Two brothers, Tom and Allen, each inherit $39000. Tom invests his inheritance in a savings account with an annual return of 2.9%, while Allen invests his inheritance in a CD paying 5.7% annually. How much more money than Tom does Allen have after 1 year?

Answers

Answer 1

Answer:

Tom:

initial money = $ 39000

% increased per annum = 2.9%

money gained per annum = 39000 * 2.9/100 = $1131

Allen:

initial money = $ 39000

% increased per annum = 5.7 %

money gained per annum = 39000 * 5.7/100 = $2223

Allen has $ (2223 - 1131) = $ 1192 more than Tom


Related Questions

which of the following not between -10 and -8

-17/2
-7
-9
-8.5​

Answers

The answer is -7 because -17/2=-8.5 and 9 and 8.5 are both in between -10 and -8

Answer:

-7

Step-by-step explanation:

This is best read on the number line.

Look at the picture.

[tex]-\dfrac{17}{2}=-8\dfrac{1}{2}=-8.5[/tex]

one third multiplied by the sum of a and b

Answers

Answer:

1/3(a+b)

hope it helps :>

a+b/3
This is the answer of ur question

Find a cubic polynomial with integer coefficients that has $\sqrt[3]{2} + \sqrt[3]{4}$ as a root.

Answers

Find the powers [tex]a=\sqrt{2}+\sqrt{3}[/tex]

$a^{2}=5+2 \sqrt{6}$

$a^{3}=11 \sqrt{2}+9 \sqrt{3}$

The cubic term gives us a clue, we can use a linear combination to eliminate the root 3 term $a^{3}-9 a=2 \sqrt{2}$ Square $\left(a^{3}-9 a\right)^{2}=8$ which gives one solution. Expand we have $a^{6}-18 a^{4}-81 a^{2}=8$ Hence the polynomial $x^{6}-18 x^{4}-81 x^{2}-8$ will have a as a solution.

Note this is not the simplest solution as $x^{6}-18 x^{4}-81 x^{2}-8=\left(x^{2}-8\right)\left(x^{4}-10 x^{2}+1\right)$

so fits with the other answers.

Answer:

[tex]y^3 -6y-6[/tex]

Find the principal invested if $495 interest was earned in 3 years at an interest rate of 6%.

Answers

Answer: $2750

Step-by-step explanation:

Formula to calculate interest : I = Prt , where P = Principal amount , r = rate of interest ( in decimal) , t= time.

Given:  I= $495

t= 3 years

r= 6% = 0.06

Then, according to the above formula:

[tex]495 = P (0.06\times3)\\\\\Rightarrow\ P=\dfrac{495}{0.18}\\\\\Rightarrow\ P=2750[/tex]

Hence, the principal invested = $2750

A sprinkler system is being installed in a newly renovated building on campus. The average activation time is supposed to be at most 20 seconds. A series of 12 fire alarm/sprinkler system tests results in an average activation time of 21.5 seconds. Do these data indicate that the design specifications have not been met? The hypotheses to be tested are H0: m = 20 versus Ha: m > 20, where m = the true average activation time of the sprinkler system. Assume that activation times for this system are Normally distributed with s = 3 seconds.
(a) What is the value of the observed test statistic?
(b) What is the value of the P-value?
(c) Are the data statistically significant at the 5% significance level? Explain briefly.
(d) What does the decision you made mean with respect to the question "Do these data indicate that the design specifications have not been met?"
(e) If the true average activation time of the sprinkler system is, in fact, equal to 20 seconds, what type of error would you have made?

Answers

Answer:

A) t = 1.73

B) p-value =  0.0558

C) Data is not statistically significant because the p-value of 0.0558 is more than the significance value of 0.05

D) The decision means that the design specifications are not met.

E) Type II error

Step-by-step explanation:

The hypotheses are:

H₀: μ = 20

H₁: μ > 20

A) Formula for the test statistic is;

t = (x' - μ)/(s/√n)

Now, we are given;

x' = 21.5

μ = 20

s = 3

n = 12

Thus;

t = (21.5 - 20)/(3/√12)

t = 1.73

B) we have our t-value as 1.73

Now, Degree of freedom(DF) = n - 1

So,DF = 12 - 1 = 11

Using significance level of α = 0.05, t-value = 1.73 and DF = 11, one tailed hypothesis, from online P-value calculator attached, we have;

p-value =  0.0558

C) Data is not statistically significant because the p-value of 0.0558 is more than the significance value of 0.05

D) We will not reject the null hypothesis. The decision means that the design specifications are not met.

