Answer:
B
Explanation:
because it is a trigonal planar compound
Three bonding pairs around a central atom results in a trigonal planar compound. Option B is correct.
In a trigonal planar arrangement, the central atom is surrounded by three bonding pairs of electrons, forming a flat, triangular shape. The bond angles between the bonding pairs are approximately 120 degrees.
This molecular geometry is observed when a molecule has a central atom with three bonded pairs and no lone pairs. Examples of compounds with trigonal planar geometry include boron trifluoride (BF₃) as well as formaldehyde (H₂CO).
The other options are not correct for a molecule with three bonding pairs;
Octahedral refers to a molecular geometry with six bonding pairs around a central atom.
Tetrahedral corresponds to a molecular geometry with four bonding pairs around a central atom.
Linear represents a molecular geometry with two bonding pairs around a central atom.
Hence, B. is the correct option.
To know more about bonding pairs here
https://brainly.com/question/32421783
#SPJ2
A functional group introduces heteroatoms into a carbon chain to increase
polarity.
chain length.
molecular mass.
reactivity.
Answer:
reactivaty
Explanation:
here you go for the answer
What is the Equation of Reduction in Mg+F2 gives MgF2, I WILL MARK YOU AS BRAINLIST
Answer:
Mg+F2= Mgf2
Explanation:
F 2 is an oxidizing agent, Mg is a reducing agent. ; Pale-yellow to greenish gas with a pungent, irritating odor.
20. Stoichiometry is based on
A. molecular weight.
B. temperature.
C. conservation of matter.
D. pressure.
Answer:
The correct option is (c)
Answer:
the law of conservation of mass
Which process refers to the dissociation of Naci into Na+ and Ci+?
Answer:
dissolution is the process
What functional group is found in an alcohol?
A. Ester
B. Amino
C. Carbonyl
D. Hydroxyl
Answer:
an alcohol is a Hydroxyl group due to the OH~ that is associated with it's molecules
The functional group found in an alcohol is Hydroxyl . Therefore, the correct option is option D.
What is functional group?A functional group in organic chemistry is a substituent and moiety inside a molecule that triggers the molecule's distinctive chemical processes. No matter how the rest of a molecule is made up, the very same functional group would experience the same or a similar set of chemical events.
This permits the design of synthetic chemistry as well as the methodical forecasting of chemical reactions as well as the behaviour of chemical molecules. Other functional groups close by can affect a functional group's reactivity. Retrosynthetic analysis can be used to design organic synthesis by using functional group interconversion. The functional group found in an alcohol is Hydroxyl .
Therefore, the correct option is option D.
To know more about functional group, here:
https://brainly.com/question/29263610
#SPJ7
The correct geometry around oxygen in CH3OCH3 is
(a). linear. (b). bent. C). tetrahedral/(a). trigonal planar
Explanation:
the force of the lone pairs from the bottom would cancel out the force of the lone pairs from the top. Thus, the molecule will be linear.
Is Trygliceride a saturated or unsaturated molecule? Please explain.
Fats may be either saturated or unsaturated. A saturated fat is a fat that consists of triglycerides whose carbon chains consist entirely of carbon-carbon single bonds. ... An unsaturated fat is a fat that consists of triglycerides whose carbon chains contain one or more carbon-carbon double bonds.
Over a long period of time the process of deposition causes the formation of
O
A. acid rain
OB. glaciers
OC. sedimentary rock
OD. Karst topography
Answer:
C. sedimentary rock
Explanation:
Deposition is basically a process in which sediments are added to land.
What is the correct IUPAC name for Ir(NO₂)₄
Answer
Iridium(IV)Nitrite
The correct IUPAC name of the Ir(NO₂)₄ compound is Iridium(IV)Nitrite.
What is the IUPAC name?Whether it's in a continuous chain or just a ring, the largest chain of carbons joined by a single bond serves as the basis for IUPAC nomenclature.
What is a compound?
A chemical compound would seem to be a substance that contains numerous similar molecules made of atoms from different elements joined by chemical bonds.
