Answer:
a) ω₁ = ω₂ = 3.7 rad/sec
b) Δθ₁ = Δθ₂ = 18.5 rad
c) d₁ = 14.5 m d₂ = 57.5 m
d) Fc1 = 273.9 N Fc2 = 1069.8 N
e) The boy near the outer edge.
Explanation:
a)
Since the merry-go-round is a rigid body, any point on it rotates at the same angular speed.However, linear speeds of points at different distances from the center, are different.Applying the definition of angular velocity, and the definition of angle, we can write the following relationship between the angular and linear speeds:[tex]v = \omega*r (1)[/tex]
Since we know the value of v for the child near the outer edge, and the value of r for this point, we can find the value of the angular speed, as follows:[tex]\omega = \frac{v_{out} }{r_{out} } = \frac{11.5m/s}{3.14m} = 3.7 rad/sec (2)[/tex]
As we have already said, ωout = ωin = 3.7 rad/secb)
Since the angular speed is the same for both childs, the angle rotated in the same time, will be the same for both also.Applying the definition of angular speed, as the rate of change of the angle rotated with respect to time, we can find the angle rotated (in radians) as follows:[tex]\Delta \theta = \omega * t = 3.7 rad/sec* 5.0 sec = 18.5 rad (3)[/tex]⇒ Δθ₁ = Δθ₂ = 18.5 rad.
c)
The linear distance traveled by each child, will be related with the linear speed of them.Knowing the value of the angular speed, and the distance from each boy to the center, we can apply (1) in order to get the linear speeds, as follows:[tex]v_{inn} = \omega * r_{inn} = 3.7 rad/sec * 0.78 m = 2.9 m/s (4)[/tex]
vout is a given of the problem ⇒ vout = 11. 5 m/s
Applying the definition of linear velocity, we can find the distance traveled by each child, as follows:[tex]d_{inn} = v_{inn} * t = 2.9m/s* 5.0 s = 14.5 m (5)[/tex]
[tex]d_{out} = v_{out} * t = 11.5 m/s* 5.0 s = 57.5 m (6)[/tex]
d)
The centripetal force experienced by each child is the force that keeps them on a circular movement, and can be written as follows:[tex]F_{c} = m*\frac{v^{2}}{r} (7)[/tex]
Replacing by the values of vin and rin, since m is a given, we can find Fcin (the force on the boy closer to the center) as follows:[tex]F_{cin} = m*\frac{v_{in}^{2}}{r_{in}} = 25.4 kg* \frac{(2.9m/s)^{2} }{0.78m} = 273.9 N (8)[/tex]
In the same way, we get Fcout (the force on the boy near the outer edge):[tex]F_{cout} = m*\frac{v_{out}^{2}}{r_{out}} = 25.4 kg* \frac{(11.5m/s)^{2} }{3.14m} = 1069.8 N (9)[/tex]
e)
The centripetal force that keeps the boys in a circular movement, is not a different type of force, and in this case, is given by the static friction force.The maximum friction force is given by the product of the coefficient of static friction times the normal force.Since the boys are not accelerated in the vertical direction, the normal force is equal and opposite to the force due to gravity, which is the weight.As both boys have the same mass, the normal force is also equal.This means that for both childs, the maximum possible static friction force, is the same, and given by the following expression:[tex]F_{frs} = \mu_{s} * m* g (10)[/tex]If this force is greater than the centripetal force, the boy will be able to hold on.So, as the centripetal force is greater for the boy close to the outer edge, he will have a more difficult time holding on.Two pieces of amber are hung from threads. Piece A is charged by rubbing piece A with fur. Piece B is charged by rubbing piece B with silk. Nylon is used to rub and charge a third piece of amber. Piece A and B are both repelled by the third piece of amber. This means:____.
Answer:
ieces A and B must also have the same type of charges
Explanation:
In electrostatics, charges of the same sign repel and charges of different signs attract.
If we apply this to our case, we have that part A and C repel each other, therefore they have the same type of charge.