E) If the true average activation time of the sprinkler system is, in fact, equal to 20 seconds, then the null hypothesis is false.

Since we did not reject the null hypothesis even though it is false, the error that was committed was therefore a type II error.

Hey market sales six cans of food for every seven boxes of food the market sold a total of 26 cans and boxes today how many of each kind did the market sale

Answers

Answer:

It sold 14 cans boxes of food and 12 cans of food.

Step-by-step explanation:

The factor for the food cans depend upon every seven food boxes .So, the same no. of sets of food cans will be sold.

Let the no. of sets of food boxes be x.

According to the question,

6x+7x=26

13x=26

x=26/13

x=2

No. of food cans =6x=6×2=12 cans

No. of food boxes=7x=7×2=14 boxes

Please mark brainliest ,if it is truly the best ! Thank you!

logx-log(x-l)^2=2log(x-1)​

Answers

Answer:

  x = 1.00995066776

  x = 2.52925492433

Step-by-step explanation:

This sort of equation is best solved using a graphing calculator. For that purpose, I like to rewrite the equation as a function whose zeros we're seeking. Here, that becomes ...

  [tex]f(x)=\log{(x)}-\log{(x-1)}^2-2\log{(x-1)}[/tex]

The attached graph shows zeros at

  x = 1.00995066776 and 2.52925492433

_____

Comment on the equation

Note that we have taken the middle term to be the square of the log, rather than the log of a square. For the latter interpretation, see mberisso's answer at https://brainly.com/question/17210068

Comment on the answer refinement

We have used Newton's method iteration to refine the solutions to this equation. The solution near 1.00995 requires the initial guess be very close for that method to work properly. Fortunately, the 1.01 value shown on the graph is sufficient for the purpose.

In a binomial distribution, n = 8 and π=0.36. Find the probabilities of the following events. (Round your answers to 4 decimal places.)

a. x=5
b. x <= 5
c. x>=6

Answers

Answer:

[tex]\mathbf{P(X=5) =0.0888}[/tex]    

P(x ≤ 5 ) = 0.9707

P ( x ≥ 6) = 0.0293

Step-by-step explanation:

The probability of a binomial mass distribution can be expressed with the formula:

[tex]\mathtt{P(X=x) =(^{n}_{x} ) \ \pi^x \ (1-\pi)^{n-x}}[/tex]

[tex]\mathtt{P(X=x) =(\dfrac{n!}{x!(n-x)!} ) \ \pi^x \ (1-\pi)^{n-x}}[/tex]

where;

n = 8 and π = 0.36

For x = 5

The probability [tex]\mathtt{P(X=5) =(\dfrac{8!}{5!(8-5)!} ) \ 0.36^5 \ (1-0.36)^{8-5}}[/tex]

[tex]\mathtt{P(X=5) =(\dfrac{8!}{5!(3)!} ) \ 0.36^5 \ (0.64)^{3}}[/tex]

[tex]\mathtt{P(X=5) =(\dfrac{8 \times 7 \times 6 \times 5!}{5!(3)!} ) \times \ 0.0060466 \ \times 0.262144}[/tex]

[tex]\mathtt{P(X=5) =(\dfrac{8 \times 7 \times 6 }{3 \times 2 \times 1} ) \times \ 0.0060466 \ \times 0.262144}[/tex]

[tex]\mathtt{P(X=5) =({8 \times 7 } ) \times \ 0.0060466 \ \times 0.262144}[/tex]

[tex]\mathtt{P(X=5) =0.0887645}[/tex]

[tex]\mathbf{P(X=5) =0.0888}[/tex]     to 4 decimal places

b. x ≤ 5

The probability of P ( x ≤ 5)[tex]\mathtt{P(x \leq 5) = P(x = 0)+ P(x = 1)+ P(x = 2)+ P(x = 3)+ P(x = 4)+ P(x = 5})[/tex]

[tex]{P(x \leq 5) = ( \dfrac{8!}{0!(8!)} \times (0.36)^0 \times (1-0.36)^8 \ ) + \dfrac{8!}{1!(7!)} \times (0.36)^1 \times (1-0.36)^7 \ +[/tex][tex]\dfrac{8!}{2!(6!)} \times (0.36)^2 \times (1-0.36)^6 \ + \dfrac{8!}{3!(5!)} \times (0.36)^3 \times (1-0.36)^5 + \dfrac{8!}{4!(4!)} \times (0.36)^4 \times (1-0.36)^4 \ + \dfrac{8!}{5!(3!)} \times (0.36)^5 \times (1-0.36)^3 \ )[/tex]