The given compound is Ir(NO₂)₄. It can be seen that 4 nitro group is attached with Ir and its coordination number is 4. Hence, the IUPAC name will be Iridium(IV)Nitrite.
To know more about IUPAC nomenclature.
https://brainly.com/question/16631447
#SPJ2
convert 14.72 kg to ____ mg
Answer:
14720000
Explanation:
1 kg = 1000000 mg
14.72 kg = 14.72 x 1000000
=14720000
Please Mark me brainliest
FORMULAS OF IONIC COMPOUNDS
FIND: POSITIVE ION, NEGATIVE ION AND FORMULA IN:
NAME:
Sodium chloride
Magnesium chloride
Calcium oxide
Lithium phosphide
Aluminum sulfide
Calcium nitride
Iron(III)chloride
Iron(II)oxide
Copper(I)sulfide
Copper(II)nitride
Zinc oxide
Silver sulfide
Potassium carbonate
Sodium nitrate
Calcium bicarbonate
Aluminum hydroxide
Lithium phosphate
Potassium sulfate
Answer:
NaCl, Na⁺,Cl⁻.
MgCl₂, Mg²⁺, Cl⁻.
CaO, Ca²⁺, O²⁻.
Li₃P, Li⁺, P³⁻.
Al₂S₃, Al³⁺, S²⁻.
Ca₃N₂, Ca²⁺, N³⁻.
FeCl₃, Fe³⁺, Cl⁻.
FeO, Fe²⁺, O²⁻.
Cu₂S, Cu⁺, S²⁻.
Cu₃N₂, Cu²⁺, N³⁻.
ZnO, Zn²⁺, O²⁻.
Ag₂S, Ag⁺, S²⁻.
K₂CO₃, K⁺, CO₃²⁻.
NaNO₃, Na⁺, NO₃⁻.
Ca(HCO₃)₂, Ca²⁺, HCO₃⁻.
Al(OH)₃, Al³⁺,OH⁻.
Li₃PO₄, Li⁺, PO₄³⁻.
K₂SO₄, K⁺, SO₄²⁻.
Explanation:
Sodium chloride. NaCl, formed by the cation Na⁺ and the anion Cl⁻.
Magnesium chloride. MgCl₂, formed by the cation Mg²⁺ and the anion Cl⁻.
Calcium oxide. CaO, formed by the cation Ca²⁺ and the anion O²⁻.
Lithium phosphide. Li₃P, formed by the cation Li⁺ and the anion P³⁻.
Aluminum sulfide. Al₂S₃, formed by the cation Al³⁺ and the anion S²⁻.
Calcium nitride. Ca₃N₂, formed by the cation Ca²⁺ and the anion N³⁻.
Iron(III)chloride. FeCl₃, formed by the cation Fe³⁺ and the anion Cl⁻.
Iron(II)oxide. FeO, formed by the cation Fe²⁺ and the anion O²⁻.
Copper(I)sulfide. Cu₂S, formed by the cation Cu⁺ and the anion S²⁻.
Copper(II)nitride. Cu₃N₂, formed by the cation Cu²⁺ and the anion N³⁻.
Zinc oxide. ZnO, formed by the cation Zn²⁺ and the anion O²⁻.
Silver sulfide. Ag₂S, formed by the cation Ag⁺ and the anion S²⁻.
Potassium carbonate. K₂CO₃, formed by the cation K⁺ and the anion CO₃²⁻.
Sodium nitrate. NaNO₃, formed by the cation Na⁺ and the anion NO₃⁻.
Calcium bicarbonate. Ca(HCO₃)₂, formed by the cation Ca²⁺ and the anion HCO₃⁻.
Aluminum hydroxide. Al(OH)₃, formed by the cation Al³⁺ and the anion OH⁻.
Lithium phosphate. Li₃PO₄, formed by the cation Li⁺ and the anion PO₄³⁻.
Potassium sulfate. K₂SO₄, formed by the cation K⁺ and the anion SO₄²⁻.
Which of the following options would be the best for dissolving PbBr2(s)?