Also part A and C repel each other, therefore they have the same type of charge.
If we use the transitive property of mathematics, pieces A and B must also have the same type of charges
Fill in the blank with the correct word below (from the reading_):
helps you track your progress once you have made a lifestyle
change.
Self-monitoring
Healthy food
Regular xxercise
Goals
Answer:I think it’s self monitoring sorry if wrong
Explanation:
Answer:
It self monitoring
Explanation:
I took the test
Please help. I'm stuck!
What is the mass of a catamaran moving at 7.65 m/s that has a momentum of 530145 kg x m/s?
state four law of photoelectric effect
Answer:
LAW 1 : For a given metal and frequency, the number of photoelectrons emitted is directly proportional to the intensity of the incident radiation.
---------------------------------------------
LAW 2: For a given metal, there exists a certain frequency below which the photoelectric emission does not take place. This frequency is called threshold frequency.
-----------------------------------------------
LAW 3: For a frequency greater than the threshold frequency, the kinetic energy of photoelectrons is dependent upon frequency or wavelength but not on the intensity of light.
-----------------------------------------------
LAW 4: Photoelectric emission is an instantaneous process. The time lag between incidence of radiations and emission of electron is 10^-9 seconds.
Explanation:
Answer:
LAW 1 : For a given metal and frequency, the number of photoelectrons emitted is directly proportional to the intensity of the incident radiation. ... LAW 4: Photoelectric emission is an instantaneous process.
Required
Momentum
The magnitude of the momentum of an object is 64 kg*m/s. If the velocity of the
object is doubled, what will be the magnitude of the momentum of the object? *
32 kg*m/s
64 kg*m/s
128 kg*m/s
256 kg*m/s
Answer:
C) 128 kg*m/s
Explanation:
When you double something you multiply it by 2 most of the time. 64*2=128 or you can add it 64+64=128. Hope this helps.
What do you think about the attached scenario?
A small sphere of reference-grade iron with a specific heat of 447 J/kg K and a mass of 0.515 kg is suddenly immersed in a water-ice mixture. Fine thermocouple wires suspend the sphere, and the temperature is observed to change from 15 to 14C in 6.35 s. The experiment is repeated with a metallic sphere of the same diameter, but of unknown composition with a mass of 1.263 kg. If the same observed temperature change occurs in 4.59 s, what is the specific heat of the unknown material
Answer:
The specific heat of the unknown material is 131.750 joules per kilogram-degree Celsius.
Explanation:
Let suppose that sphere is cooled down at steady state, then we can estimate the rate of heat transfer ([tex]\dot Q[/tex]), measured in watts, that is, joules per second, by the following formula:
[tex]\dot Q = m\cdot c\cdot \frac{T_{f}-T_{o}}{\Delta t}[/tex] (1)
Where:
[tex]m[/tex] - Mass of the sphere, measured in kilograms.
[tex]c[/tex] - Specific heat of the material, measured in joules per kilogram-degree Celsius.
[tex]T_{o}[/tex], [tex]T_{f}[/tex] - Initial and final temperatures of the sphere, measured in degrees Celsius.
[tex]\Delta t[/tex] - Time, measured in seconds.
In addition, we assume that both spheres experiment the same heat transfer rate, then we have the following identity:
[tex]\frac{m_{I}\cdot c_{I}}{\Delta t_{I}} = \frac{m_{X}\cdot c_{X}}{\Delta t_{X}}[/tex] (2)
Where:
[tex]m_{I}[/tex], [tex]m_{X}[/tex] - Masses of the iron and unknown spheres, measured in kilograms.
[tex]\Delta t_{I}[/tex], [tex]\Delta t_{X}[/tex] - Times of the iron and unknown spheres, measured in seconds.
[tex]c_{I}[/tex], [tex]c_{X}[/tex] - Specific heats of the iron and unknown materials, measured in joules per kilogram-degree Celsius.
