Answer:
The distance between the campsites was 70 miles.
Step-by-step explanation:
Since two groups were moving from one campsite to another, and the first group traveled the distance in 5 hours while the second group finished in 7 hours, to find the distance between the campsites if the first group was going 4mph faster than the second group, the following calculation must be performed:
X + 4 = 5
X = 7
4 x 7 = 28
(4 + 4) x 5 = 40
10 x 7 = 70
(10 + 4) x 5 = 70
Therefore, the distance between the campsites was 70 miles.
Choose which triangle goes into the right category.
Answer:
obtuse cant be a right angle
Step-by-step explanation:
in order to be obtuse you have to be more than 90 dagrees
: Find absolute minimum and maximum values of (, ) = 2
2 +
4 + 4
On the close triangular region R bounded by the lines = −2, = 0, = 2
write an equation rectangular room 3 meters longer than it is wide and its perimeter is 18 meters
width = x
length = 3 + x
perimeter = x + x + ( 3 + x ) + (3+x)
18 = x + x + ( 3 + x ) + (3+x)
x + x + ( 3 + x ) + (3+x) = 18
6 + 4x = 18
4x = 12
x = 3
Answer the following.
(a) Find an angle between and that is coterminal with .
(b) Find an angle between and that is coterminal with . Give exact values for your answers.
I believe this is your question:
A.) find an angle between 0 degrees and 360 degrees that is coterminal with 570 degrees.
Answer:
210 degrees
Explanation:
Coterminal angles begin on the same initial side and end or terminate on the same side as an angle. Example 45 degrees and 405 degrees are coterminal angles because they both begin and end on the same side.
To find an angle between 0 and 360 that is coterminal with 570 degrees, w simply subtract 360 degrees from 570, hence:
570-360=210 degrees
570 degrees is coterminal with 210 degrees
Suppose Z has a normal distribution with a mean of 10.0 and a standard deviation of 5.0 what is the P(2.0
Answer:
.0548
Step-by-step explanation:
(2-10)/5= -1.6
go to a ztable and get .0548
What is the next three-term of the geometric sequence? 60, 30, 15...?
Answer:
7.5
Step-by-step explanation:
it is feometeic progression
r=0.5
Use the formula for the volume of a cube given by
V = s3
where s is the length of one of the sides. This formula yields the volume in cubic units.
Suppose a certain sugar cube has a side that measures 5/9 inches per side. What is the volume of this sugar cube (in in3)? Round the result to three decimal places.
Answer:
The volume of the cube is 0.171 cubic inches.
Step-by-step explanation:
The volume of a cube given by :
[tex]V=s^3[/tex]
Where
s is the length of one of the sides.
We need to find the volume of the sugar cube if its side is 5/9 inches per side.
So,
[tex]V=(\dfrac{5}{9})^3\\\\V=0.171\ inches^3[/tex]
So, the volume of the cube is 0.171 cubic inches.
16. Risa wants to order business cards. A print-
ing company determines the cost (C) to
the customer using the following function,
where b the number of boxes of cards and
n= the number of ink colors.
C= $25.60b + $14.00b(n - 1)
If Risa orders 4 boxes of cards printed in 3
colors, how much will the cards cost?
OA. $214.40
OB. $168.00
C. $144.40
OD. $102.40
Answer:
A - $214.40
Step-by-step explanation:
Since b is the number of boxes of cards and n is the number of ink colors, and we're given the number of boxes of cards, and number of ink colors, we plug in:
4= b
and
3 = n
into the given equation to solve for C.
Using the order of operations we start inside our parentheses and work from there:
C= $25.60*4 + $14.00*4(3 - 1)
C= $25.60*4 + $14.00*4(2)
C= $102.40 + $112
C= $214.40
4. How many square feet of carpet are
needed?
The floor plan below shows the Green family's
basement
28 ft.
12 ft.
121
6 ft.
5 ft.
5 ft.
11 ft.
11 ft.