1) add to a solution of CH3COOH
2) add to a solution of NaBr
3) add to a solution of NH3
4) add to a solution of NH4Br
5) add to a solution of NaOH
The best option for dissolving PbBr₂ is option (2)
2) Add a solution of NaBr
The reason for choosing the above option is as follows;
Lead (II) bromide is an inorganic powdery substance that has a solubility in water of 0.973 g/100 mL at 20°C. It is insoluble in alcohol but is soluble in alkali, ammonia, NaBr, and KBr.
PbBr₂ is slightly soluble in ammonia, and it reacts with NaOH to produce Pb(OH)₂ and NaBr.
Taking the solubility product of PbBr₂ as [tex]K_{sp}[/tex] = 6.60 × 10⁻⁶, in a solution of 0.5 M NaBr, we have;
PbBr₂ → Pb⁺ + 2Br⁻
[tex]K_{sp}[/tex] = [Pb]·[2Br]²
Therefore, we get;
6.60 × 10⁻⁶ = [x]·[0.5]²
Where;
x = The number of moles of lead, Pb, in per liter of solution
∴ x = (6.60 × 10⁻⁶)/[(0.5 )²] = 2.64 × 10⁻⁵.
The molar solubility of PbBr₂ per liter of NaBr, x = 2.64 × 10⁻⁵ mol/L
PbBr₂ is more soluble in NaBr.
Given that ammonium ion NH₄Br in water gives similar products to ammonia, NH₃, it is expected to be more suitable to dissolve PbBr₂ in NaBr.
Therefore, the best solution for dissolving PbBr₂(s) is NaBr, the correct option is option (2) add a solution of NaBr.
Learn more about solubility product here;
https://brainly.com/question/14300821
balance equation of aluminium chloride+ hydrogen
[tex]\boxed{\sf {AlCl_3\atop Aluminium\:Chloride}+{H_2\atop Hydrogen}\longrightarrow {Al\atop Aluminium}+{HCl\atop Hydrochloric\:acid}}[/tex]
Balanced Equation:-
[tex]\boxed{\sf {2AlCl_3\atop Aluminium\:Chloride}+{3H_2\atop Hydrogen}\longrightarrow {2Al\atop Aluminium}+{6HCl\atop Hydrochloric\:acid}}[/tex]
An individual was injected with 80 mg of inulin and 960,000 counts per min (cpm) of tritium-labeled water (3H20) to determine the volume of various body fluid compartments. After equilibration a blood sample was obtained and the plasma inulin concentration was 0.5 mg% and the plasma activity (concentration) of tritium was 20 cpm/ml. The volumes of which body compartments can be determined?
The measurement of body fluid compartments can be achieved by the dilution of chemical compounds that only circulate and disperse in the region of selected areas in the body. The dilution process is dependent on how the concentration is defined.
Given that:
the concentration of plasma insulin after equilibrium = 0.5 mg %∴
Concentration C = 0.5 mg/100
Concentration C = 0.005 mg/ml
The mass of insulin = 80 mgSince the mass amount of the chemical compound(i.e. insulin) and the concentration is known.
The volume of the body fluid compartment can be calculated as:
[tex]\mathbf{volume = \dfrac{\text{mass of the marker }}{concentration }}[/tex]
[tex]Volume = \dfrac{80 \ mg}{0.005 \ mg/ml}[/tex]
Volume = 16000 ml
Thus, it is known that insulin is generally utilized for the measurement of the extracellular fluid volume and serves as a cell impermeant marker.
As a result;
The volume of the extracellular fluid compartment is 16000 ml.
However, the tritium-labeled water is a good marker for the entire body fluid compartment due to the fact that:
its diffusion occurs throughout the entire body,it is identical to water and;the equilibrium concentration is typically easy to measure due to the radioactive characteristics of tritium.Given that:
plasma activity of tritium = 20 cpm/ml
i.e.
In 1 ml of plasma, 20 cpm of tritium is present.