[tex]c_{X} = \left(\frac{\Delta t_{X}}{\Delta t_{I}}\right)\cdot \left(\frac{m_{I}}{m_{X}} \right) \cdot c_{I}[/tex]
If we know that [tex]\Delta t_{I} = 6.35\,s[/tex], [tex]\Delta t_{X} = 4.59\,s[/tex], [tex]m_{I} = 0.515\,kg[/tex], [tex]m_{X} = 1.263\,kg[/tex] and [tex]c_{I} = 447\,\frac{J}{kg\cdot ^{\circ}C}[/tex], then the specific heat of the unknown material is:
[tex]c_{X} = \left(\frac{4.59\,s}{6.35\,s} \right)\cdot \left(\frac{0.515\,kg}{1.263\,kg} \right)\cdot \left(447\,\frac{J}{kg\cdot ^{\circ}C} \right)[/tex]
[tex]c_{X} = 131.750\,\frac{J}{kg\cdot ^{\circ}C}[/tex]
Then, the specific heat of the unknown material is 131.750 joules per kilogram-degree Celsius.
Write the properties of Non Metals and the families containig non Metals.
Non-Malleable and Ductile: Non-metals are very brittle, and cannot be rolled into wires or pounded into sheets. Conduction: They are poor conductors of heat and electricity. Luster: These have no metallic luster and do not reflect light.
Group 15, the nitrogen family, contains two nonmetals: nitrogen and phosphorus. These non-metals usually gain or share three electrons when reacting with atoms of other elements. Group 16, the oxygen family, contains three nonmetals: oxygen, sulfur, and selenium.
Elements: Nitrogen; Oxygen; Phosphorus; Selenium...
3. What is the SI unit of force? What is this unit equivalent to in terms of fundamental units?
4. Why is force a vector quantity?
Answer:
force = mass * acceleration
therefore the SI unit is kg*m/s2 or newton's
it's a vector quantity because it has both direction(acceleration) and size (mass)
As a laudably skeptical physics student, you want to test Coulomb's law. For this purpose, you set up a measurement in which a proton and an electron are situated 865 nm from each other and you study the forces that the particles exert on each other. As expected, the predictions of Coulomb's law are well confirmed. You find that the forces are attractive and the magnitude of each force is:______
Answer:
force F = 1.66 × [tex]10^{-13}[/tex] N
Explanation:
given data
proton and an electron = 865 nm
solution
we get here force that is express as
force F = k q1 q2 ÷ r² ......................1
put here value and we get
force F = 9 × [tex]10^{9}[/tex] × [tex]\frac{1.6\times (10^{-19})^{2}}{865 \times (10^{-9})^{2}}[/tex]
force F = 1.66 × [tex]10^{-13}[/tex] N
The radius of the Sun is 6.96 x 108 m and the distance between the Sun and the Earth is roughtly 1.50 x 1011 m. You may assume that the Sun is a perfect sphere and that the irradiance arriving on the Earth is the value for AMO, 1,350 W/m2. Calculate the temperature at the surface of the Sun.
Answer:
5766.7 K
Explanation:
We are given that
Radius of Sun , R=[tex]6.96\times 10^{8} m[/tex]
Distance between the Sun and the Earth, D=[tex]1.50\times 10^{11}m[/tex]
Irradiance arriving on the Earth is the value for AMO=[tex]1350W/m^2[/tex]
We have to find the temperature at the surface of the Sun.
We know that
Temperature ,T=[tex](\frac{K_{sc}D^2}{\sigma R^2})^{\frac{1}{4}}[/tex]
Where [tex]K_{sc}=1350 W/m^2[/tex]
[tex]\sigma=5.67\times 10^{-8}watt/m^2k^4[/tex]
Using the formula
[tex]T=(\frac{1350\times (1.5\times 10^{11})^2}{5.67\times 10^{-8}\times (6.96\times 10^{8})^2})^{\frac{1}{4}}[/tex]
T=5766.7 K
Hence, the temperature at the surface of the sun=5766.7 K
An electric range has a constant current of 10 A entering the positive voltage terminal with a voltage of 110 V. The range is operated for two hours, (a) Find the charge in coulombs that passes through the range, (b) Find the power absorbed by the range, (c) If electric energy costs 12 cents per kilowatt-hour, determine the cost of operating the range for two hours.