P(x ≤ 5 ) = 0.0281+0.1267+0.2494+0.2805+0.1972+0.0888

P(x ≤ 5 ) = 0.9707

c. x ≥ 6

The probability of P ( x ≥ 6) = 1  - P( x  ≤ 5 )

P ( x ≥ 6) = 1  - 0.9707

P ( x ≥ 6) = 0.0293

Determine the value of x in the figure. Question 1 options: A) x = 90 B) x = 85 C) x = 45 D) x = 135

Answers

Answer:

A.) x=90°

Step-by-step explanation:

Note:

The triangle shown is an isosceles triangle, which means that it has 2 congruent sides (as shown by the small intersecting lines), and this also means that it has two congruent angles.

We are given an angle measure adjacent to one of the missing angles. These two form supplementary angles, which means that they're sum is equal to 180°, or a straight line. So, to find:

[tex]180=135+y[/tex]

y is the unknown angle. Solve for y:

[tex]180-135=y\\\\y=45[/tex]

y is 45°. Since this and the other angle are congruent, add:

[tex]45+45=90[/tex]

Note:

Triangles angles will always add up to a total of 180°.

To find the missing angle x°, use:

[tex]180=a+b+c[/tex]

These are the angles in a triangle. Substitute any known values and solve:

[tex]180=45+45+x\\\\180=90+x\\\\180-90=x\\\\x=90[/tex]

The missing angle x° is 90°.

:Done

PLEASE HURRY! i walked north 8 miles, the west 4 miles, and finally south 5 miles, at the end how far was i from where i started

Answers

Answer:

5 miles away

Step-by-step explanation:

If you walked north 8 miles, then west 4 miles, then south 5 miles, you have, in total, travelled 4 miles west and [tex]8-5=3[/tex] miles north.

This creates a triangle, in which we can find the the length of the hypotenuse to find how far away you are now.

We can use the Pythagorean theorem since this is a right triangle.

[tex]a^2+b^2=c^2\\3^2+4^2=c^2\\9+16=c^2\\25=c^2\\c=5[/tex]

Hope this helped!

Answer:

5 miles away

Step-by-step explanation:

cooks are needed to prepare for a large party. Each cook can bake either 5 Large cakes or 14 small cakes per hour . The kitchen is available for 3 hours and 29 large cakes and 260 cakes need to be baked . How many cooks are required to bake the required number of cakes during the time the kitchen is available?​

Answers

it was all about equating some values

to bake the required number of cakes during the available 3-hour time period, 7 cooks are required.

Let's determine the number of cooks required to bake the required number of cakes during the available time.

We have the following information:

- Each cook can bake either 5 large cakes or 14 small cakes per hour.

- The kitchen is available for 3 hours.

- We need to bake 29 large cakes and 260 cakes in total.

First, let's calculate the number of large cakes that can be baked by one cook in 3 hours:

1 cook can bake 5 large cakes/hour × 3 hours = 15 large cakes.

Next, let's calculate the number of small cakes that can be baked by one cook in 3 hours:

1 cook can bake 14 small cakes/hour × 3 hours = 42 small cakes.

Now, let's calculate the number of large cakes that can be baked by all the cooks in 3 hours:

Total number of large cakes = Number of cooks × Large cakes per cook per 3 hours

We need to bake 29 large cakes, so:

29 = Number of cooks × 15

Number of cooks = 29 / 15 ≈ 1.93

Since we can't have a fraction of a cook, we need to round up to the nearest whole number. Therefore, we need at least 2 cooks to bake the required number of large cakes.

Similarly, let's calculate the number of small cakes that can be baked by all the cooks in 3 hours:

Total number of small cakes = Number of cooks × Small cakes per cook per 3 hours

We need to bake 260 small cakes, so:

260 = Number of cooks × 42

Number of cooks = 260 / 42 ≈ 6.19

Again, rounding up to the nearest whole number, we need at least 7 cooks to bake the required number of small cakes.

Since we need to satisfy both requirements for large and small cakes, we choose the larger number of cooks required, which is 7 cooks.