As such, in 960,000 counts per min (cpm) of tritium-labeled water, the volume of the whole body compartment is:
[tex]\mathbf{= \dfrac{960000}{20} ml \plasma}[/tex]
= 48000 ml of plasma
Therefore, we can conclude that the volumes of the body compartment that can be determined are:
The volume of the extracellular fluid compartment, which is 16000 ml.The volume of the whole body compartment, which is 48000 mlLearn more about body fluid compartments here:
https://brainly.com/question/6791522?referrer=searchResults
A sample of gas occupies 10.0 L at 240°C under a pressure of
80.0 kPa. At what temperature would the gas occupy 20.0 L if
we increased the pressure to 107 kPa?
Answer: 1090°C
Explanation: According to combined gas laws
(P1 × V1) ÷ T1 = (P2 × V2) ÷ T2
where P1 = initial pressure of gas = 80.0 kPa
V1 = initial volume of gas = 10.0 L
T1 = initial temperature of gas = 240 °C = (240 + 273) K = 513 K
P2 = final pressure of gas = 107 kPa
V2 = final volume of gas = 20.0 L
T2 = final temperature of gas
Substituting the values,
(80.0 kPa × 10.0 L) ÷ (513 K) = (107 kPa × 20.0 L) ÷ T2
T2 = 513 K × (107 kPa ÷80.0 kPa) × (20.0 L ÷ 10.0 L)
T2 = 513 K × (1.3375) × (2)
T2 = 1372.275 K
T2 = (1372.275 - 273) °C
T2 = 1099 °C
1090 degree Celsius
hope it helps
what substances will make salt when combined?
vinegar and soda
soda and wine
detergent and ammonia
fertilizer and vinegar
Answer:
vinegr and soda ..................
........
Answer:
acid + base = salt
so the answer is vinegar and soda
Explanation:
hope it helps you
Mark my answer as brainlist
have a good day
HELP ASAP PLS
Reactions, products and leftovers
Answer:
See the answer below
Explanation:
From the original equation in the image, the mole ratio of C:CO2:CO is 1:1:2. This means that for every 1 mole of C and CO2, 2 moles of CO would be produced.
Now, looking at the simulation below the equation of the reaction, 3 moles of C and 8 moles of CO2 were supplied as input. Applying this to the original equation of reaction, C seems to be a limiting reagent for the reaction because the ratio of C to CO2 should 1:1.
Hence, taking all the 3 moles of C available means that only 3 moles out of the available 8 for CO2 would be needed. 3 moles c and 3 moles CO2 means that 6 moles CO would be produced (remember that the ratio remains 1:1:3 for C, CO2, and CO). This means that 5 moles CO2 would be leftover.
In other words, all the 3 moles C would be consumed, 3 out of 8 moles CO2 would be consumed, and 6 moles CO would be produced while 5 moles CO2 would be leftover.
Consider the following chemical reaction:
2SO2 (g) + O2 (g) -----------> 2SO3 (g)
1.50 L. of sulfur trioxide at the pressure of 1.20 atm. and temperature of 25 oC is mixed with excess of oxygen.
Calclate volume of the product in L. at STP.
A. 11.2 L.
B. 1.65 L.
C. 16.5 L.
D. 0.129 L.
Answer:
B. 1.65 L
Explanation:
Step 1: Write the balanced equation
2 SO₂(g) + O₂(g) ⇒ 2 SO₃(g)
Step 2: Calculate the moles of SO₂
The pressure of the gas is 1.20 atm and the temperature 25 °C (298 K). We can calculate the moles using the ideal gas equation.
P × V = n × R × T
n = P × V / R × T
n = 1.20 atm × 1.50 L / (0.0821 atm.L/mol.K) × 298 K = 0.0736 mol
Step 3: Calculate the moles of SO₃ produced
0.0736 mol SO₂ × 2 mol SO₃/2 mol SO₂ = 0.0736 mol SO₃
Step 4: Calculate the volume occupied by 0.0736 moles of SO₃ at STP
At STP, 1 mole of an ideal gas occupies 22.4 L.
0.0736 mol × 22.4 L/1 mol = 1.65 L
How does the number of molecules in one mole of carbon dioxide compare with the number of molecules in one mole of water?
ОА.
There are four times as many molecules in one mole of carbon dioxide as there are in one mole of water.