Answer:
A. 72000 C
B. 1100 W
C. 26.4 cents.
Explanation:
From the question given above, the following data were obtained:
Current (I) = 10 A
Voltage (V) = 110 V
Time (t) = 2 h
A. Determination of the charge.
We'll begin by converting 2 h to seconds. This can be obtained as follow:
1 h = 3600 s
Therefore,
2 h = 2 h × 3600 s / 1 h
2 h = 7200 s
Thus, 2 h is equivalent to 7200 s.
Finally, we shall determine the charge. This can be obtained as follow:
Current (I) = 10 A
Time (t) = 7200 s
Charge (Q) =?
Q = It
Q = 10 × 7200
Q = 72000 C
B. Determination of the power.
Current (I) = 10 A
Voltage (V) = 110 V
Power (P) =?
P = IV
P = 10 × 110
P = 1100 W
C. Determination of the cost of operation.
We'll begin by converting 1100 W to KW. This can be obtained as follow:
1000 W = 1 KW
Therefore,
1100 W = 1100 W × 1 KW / 1000 W
1100 W = 1.1 KW
Thus, 1100 W is equivalent to 1.1 KW
Next, we shall determine the energy consumption of the range. This can be obtained as follow:
Power (P) = 1.1 KW
Time (t) = 2 h
Energy (E) =?
E = Pt
E = 1.1 × 2
E = 2.2 KWh
Finally, we shall determine the cost of operation. This can be obtained as follow:
1 KWh cost 12 cents.
Therefore, 2.2 KWh will cost = 2.2 × 12
= 26.4 cents.
Thus, the cost of operating the range for 2 h is 26.4 cents.
Why does it rain more in West Ferris than in East Ferris? Explain your answer.
Answer:
This idea helps students explain why more rain forms over West Ferris than East Ferris. ... Therefore, when students explain that water vapor condenses higher in the atmosphere, they are actually explaining that water vapor condenses high in the troposphere, which is relatively low in the atmosphere.
Explanation:
Plz mark me brainliest thank u> have a good day
25 points!
A 6 kg object accelerates from 5 m•s to 25 m•s in 30 seconds. What was the net force acting on the
object? Give your answer in Newtons to one significant figure and without a unit.
(Show Work)
Answer:
6N
Explanation:
Given parameters:
Mass of object = 6kg
Initial velocity = 5m/s
Final velocity = 25m/s
Time = 30s
Unknown:
Net force acting on the object = ?
Solution:
From Newton's second law of motion:
Force = mass x acceleration
Acceleration is the rate of change of velocity with time
Acceleration = [tex]\frac{Final velocity - Initial velocity }{time}[/tex]
Force = mass x [tex]\frac{Final velocity - Initial velocity }{time}[/tex]
So;
Force = 6 x [tex]\frac{25 - 5}{30}[/tex] = 6N
A particle with charge Q and mass M has instantaneous speed uy when it is at a position where the electric potential is V. At a later time, the particle has moved a distance R away to a position where the electric potential is V2 ) Which of the following equations can be used to find the speed uz of the particle at the new position?
a. 1/2M(μ2^2-μ1^2)=Q (v1-v2)
b. 1/2M(μ2^2-μ1^2)^2=Q(v1-v2)
c. 1/2Mμ2^2=Qv1
d. 1/2Mμ2^2=1/4πx0 (Q^2/R)
Answer:
A
Explanation:
Ke = 1/2 MV^2
How could a change in straight line motion due to unbalanced forces be predicted from an understanding of inertia?
Answer:
If the force goes in the direction of movement, the speed must increase and if the net force goes in the opposite direction, the speed must decrease.
Explanation:
The principle of inertia or Newton's first law states that every body remains static or with constant velocity if there is no net force acting on it.