Therefore, to bake the required number of cakes during the available 3-hour time period, 7 cooks are required.

Learn more about work here

https://brainly.com/question/13245573

#SPJ2

Use Lagrange multipliers to find three numbers whose sum is 30 and the product P = x3y4z is a maximum. Choose the answer for the smallest of the three values. Question 20 options: a) 21/4 b) 5 c) 15/4 d) 3

Answers

We want to maximize [tex]x^3y^4z[/tex] subject to the constraint [tex]x+y+z=30[/tex].

The Lagrangian is

[tex]L(x,y,z,\lambda)=x^3y^4z-\lambda(x+y+z-30)[/tex]

with critical points where the derivatives vanish:

[tex]L_x=3x^2y^4z-\lambda=0[/tex]

[tex]L_y=4x^3y^3z-\lambda=0[/tex]

[tex]L_z=x^3y^4-\lambda=0[/tex]

[tex]L_\lambda=x+y+z-30=0[/tex]

[tex]\implies\lambda=3x^2y^4z=4x^3y^3z=x^3y^4[/tex]

We have

[tex]3x^2y^4z-4x^3y^3z=x^2y^3z(3y-4x)=0\implies\begin{cases}x=0,\text{ or}\\y=0,\text{ or}\\z=0,\text{ or}\\3y=4x\end{cases}[/tex]

[tex]3x^2y^4z-x^3y^4=x^2y^4(3z-x)=0\implies\begin{cases}x=0,\text{ or}\\y=0,\text{ or}\\3z=x\end{cases}[/tex]

[tex]4x^3y^3z-x^3y^4=x^3y^3(4z-y)=0\implies\begin{cases}x=0,\text{ or}\\y=0,\text{ or}4z=y\end{cases}[/tex]

Let's work with [tex]x=3z[/tex] and [tex]y=4z[/tex], for which we have

[tex]x+y+z=8z=30\implies z=\dfrac{15}4\implies\begin{cases}x=\frac{45}4\\y=15\end{cases}[/tex]

The smallest of these is C. 15/4.

Suppose that a sample mean is .29 with a lower bound of a confidence interval of .24. What is the upper bound of the confidence interval?

Answers

Answer:

The upper bound of the confidence interval is 0.34

Step-by-step explanation:

Here in this question, we want to calculate the upper bound of the confidence interval.

We start by calculating the margin of error.

Mathematically, the margin of error = 0.29 -0.24 = 0.05

So to get the upper bound of the confidence interval, we simply add this margin of error to the mean

That would be 0.05 + 0.29 = 0.34



Type the missing number in this sequence:
1,
4,
,64, 256,
1,024

Answers

Answer:

16

Step-by-step explanation:

The sequence is 1, 4,...,64, 256, 1024

Notice that:

● 1 = 2^0

● 4 = 2^2

● 64 = 2^6

● 256 = 2^8

● 1024 = 2^10

Notice that we add 2 each time to the exponent so the missing number is:

● 2^(2+2) = 2^4 = 16

The age of some lecturers are 42,54,50,54,50,42,46,46,48 and 48 calculate the mean age and standard deviation

Answers

Answer:

Mean age: 48

Standard deviation: 4

Step-by-step explanation:

a) Mean

The formula for Mean = Sum of terms/ Number of terms

Number of terms

= 42 + 54 + 50 + 54 + 50 + 42 + 46 + 46 + 48+ 48/ 10

= 480/10

= 48

The mean age is 48

b) Standard deviation

The formula for Standard deviation =

√(x - Mean)²/n

Where n = number of terms

Standard deviation =

√[(42 - 48)² + (54 - 48)² + (50 - 48)² +(54 - 48)² + (50 - 48)² +(42 - 48)² + (46 - 48)² + (46 - 48)² + (48 - 48)² + (48 - 48)² / 10]

= √-6² + 6² + 2² + 6² + 2² + -6² + -2² + -2² + 0² + 0²/10

=√36 + 36 + 4 + 36 + 4 + 36 + 4 + 4 + 0 + 0/ 10

=√160/10

= √16

= 4

The standard deviation of the ages is 4

You are investing $5,000 and can invest for 2 years or 3 years at 1.75% and 1.25% interest rates, respectively. Which earns more interest

Answers

Answer:

The 3 years investment earns more interest

Step-by-step explanation:

Given

Principal, P = $5,000

Required

Determine which earns more interest

When Rate = 1.75% and Year = 2

Interest is as follows;