ОВ.
There are twice as many molecules in one mole of carbon dioxide as there are in one mole of water.
OC
There are three times as many molecules in one mole of carbon dioxide as there are in one mole of water.
OD
There are the same number of molecules in one mole of carbon dioxide as there are in one mole of water.
Answer:
d
Explanation:
During electrophilic aromatic substitution, a resonance-stabilized cation intermediate is formed. Groups, already present on the benzene ring, that direct ortho/para further stabilize this intermediate by participating in the resonance delocalization of the positive charge. Assume that the following group is present on a benzene ring at position 1 and that you are brominating the ring at positon 4. Draw the structure of the resonance contributor that shows this group actively participating in the charge delocalization.
-----OCH3
Answer:
See explanation and image attached
Explanation:
Aromatic compounds undergo electrophilic aromatic substitution reactions in which the aromatic ring is maintained.
Substituted benzenes may be more or less reactive towards electrophilic aromatic substitution than benzene depending on the nature of the substituent present in the ring.
Substituents that activate the ring towards electrophilic substitution such as -OCH3 are ortho-para directing.
The major products of the bromination of anisole are p-bromoanisole and o-bromoanisole. The resonance structures leading to these products are shown in the image attached.
Part A
3.75 mol of LiCl in 3.36 L of solution
Express the molarity in moles per liter to three significant figures
Answer:
1.12 mol/L.
Explanation:
From the question given above, the following data were obtained:
Mole of LiCl = 3.75 moles
Volume = 3.36 L
Molarity =?
Molarity is simply defined as the mole of solute per unit litre of the solution. Mathematically, it is expressed as:
Molarity = mole / Volume
With the above formula, we can obtain the molarity of the solution as follow:
Mole of LiCl = 3.75 moles
Volume = 3.36 L
Molarity =?
Molarity = mole /Volume
Molarity = 3.75 / 3.36
Molarity = 1.12 mol/L
Thus, the molarity of the solution is 1.12 mol/L
In water, a substance that ionizes completely in solution is called a
Answer:
please mark me brainliest
Explanation:
In water, a substance that ionizes completely in solution is called a weak electrolyte.
Answer: strong electrolyte.
Explanation: In water, a substance that ionizes completely in solution is called a. a. weak electrolyte.
CaCl2 has which bond?
Answer:
CaCl2 has ionic bond because here calcium gives its electron to the chlorine atom and becomes positivetly charged ion.
The decomposition of ammonia is: 2 NH3(g) ⇌ N2(g) + 3 H2(g). If Kp is 1.5 × 103 at 400°C, what is the partial pressure of ammonia at equilibrium when N2 is 0.20 atm and H2 is 0.15 atm?
Answer:
"[tex]6.7\times 10^{-4} \ atm[/tex]" is the right answer.
Explanation:
Given:
Partial pressure of [tex]N_2[/tex],
= 0.20 atm
Partial pressure of [tex]H_2[/tex],
= 0.15 atm
[tex]K_p = 1.5\times 10^3[/tex] at [tex]400^{\circ} C[/tex]
As we know,
⇒ [tex]K_p = \frac{pN_2\times pH_2^3}{pNH_3^2}[/tex]
By putting the values, we get
[tex]1.5\times 10^3=\frac{0.20\times (0.15)^3}{pNH_3^2}[/tex]
[tex]pNH_3^2 = \frac{0.000675}{1.5\times 10^3}[/tex]
[tex]=6.7\times 10^{-4} \ atm[/tex]
which of the following measurements is equivalent to 5.461x10^-7m?
Answer:
B. 0.0000005461m
I used the method of moving the decimal.
What volume of 1.50 mol/L stock solution is needed to make 125 mL of 0.60 mol/L solution?
Chemistry 11 Solutions
978Ͳ0Ͳ07Ͳ105107Ͳ1Chapter 8 Solutions and Their Properties • MHR | 85
Amount in moles, n, of the NaCl(s):
NaCl
2.5 g
m
n
M
58.44 g
2
4.2778 10 m l
ol
o
/m
u
Molar concentration, c, of the NaCl(aq):
–2 4.2778 × 10 mol
0.100
0.42778 mol/L
0.43 mol
L
/L
n
c
V
The molar concentration of the saline solution is 0.43 mol/L.
