.127497
The equivalent multiplier when the interest is compounded monthly is the 12th root of this,
(e^0.12)^(1/12) = e^0.01 ≈ 1.0100502 = 1 + r
___
The amortization formula tells us that monthly payment amount A will pay off principal P in n months:
P = A(1 -(1 +r)^-n)/r = $900(1 -1.0100502^-180)/0.0100502
P = $74,748.11
The customer can pay off a 12% loan of $74,748.11 at the rate of $900 per month for 15 years.
4/2÷4/7? plz help me
Answer:
2
Step-by-step explanation:
4/2÷4/7
= 4/2 × 7/4
= 28/14
= 2
What are the solutions to the system of equations? {y=2x2−8x+5y=x−2 (3.5, 0.5) and (1, −1) (7, 5) and (0.5, −1.5) (3.5, 1.5) and (1, −1) (3.5, 1.5) and (−1, −3)
Answer:
[tex](1,-1)[/tex] and [tex](3.5,1.5)[/tex]
Step-by-step explanation:
Given
[tex]y = 2x^2 - 8x+5[/tex]
[tex]y = x - 2[/tex]
Required
Determine the solution
Substitute x - 2 for y in [tex]y = 2x^2 - 8x+5[/tex]
[tex]x - 2 = 2x^2 - 8x+5[/tex]
Collect like terms
[tex]0 = 2x^2 - 8x - x + 5 + 2[/tex]
[tex]0 = 2x^2 - 9x + 7[/tex]
Expand the expression
[tex]0 = 2x^2 - 7x - 2x+ 7[/tex]
Factorize
[tex]0 = x(2x - 7) -1(2x - 7)[/tex]
[tex]0 = (x-1)(2x - 7)[/tex]
Split the expression
[tex]x - 1 = 0[/tex] or [tex]2x - 7 = 0[/tex]
Solve for x in both cases
[tex]x = 1[/tex] or [tex]2x = 7[/tex]
[tex]x = 1[/tex] or [tex]2x/2 = 7/2[/tex]
[tex]x = 1[/tex] or [tex]x = 3.5[/tex]
Recall that
[tex]y = x - 2[/tex]
When [tex]x = 1[/tex]
[tex]y = 1 -2[/tex]
[tex]y = -1[/tex]
When [tex]x = 3.5[/tex]
[tex]y = 3.5 - 2[/tex]
[tex]y = 1.5[/tex]
Hence, the solution is;
[tex](1,-1)[/tex] and [tex](3.5,1.5)[/tex]
The head of a computer science department is interested in estimating the proportion of students entering the department who will choose the new computer engineering option. Suppose there is not information about the proportion of students who might choose the option. What size sample should the department head take if he wants to be 95% confident that the estimate is within 0.10 of the true proportion
Answer:
96
Step-by-step explanation:
From the given information:
At 95% Confidence interval level,Level of significance [tex]\alpha[/tex] 0.05, the value of Z from the standard normal tables = 1.96
Margin of Error = 0.10
Let assume that the estimated proportion = 0.5
therefore; the sample size n can be determined by using the formula: [tex]n =(\dfrac{Z}{E})^2 \times p\times (1-p)[/tex]
[tex]n =(\dfrac{1.96}{0.1})^2 \times 0.5\times (1-0.5)[/tex]
[tex]n =(19.6)^2 \times 0.5\times (0.5)[/tex]
n = 96.04
n [tex]\approx[/tex] 96
What is 4/5 to the 5th power
in the diagram, POS,QOT and UOR are straight lines. Find the value of y.
Answer:
y = 15°
Step-by-step explanation:
Since ∠QOR and ∠UOT are vertical, they are congruent so ∠UOT = 5y. Since POS is a straight line (which has a measure of 180°) and ∠POS = ∠POU + ∠UOT + ∠TOS, we can write:
5y + 5y + 2y = 180
12y = 180
y = 15°