Based on this principle, if we have a net force, the velocity of the body changes by having an unbalanced force acting.
If the force goes in the direction of movement, the speed must increase and if the net force goes in the opposite direction, the speed must decrease.
What energy store is in the torch
BEFORE it gets switched on?
Answer:
Chemical energy
Explanation:
The energy in the torch is stored as chemical energy before the torch gets switch on.
The chemical energy energy in the battery of cell will power the cell and allows it to produce light.
Chemical energy is a form of potential energy. The electrolytes within the battery are capable of producing electric current. So the chemical energy is transformed into electrical energy which is used to produce the light of the torch.2.19 The drag characteristics of a blimp traveling at 4 m/s are to be studied by experiments in a water tunnel. The prototype is 20 m in diameter and 110 m long. The model is one-twentieth scale. What velocity must the model have for dynamic similarity
Answer:
[tex]Vm=0.894m/s[/tex]
Explanation:
From the question we are told that
Velocity if travel [tex]v=4m/s[/tex]
Diameter of prototype [tex]d_1=20m[/tex] and [tex]d_2=110m[/tex]
Scale ratio=[tex]\frac{1}{20}[/tex]
Generally Velocity of of the model using Froud's model is mathematically given as
[tex]Fm=Fp[/tex]
[tex]\frac{Vm}{\sqrt{Lmg}} =\frac{Vp}{\sqrt{Lpg}}[/tex]
[tex]Vm=Vp*\frac{Vp}{\sqrt{Lpg} }[/tex]
[tex]Vm=4*\frac{1}{\sqrt{20}}[/tex]
[tex]Vm=0.894m/s[/tex]
How much force is needed to accelerate a 65 kg rider AND her 215 kg motor scooter 8 m/s?? (treat
the masses as like terms)
Answer:
Force = 2240 Newton.
Explanation:
Given the following data;
Mass A= 65kg
Mass B = 215kg
Acceleration = 8m/s²
To find the force;
Force is given by the multiplication of mass and acceleration.
Mathematically, Force is;
[tex] F = ma[/tex]
Where;
F represents force.
m represents the mass of an object.
a represents acceleration.
First of all, we would have to find the total mass.
Total mass = Mass A + Mass B
Total mass = 65 + 215
Total mass = 280kg
Substituting into the equation, we have
[tex] Force = 280 * 8 [/tex]
Force = 2240 Newton.
Does changing the height of point C affect the speed of the coaster car at point D?
Without friction, NO.
The speed at D depends only on the difference in height between A and D. Whatever happens between them doesn't matter.
The speed of the coaster car at point D will be affected if the height of point C is changed.
Potencial Energy:
It is the enrgy in a body due to the position of differnt part of the object or system.
As we increase the the hight of the car the potetial enrgy increase, the gravitational acceleration on car will be more due to the high of the point C.
Therefore, the speed of the coaster car at point D will be affected if the height of point C is changed.
To know more about speed of the coaster car,
https://brainly.com/question/9178285
The pickup truck has a changing velocity because the pickup truck
A.can accelerate faster than the other two vehicles
B.is traveling in the opposite direction from the other two vehicles
C.is traveling on a curve in the road
D.needs a large amount of force to move
please get right i need awnser today
Answer:
C. Is traveling on a curve in the road
Hope this helps :3
The pick up truck has a changing velocity because, it is travelling on a curve in the road. A change in direction results in its change in velocity because, velocity is a vector quantity.
What is velocity ?Velocity is a physical quantity that measures the distance covered by an object per unit time. It is a vector quantity, thus having magnitude as well direction.
The rate of change in velocity is called acceleration of the object. Like velocity, acceleration also is a vector quantity. Thus, a change in magnitude or direction or change in both for velocity make the object to accelerate.
Here, all the three vehicles are travelling with the same velocity. But, the truck is moving to a curve on the road. The curvature in the path will make a change in its velocity.