[tex]I = \frac{PRT}{100}[/tex]

Substitute 1.75 for R, 5000 for P and 2 for T

[tex]I = \frac{5000 * 1.75 * 2}{100}[/tex]

[tex]I = \frac{17500}{100}[/tex]

[tex]I = \$175[/tex]

When Rate = 1.25% and Year = 3

Interest is as follows;

[tex]I = \frac{PRT}{100}[/tex]

Substitute 1.25 for R, 5000 for P and 3 for T

[tex]I = \frac{5000 * 1.25 * 3}{100}[/tex]

[tex]I = \frac{18750}{100}[/tex]

[tex]I = \$187.5[/tex]

Comparing the interest of both investments, the 3 years investment earns more interest

solve this equation 4log√x - log 3x =log x^2​

Answers

Answer:

[tex]x = \frac{1}{3} [/tex]

Step-by-step explanation:

*Move terms to the left and set equal to zero:

4㏒(√x) - ㏒(3x) - ㏒(x²) = 0

*simplify each term:

㏒(x²) - ㏒(3x) - ㏒(x²)

㏒(x²÷x²) -㏒(3x)

㏒(x²÷x² / 3x)

*cancel common factor x²:

㏒([tex]\frac{1}{3x}[/tex])

*rewrite to solve for x :

10⁰ = [tex]\frac{1}{3x}[/tex]

1 = [tex]\frac{1}{3x}[/tex]

1 · x = [tex]\frac{1}{3x}[/tex] · x

1x = [tex]\frac{1}{3}[/tex]

*that would be our answer, however, the convention is to exclude the "1" in front of variables so we are left with:

x = [tex]\frac{1}{3}[/tex]

A machine used to fill​ gallon-sized paint cans is regulated so that the amount of paint dispensed has a mean of ounces and a standard deviation of ounce. You randomly select cans and carefully measure the contents. The sample mean of the cans is ounces. Does the machine need to be​ reset? Explain your reasoning. ▼ Yes No ​, it is ▼ very unlikely likely that you would have randomly sampled cans with a mean equal to ​ounces, because it ▼ lies does not lie within the range of a usual​ event, namely within ▼ 1 standard deviation 2 standard deviations 3 standard deviations of the mean of the sample means.

Answers

Complete question is;

A machine used to fill gallon-sized paint cans is regulated so that the amount of paint dispensed has a mean of 128 ounces and a standard deviation of 0.20 ounce. You randomly select 35 cans and carefully measure the contents. The sample mean of the cans is 127.9 ounces. Does the machine need to be? reset? Explain your reasoning.

(yes/no)?, it is (very unlikely/ likely) that you would have randomly sampled 35 cans with a mean equal to 127.9 ?ounces, because it (lies/ does not lie) within the range of a usual? event, namely within (1 standard deviation, 2 standard deviations 3 standard deviations) of the mean of the sample means.

Answer:

Yes, we should reset the machine because it is unusual to have a mean equal to 127.9 from a random sample of 35 as the mean of 127.9 doesn't fall within range of a usual event with 2 standard deviations of the mean of the sample means.

Step-by-step explanation:

We are given;

Mean: μ = 128

Standard deviation; σ = 0.2

n = 35

Now, formula for standard error of mean is given as;

se = σ/√n

se = 0.2/√35

se = 0.0338

Normally, the range of values should be within 2 standard deviations of mean. In this case, normal range of values will be;

μ ± 2se = 128 ± 0.0338

This gives; 127.9662, 128.0338

So, Yes, we should reset the machine because it is unusual to have a mean equal to 127.9 from a random sample of 35 as the mean of 127.9 doesn't fall within range of a usual event with 2 standard deviations of the mean of the sample means.

Consider the function below. (If an answer does not exist, enter DNE.) f(x) = x3 − 27x + 3 (a) Find the interval of increase. (Enter your answer using interval notation.)

Answers

Answer:

(-∞,-3) and (3,∞)  

Step-by-step explanation:

f(x) = x³ − 27x + 3

1. Find the critical points

(a) Calculate the first derivative of the function.

f'(x) = 3x² -27  

(b) Factor the first derivative

f'(x)= 3(x² - 9) = 3(x + 3) (x - 3)

(c) Find the zeros

3(x + 3) (x - 3) = 0

x + 3 = 0      x - 3 = 0

     x = -3          x = 3

The critical points are at x = -3 and x = 3.