Answer:
Step-by-step explanation:
It is a 28×12 rectangle, minus a 5×6 cutout.
area of 28×12 rectangle = 336 ft²
area of 5×6 cutout = 30 ft²
area of carpet = 336-30 = 330 ft²
At what x value does the function given below have a hole?
f(x)=x+3/x2−9
Answer:
hole at x=-3
Step-by-step explanation:
The hole is the discontinuity that exists after the fraction reduces. (Still doesn't exist for original of course)
The discontinuities for this expression is when the bottom is 0. x^2-9=0 when x=3 or x=-3 since squaring either and then subtracting 9 would lead to 0.
So anyways we have (x+3)/(x^2-9)
= (x+3)/((x-3)(x+3))
Now this equals 1/(x-3) with a hole at x=-3 since the x+3 factor was "cancelled" from the denominator.
Tina conducted a survey to find the favorite weekend activity of the people in her state. She asked 10 of her neighbors what their favorite weekend activity is. Tina concludes that boating is the favorite weekend activity of the people in her state because 70% of her neighbors like to go boating on weekends.
Use at least two sentences to explain why Tina's sample may not be valid. Make sure to use facts to support your answe
Tina's sample may not be valid, because the average number of people in a state is approximately 6.3 million. Her survey was just carried out in her neighborhood and not in the entire state, so we cant judge a state with just a neighborhood.
Meaning of neighborhood and stateA neighborhood is a place, district, community that is within a town or city. it can be said to be the area of place that is close or that surrounds an individual.
A state is a territory or place that has a government that is in charge of an organized political community.
In conclusion, Tina's sample may not be valid
Learn more about neighborhood :https://brainly.com/question/6322160
#SPJ2
The sum of two numbers is 85. If four times the smaller number is subtracted from the larger number, the result is 5. Find the two numbers.
The larger number is
The smaller number is
Answer:
the larger number is 69
the smaller number is 16
Step-by-step explanation:
x is the smaller number
y is the larger number
x + y = 85
y - 4x = 5
y = 5 + 4x
x + 5 + 4x = 85
5x = 80
x = 16
y = 69
The following data show the number of cars passing through a toll booth during a certain time period over 15 days. 18 19 17 17 24 18 21 18 19 15 22 19 23 17 21 Identify the corresponding dotplot.
Answer: third from the top
Step-by-step explanation:
The correct answer is third from the top.
Arranging numbers in ascending order:
15 17 17 17 18 18 18 19 19 19 21 21 22 23 24
Let's count how many times each number occurs in this series of numbers.
row of numbers
15 +
16 not
17 + + +
18 + + +
19 + + +
20 not
21 + +
22 +
23 +
24 +
25 not
. A small home business is set up with an investment of Birr 1,000,000 for equipment. The business manufactures a product at a cost of Birr 60 per unit. If the product sells for Birr 140, how many units must be sold before the business breaks even?
Answer:
12,500
Step-by-step explanation:
P = R-E
b.e.p : P=0
R=E
140x = 1000000 + 60 x
80x = 1000000
x=12,500
if x+y=12 and xy =27,then find the value of x^2+y^2
PLEASE HELP !
Answer:
90
Step-by-step explanation:
=> x + y = 12
=> x² + y² + 2xy = 144
=> x² + y² + 2 * 27 = 144
=> x² + y² = 144 - 54
=> x² + y² = 90
Jerome is cooking dinner. He needs 8 ounces of broccoli for each person.
Part A: Jerome is not sure how many people will come to dinner. Write an expression with a variable that represents the amount of broccoli Jerome needs for dinner. Identify what the variable represents.
Part B: If Jerome has 32 ounces of broccoli, how many people can he feed? Create an equation and show all work to solve it.
Answer:
Step-by-step explanation:
Part A.....let P be the number of people that will show up.....so....
The total amount of broccoli needed (in ounces) = 8P ounces
Part B
32 = 8P divide both sides by 8
4 = P so.....4 people can be fed.....!!!