Check Your Solution
The units are correct and the answer correctly shows two significant digits. The
dilution of the original concentrated solution is correct and the change to mol/L
seems reasonable.
Section 8.4 Preparing Solutions in the Laboratory
Solutions for Practice Problems
Student Edition page 386
51. Practice Problem (page 386)
Suppose that you are given a stock solution of 1.50 mol/L ammonium sulfate,
(NH4)2SO4(aq).
What volume of the stock solution do you need to use to prepare each of the
following solutions?
a. 50.0 mL of 1.00 mol/L (NH4)2SO4(aq)
b. 2 × 102 mL of 0.800 mol/L (NH4)2SO4(aq)
c. 250 mL of 0.300 mol/L NH4
+
(aq)
What Is Required?
You need to calculate the initial volume, V1, of (NH4)2SO4(aq) stock solution
needed to prepare each given dilute solution.
The dilution gives the relationship between the molarity and the volume of the solution. The volume of stock solution with a molarity of 1.50 mol/L is 50 mL.
What is dilution?Dilution is said to be the addition of more volume to the concentrated solution to make it less in molar concentration. This tells about the inverse and indirect relationship between the volume and the molar concentration of the solution.
Given,
Initial volume = V₁
Initial molar concentration (M₁) = 1.50 mol/L
Final volume (V₂) = 125 mL = 0.125 L
Final molar concentration (M₂)= 0.60 mol/L
The dilution is calculated as:
M₁V₁ = M₂V₂
V₁ = M₂V₂ ÷ M₁
Substituting the values in the above formula as
V₁ = M₂V₂ ÷ M₁
V₁ = (0.60 mol/L × 0.125 L) ÷ 1.50 mol/ L
V₁ = 0.05 L
= 50 mL
Therefore, 50 mL of stock solution is needed to make a 0.60 mol/L solution.
Learn more about dilution, here:
https://brainly.com/question/15718488
#SPJ2
1. What is uncertainty in measurements?
Answer:
In metrology, measurement uncertainty is the expression of the statistical dispersion of the values attributed to a measured quantity.By international agreement, this uncertainty has a probabilistic basis and reflects incomplete knowledge of the quantity value. It is a non-negative parameter.
Hope it helps you.Explain why it is not advisable to add water to acid when
mixing them
Answer:
Consequence
you form an extremely concentrated solution of acid initially.and the solution may boil very violently, splashing concentrated acid. I hope this helped! :)3. HNO3 + NaHCO3 → NaNO3 + H2O + CO2
4. AgNO3 +CaCl2 → AgCl + Ca(NO3)2
5. 3 H2(g) + N2(g) → 2 NH3(g)
6. 2 H202 → 2 H2O + O2
Write word equation and type of reaction
Answer:
hydrogen nitrate + sodium hydrochlorate- sodium nitrate+ water + co2 (acid base reaction)
silver nitrate + calcium chloride - silver chloride+ calcium nitrate ( double displacement reaction)
hydrogen + nitrogen - ammonia gas ( simple contact reaction)
hydrogen peroxide - water + oxygen ( single displacement reaction)
Hope it helps :)
Which of the following is true of solutes dissolving in water?
a) C2H4 will dissolve because it is able to hydrogen bond.
b) CH3CH2OH will dissolve because it contains a polar bond.
c) HCI will not dissolve because it connot hydrogen bond.
d) KBr will not dissolve because it contains all ionic bonds.
B is the answer to your question.
C2H4 is not capable of hydrogen bonding because the H's are attached to the Carbon, and the charge is 0.
Although HCl cannot hydrogen bond, that aspect does not hinder it's ability to dissolve. Because HCl is polar and so is water, the positive side of H2O will be attracted to the negative side of HCl, thus "tearing" the molecule apart. (Like dissolves like - polar dissolves polar)
Based on the Solubility rule, KBr is soluble because it contains a group 1 metal.