2. Find the local extrema

(a) x = -3

f(x) = x³ − 27x + 3 = (-3)³ - 27(-3) + 3 = -27 +81 + 3 = 57

(b) x = 3

f(x) = x³ − 27x + 3 = 3³ - 27(3) + 3 = 27 - 81 + 3 = -51

The local extrema are at (-3,57) and (3,-51).

3, Identify the local extrema as maxima or minima

Test the first derivative (the slope) over the intervals (-∞, -3), (-3,3), (3,∞)

f'(-4) = 3x² -27 = 3(4)² - 27  = 21

f'(0) = 3(0)² -27 = -27

f'(4) = 3(4)² - 27 = 51

The function is increasing on the intervals (-∞,-3) and (3,∞).

The graph below shows the critical points of your function.

At a high school movie night, the refreshments stand sells popcorn and soft drinks. Of the 100 students who came to the movie, 62 bought popcorn and 47 bought a drink. 38 students bought both popcorn and a drink. What is the probability that a student buys a drink, given that he or she buys popcorn? Express your answer as a percent, rounded to the nearest tenth... best answer wins brainliest!!!

Answers

Answer:

47% and 62%

Step-by-step explanation:

1. Drink

The probability that a student buys a drink is 0.47

Step-by-step explanation:

The probability that a student buys a drink will be given by;

( the number of students who bought a drink)/(the total number of students)

We are told that;

Of the 100 students who came to the movie, 62 bought popcorn and 47 bought a drink. Therefore, the required probability is;

47/100= 0.47

0.47 = 47%

2. Popcorn

For popcorn probability, it's basically the same.

The probabilty that a student buys popcorn is 0.62

The probability that a student buys popcorn will be given by;

( the number of students who bought popcorn)/(the total number of students)

So therefore,

62/100 = 0.62

0.62 = 62%

What is the mulitplicative rate of change for the exponential function f(x) = 2 (5over2) to the negative x power ?

Answers

Answer:

  2/5

Step-by-step explanation:

  f(x) = 2(5/2)^-x = 2(2/5)^x

The multiplicative rate of change is the base of the positive exponent, 2/5.

Prove that if a and b are integers, then for any integer k one has (a,b) = (a + kb,b). (Hint: Show that they are mutually divisible.)

Answers

Answer:

The operation:

(a,b) is equal to the rest of the division of a by b.

Now, if we have:

(a + kb,b) = (a,b) + (k*b,b)

But if we have that k and b are integers, then:

(k*b)/b = k

So b divides k*b into a whole number, this means that (k*b,b) = 0

then:

(a + kb,b) = (a,b) + (k*b,b) = (a,b) + 0 = (a,b)

At a local high school, the student population is growing at 12% a year. If the original population was 242 students, how long will it take the population to reach 300 students? Round to the nearest tenth of a year.

Answers

Answer: 2 years

Step-by-step explanation:

The exponential growth function is given by :-

[tex]y=A(1+r)^x[/tex] (i)

, where A = initial value , r = rate of growth and  x= time period.

As per given ,

A= 242

r= 12% = 0.12

To find : t when y= 300.

Put all the values in (i)

[tex]300=242(1+0.12)^x\\\\\Rightarrow\ \dfrac{300}{242}=(1.12)^x\\\\\Rightarrow\ 1.23967=(1.12)^x[/tex]

Taking log on both sides , we get

[tex]\log (1.2396) = t \log (1.12)\\\\\Rightarrow\ 0.09328=t(0.049218)\\\\\Rightarrow t=\dfrac{0.09328}{0.049218}=\approx2[/tex]

hence, it will take 2 years.

A bag of 100 hard candies included 30 butterscotch, 40 peppermint, 15 strawberry, 10 orange, and 5 banana. The probability that the first candy pulled out of the bag will be butterscotch or strawberry is .45
a) true
b) false

Answers

Answer:

true

Step-by-step explanation:

there is 100 candies. That means we can easily turn the amount of each type of candy into a percent. there was 30 butterscotch which means that is 30 percent. There was 15 strawberry which means that is 15 percent. add that and you get 45. This is a shortcut and i advise you use the way your teacher taught you.