Find more on velocity:
https://brainly.com/question/16379705
#SPJ6
The image related with this question is attached below:
Fluids
A = 2804 cm3 B = 2862 cm2 C = 2916 cm3
Three separate fluids, A, B, and C have been selected at random and each initially fills a 3000 cm3 volume at atmospheric pressure. A gage pressure of 6 x 107 N/m2 is then applied to each fluid. The final volume is given below. Determine which fluids were selected from the given list.
Acetone E = 0.92 GPa Glycerin E = 4.35 GP
Water E = 2.15 GPa Mercury E = 28.5 GPa
Benzene E = 1.05 GPa Sulfuric Acid E = 3.0 GPa
Ethyl Alcohol E = 1.06 GPa Gasoline E = 1.3 GPa
Petrol E = 1.45 GPa Seawater E = 2.34 GPa
Answer:
Explanation:
Fluid A :
Δ V = Change in volume = (3000 - 2804) x 10⁻⁶ m³ = 196 x 10⁻⁶ m³
volume strain = Δ V / V = 196 x 10⁻⁶ / 3000 x 10⁻⁶
= .06533
Δ P = increase in pressure = 6 x 10⁷ Pa
E = Δ P / volume strain = 6 x 10⁷ / .06533 = 91.84 x 10⁷ Pa = .92 GPa .
It is Acetone .
Fluid B :
Δ V = Change in volume = (3000 - 2862) x 10⁻⁶ m³ = 138 x 10⁻⁶ m³
volume strain = Δ V / V = 138 x 10⁻⁶ / 3000 x 10⁻⁶
= .046
Δ P = increase in pressure = 6 x 10⁷ Pa
E = Δ P / volume strain = 6 x 10⁷ / .046 = 130.43 x 10⁷ Pa = 1.3 GPa .
It is Gasoline .
Fluid C :
Δ V = Change in volume = (3000 - 2916) x 10⁻⁶ m³ = 84 x 10⁻⁶ m³
volume strain = Δ V / V = 84 x 10⁻⁶ / 3000 x 10⁻⁶
= .028
Δ P = increase in pressure = 6 x 10⁷ Pa
E = Δ P / volume strain = 6 x 10⁷ / .028 = 214.28 x 10⁷ Pa = 2.14 GPa .
It is Water .
A car enters a 105-m radius flat curve on a rainy day when the coefficient of static friction between its tires and the road is 0.4. What is
the maximum speed which the car can travel around the curve without sliding
Static friction (magnitude Fs) keeps the car on the road, and is the only force acting on it parallel to the road. By Newton's second law,
Fs = m a = W a / g
(a = centripetal acceleration, m = mass, g = acceleration due to gravity)
We have
a = v ² / R
(v = tangential speed, R = radius of the curve)
so that
Fs = W v ² / (g R)
Solving for v gives
v = √(Fs g R / W)
Perpendicular to the road, the car is in equilibrium, so Newton's second law gives
N - W = 0
(N = normal force, W = weight)
so that
N = W
We're given a coefficient of static friction µ = 0.4, so
Fs = µ N = 0.4 W
Substitute this into the equation for v. The factors of W cancel, so we get
v = √((0.4 W) g R / W) = √(0.4 g R) = √(0.4 (9.80 m/s²) (105 m)) ≈ 20.3 m/s
If a cyclist travels 30 km in 2 h, What is her average speed?
Answer:
15km/h
Explanation:
→ Speed = Distance ÷ Time
30 ÷ 2 = 15km/h
Two spherical objects are separated by a distance that is 1.08 x 10-3 m. The objects are initially electrically neutral and are very small compared to the distance between them. Each object acquires the same negative charge due to the addition of electrons. As a result, each object experiences an electrostatic force that has a magnitude of 3.89 x 10-21 N. How many electrons did it take to produce the charge on one of the objects
Answer:
the charge on the object is 71.043×10^-20 C and the number of electron is 4.44
Explanation:
from coulumbs law, The force that is acting over both charge can be computed as
F=( kq1q2)/r^2..............eqn(1)
Where
F=electrostatic force= 3.89 x 10-21 N
k= column constant= 9 x 10^9 Nm^2/C^2
q1 and q2= magnitude of the charges
r= distance between the charges= 1.08 x 10-3 m.