[tex]|\Omega|=100\\|A|=30+15=45\\\\P(A)=\dfrac{45}{100}=0.45[/tex]

So TRUE

You are ordering two pizzas. A pizza can be small, medium, large, or extra large, with any combination of 8 possible toppings (getting no toppings is allowed, as is getting all 8). How many possibilities are there for your two pizzas

Answers

Answer:

1048576

Step-by-step explanation:

Given the following :

Pizza order :

Size = small, medium, large, or extra large = 4 possible sizes

Toppings = any combination of 8 possible toppings (getting no toppings is allowed, as is getting all 8).

Combination of Toppings = 2^8

Four different sizes of pizza = 4

Number of possibilities in ordering for a single pizza :

(4 * 2^8) = 4 * 256 = 1024

Number of possibilities in ordering two pizzas :

(4 * 2^8)^2

(2^2 * 2^8)^2

From indices :

[2^(2+8)]^2

[2^(10)]^2

2^(10*2)

2^20

= 1048576

Robert is putting new roofing shingles on his house. Each shingle is 1 2/3 feet long. The north part of the house has a roof line that is 60 feet across. How many shingles can be placed (side by side) on the north part of the house?

Answers

Answer: 36 shingles can be placed on the north part of the house.

Step-by-step explanation:

Given: Length of each shingle = [tex]1\dfrac23[/tex] feet = [tex]\dfrac53[/tex] feet.

The north part of the house has a roof line that is 60 feet across.

Then, the number of  shingles can be placed  on the north part of the house = (Length of roof line in north part) ÷ (Length of each shingle)

[tex]=60\div \dfrac{5}{3}\\\\=60\times\dfrac{3}{5}\\\\=12\times3=36[/tex]

Hence, 36 shingles can be placed on the north part of the house.

Gail paid a total of $12,000 for stock that was $6 per share. If she sold all her shares for $18,000, how much profit on each share did she make?
A
$9
B
$3
С.
S2000
D
$6.000

Answers

Answer:

$3

Step-by-step explanation:

Given

Total Cost Price: $12,000

Unit Cost Price= $6

Total Selling Price = $18,000

Required

Determine the profit on each share

First, we need to determine the units of share bought;

Units = Total cost price / Unit Cost Price

[tex]Units = \frac{\$12000}{\$6}[/tex]

[tex]Units = 2000[/tex]

Next is to determine the selling price of each share; This is calculated as follows;

Unit Selling Price = Total Selling Price / Units Sold

[tex]Unit\ Selling\ Price = \frac{\$18000}{\$2000}[/tex]

[tex]Unit\ Selling\ Price = \$9[/tex]

The profit is the difference between the unit cost price and unit selling price

[tex]Profit = Unit\ Selling\ Price - Unit\ Cost\ Price[/tex]

[tex]Profit = \$9 - \$6[/tex]

[tex]Profit = \$3[/tex]

The cost, C, in United States Dollars ($), of cleaning up x percent of an oil spill along the Gulf Coast of the United States increases tremendously as x approaches 100. One equation for determining the cost (in millions $) is:

Answers

Complete Question

On the uploaded image is a similar question that will explain the given question

Answer:

The value of k is  [tex]k = 214285.7[/tex]

The percentage  of the oil that will be cleaned is [tex]x = 80.77\%[/tex]

Step-by-step explanation:

From the question we are told that

   The  cost of cleaning up the spillage is  [tex]C = \frac{ k x }{100 - x }[/tex]  [tex]x \le x \le 100[/tex]

     The  cost of cleaning x =  70% of the oil is  [tex]C = \$500,000[/tex]

   

Now at  [tex]C = \$500,000[/tex] we have  

       [tex]\$ 500000 = \frac{ k * 70 }{100 - 70 }[/tex]

       [tex]\$ 500000 = \frac{ k * 70 }{30 }[/tex]

      [tex]\$ 500000 = \frac{ k * 70 }{30 }[/tex]

      [tex]k = 214285.7[/tex]

Now  When  [tex]C = \$900,000[/tex]

       [tex]x = 80.77\%[/tex]

       

 

During two years in college, a student earned $9,500. The second year she earned $500 more than twice the amount she earned the first year. How much did she earn the first year?

Answers

The answer would be $3000

Find usubscript10 in the sequence -23, -18, -13, -8, -3, ...