Since both charges are experiencing the same force, eqn(1) can be written as
F=( kq^2)/r^2.
We can make q subject of the formula
q= √(Fr^2)/k
= √[(3.89 x 10^-21× (1.08 x 10^-3)^2]/8.99 x 10^9
q= 71.043×10^-20 C
Hence, the charge is 71.043×10^-20 C
From quantization law, the number of electron can be computed as
N=q/e
Where
N= number of electron
q= charges
=1.6×10^-19C
N=71.043×10^-20/1.6×10^-19
=4.44
Hence, the charge on the object is 71.043×10^-20 C and the number of electron is 4.44
Which of the following is a mixture?
a air
biron
Chydrogen
d nickel
Answer:
it will option option A hope it helps
While investigating Kirchhoff's Laws, you begin observing a blackbody, such as a star, from Earth using advanced technology that can analyze spectra. While pointing it at the star with nothing between you and the star, you observe a full spectrum. You come back and repeat this same experiment a year later using the same star, except this time you observe an absorption spectrum. What is the most likely explanation for this
Answer:
the second time there is a gas between you and the star,
Explanation:
When you observe the star for the first time you do not have a given between you and the star, therefore you observe the emission spectrum of the same that is formed by lines of different intensity and position that indicate the type and percentage of the atoms that make up the star.
When you observe the same phenomenon for the second time there is a gas between you and the star, this gas absorbs the wavelengths of the star that has the same energies and the atomisms and molecular gas, therefore these lines are not observed by seeing a series of dark bands,
The information obtained from the two spectra is the same, the type of atoms that make up the star
calculate ine gravitational potential energy of the ball using pe=m×g×h.(use g=9.8 n/kg)
A 4.0-kilogram ball held 1.5 meters above the floor has ________ joules of potential energy
Answer:
58.8J
Explanation:
Given parameters;
Mass of ball = 4kg
Height above the floor = 1.5m
g = 9.8n/kg
Unknown:
Potential energy = ?
Solution:
The potential energy of a body is the energy due to the position of the body.
It is mathematically expressed as:
Potential energy = mass x acceleration due to gravity x height
Potential energy = 4 x 9.8 x 1.5 = 58.8J
1. (6x + 8)(5x - 8)
a. 30x2 + 49x + 20
2. (5x + 6(5x - 5)
b. 24x3 + 8x2 + 6x + 4
3. (6x + 3)(6x - 4)
c. 25x2 + 5x - 30
4. (6x + 5)(5x + 5)
d. 30x2 - 8x - 64
e. 36x2 - 6x - 1
5. (4x + 2) (6x2 - x + 2)
Answer:
form 1 question??????????
A circus tightrope walker weighing 800 N is standing in the middle of a 15 meter long cable stretched between two posts. The cable was originally horizontal. The lowest point of the cable is now at his feet and is 30 cm below the horizontal. Assume the cable is massless. What is the tension in the cable
Answer:
T = 10010 N
Explanation:
To solve this problem we must use the translational equilibrium relation, let's set a reference frame
X axis
Fₓ-Fₓ = 0
Fₓ = Fₓ
whereby the horizontal components of the tension in the cable cancel
Y Axis
[tex]F_{y} + F_{y} - W =0[/tex]
2[tex]F_{y}[/tex] = W
let's use trigonometry to find the angles
tan θ = y / x
θ = tan⁻¹ (0.30 / 0.50 L)
θ = tan⁻¹ (0.30 / 0.50 15)
θ = 2.29º
the components of stress are
F_{y} = T sin θ
we substitute
2 T sin θ = W
T = W / 2sin θ
T = [tex]\frac{ 800}{ 2sin 2.29}[/tex]
T = 10010 N