Answers

Step-by-step explanation:

utilise the formula a+(n-1)d

a is the first number while d is common difference

Answer:

22

Step-by-step explanation:

Using the formular, Un = a + (n - 1)d

Where n = 10; a = -23; d = 5

U10 = -23 + (9)* 5

U10 = -23 + 45 = 22

Other Questions
An assembly line with 17 tasks is to be balanced. The longest task is 2.4 minutes, and the total time for all tasks is 18 minutes. The line will operate for 450 minutes per day.Required:a. What are the minimum and maximum cycle times? b. What range of daily output is theoretically possible for the line? c. What is the minimum number of workstations needed if the maximum output rate is to be sought?d. What cycle time will provide an output rate of 125 units per day? 1. What is Mary doing just before Patrick gets home?a. She is hastily preparing dinner.b. She is getting groceries from the store.d.She is waiting anxiously for him to arrive.c. She is pacing nervously. Recreate the sequence that occurs in the carbon cycle beginning with carbon dioxide gas. combustion, atmosphere, soil organic matter, fossil fuel, plant biomass. If x1 and x2 are the roots of the equation x^2 +5x-3=0, determine the value of x1^2 + x2^2. I know that I have to use vietas formula, but I am stuck :( any help would be appreciated Mariposa, a young office manager, is trying to exchange text messages with her supervisor, Bill. Although Bill has been the general manager of the business for years, he has never learned how to use the texting function on his cell phone. What barrier to communication is Alexandria experiencing? Bryan decides he wants to help pay for a birthday party for his little brother at the ice rink. It cost $50 to rent the party room and then $4 for each person attending. Bryan only has $100 to spend at the party. a) What are the constraints for this situation? b) Find the domain and range for this situation. Make sure you include all values for each using correct notation. Who was chief Pontiac? A rectangular coil lies flat on a horizontal surface. A bar magnet is held above the center of the coil with its north pole pointing down. What is the direction of the induced current in the coil? which of the following best describes the effect of replacing the graph of y = f(x) with the graph of y= f(x) - 9? a. the graph of y = f(x) will shift up 9 units b. the graph of y = f(x) will shift down 9 units c. the graph of y = f(x) will shift left 9 units d. the graph of y = f(x) will shift right 9 units Zinc is used as a coating for steel to protect the steel from environmental corrosion. If a piece of steel is submerged in an electrolysis bath for 24 minutes with a current of 6.5 Amps, how many grams of zinc will be plated out? The molecular weight of Zn is 65.38, and Zn+2 + 2e Zn. Question 7 options: A) 3.17 g of Zn B) 1.09 g of Zn C) 6.34 g of Zn D) 12.68 g of Zn Becky is offered the two deals below. Deal 1: She will get a quarter on the first day of the week. Each day thereafter for one week, she will receive double what she received on the previous day. Deal 2: She will get $4 each day for 1 week. Which statement is true in every aspect regarding these two deals Which property is shown in the matrix addition below?5-105-70.40-700.4+++6.2-8.5-9.96.2-9.9-8.512021202inverse propertyidentity propertycommutative propertyassociative propertyHelp please! Aryn is a music fan, and she enjoys learning about how speakers and sound systems are wired. She is reading books about electrical circuits, and she has decided she would like to work as an electrician on construction projects to help build new homes. However, she does not want to go to school for very long after finishing high school. What type of training would best prepare Aryn for working in construction without needing many years in school? an apprenticeship done on the job a bachelors degree in engineering a physics class during her last year of high school an after-school program about power tools PLEASE HELP! Find the coordinates of the vertices of the figure after the given transformation: T A. N(1,0),U(1,5),L(3,2),H(1,2) B. N(1,0),U(3,5),L(5,2),H(3,2) C. N(0,2),U(2,3),L(4,0),H(2,4D. N(1,1),U(3,4),L(5,1),H(3,3) What nationalities besides the English began to arrive in America in the late 17th century? what is the equation for the table y=ab^x The process by which management plans, evaluates, and controls long-term investment decisions involving fixed assets is called __________ analysis. Evaluate 3a2 + 4b2 for a =2 and b = 3.O16848O36 On the circle below, tangent line BC is constructed by striking an arc from point D that intersects circle A at point B. The measure of EC is 8 units and other measures are shown on the diagram below. Enter the distance from point D to point B. An array of solar panels produces 9.35 A of direct current at a potential difference of 195 V. The current flows into an inverter that produces a 60 Hz alternating current with Vmax = 166V and Imax = 19.5A. A) What rms power is produced by the inverter? B) Use the rms values to find the power efficiency Pout/Pin of the inverter.