Step-by-step explanation:
what is the simplified form of the following expression 3 sqrt 4x/5
Answer:
Kindly check the attached picture
Step-by-step explanation:
The solution to the problem has been explicitly solved in the picture attached below :
We need to find a number that makes the denominator a perfect cube in other to simplify the expression which is 25/25.
Kindly check the attached picture for detailed explanation
AB is a diameter of Circle O. Find the measure of BCA
Answer:
∠ BCA = 90°
Step-by-step explanation:
∠ BCA is an angle in the semicircle and equals 90°
Matthew participates in a study that is looking at how confident students at SUNY Albany are. The mean score on the scale is 50. The distribution has a standard deviation of 10 and is normally distributed. Matthew scores a 65. What percentage of people could be expected to score the same as Matthew or higher on this scale?
a) 93.32%
b) 6.68%
c) 0.07%
d) 43.32%
Answer:
b) 6.68%
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
The mean score on the scale is 50. The distribution has a standard deviation of 10.
This means that [tex]\mu = 50, \sigma = 10[/tex]
Matthew scores a 65. What percentage of people could be expected to score the same as Matthew or higher on this scale?
The proportion is 1 subtracted by the p-value of Z when X = 65. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{65 - 50}{10}[/tex]
[tex]Z = 1.5[/tex]
[tex]Z = 1.5[/tex] has a p-value of 0.9332.
1 - 0.9332 = 0.0668
0.0668*100% = 6.68%
So the correct answer is given by option b.
can anyone help with this please !!!!
Answer:
"Add equations A and B to eliminate [tex]y[/tex]. Add equations A and C to eliminate [tex]y[/tex]".
Step-by-step explanation:
Let be the following system of linear equations:
[tex]4\cdot x + 4\cdot y + z = 24[/tex] (1)
[tex]2\cdot x - 4\cdot y +z = 0[/tex] (2)
[tex]5\cdot x - 4\cdot y - 5\cdot z = 12[/tex] (3)
1) We eliminate [tex]y[/tex] by adding (1) and (2):
[tex](4\cdot x + 2\cdot x) +(4\cdot y - 4\cdot y) + (z + z) = 24 + 0[/tex]
[tex]6\cdot x +2\cdot z = 24[/tex] (4)
2) We eliminate [tex]y[/tex] by adding (1) and (3):
[tex](4\cdot x + 5\cdot x) +(4\cdot y - 4\cdot y) +(z -5\cdot z) = (24 + 12)[/tex]
[tex]9\cdot x -4\cdot z = 36[/tex] (5)
Hence, the correct answer is "Add equations A and B to eliminate [tex]y[/tex]. Add equations A and C to eliminate [tex]y[/tex]".
A person is standing close to the edge on a 56 foot building and throws the ball vertically upward. The quadratic function h(t)=-16^2+104t+56 models the balls height above the ground,h(t),in feet, T seconds after it was thrown
what is the maximum height of ball.=
How many seconds did it take to hit the ground=
Please help!
Answer:
Part 1)
225 feet.
Part 2)
7 seconds.
Step-by-step explanation:
The height h(t) of the ball above the ground after t seconds is modeled by the function:
[tex]h(t)=-16t^2+104t+56[/tex]
Part 1)
We want to determine the maximum height of the ball.
Notice that the function is a quadratic with a negative leading coefficient, so its maximum will be at its vertex point.
The vertex of a parabola is given by:
[tex]\displaystyle \text{Vertex} = \left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)[/tex]
In this case, a = -16, b = 104, and c = 56.
Find the x- (or rather t-) coordinate of the vertex. So:
[tex]\displaystyle t=-\frac{(104)}{2(-16)}=\frac{104}{32}=\frac{13}{4}=3.25\text{ seconds}[/tex]
In other words, the ball reaches its maximum height after 3.25 seconds.
To find the maximum height, substitute this value back into the function. Hence:
[tex]\displaystyle h(3.25)=-16(3.25)^2+104(3.25)+56=225\text{ feet}[/tex]
The maximum height of the ball is 225 feet in the air.
Part 2)
We want to find the amount of time it took for the ball to hit the ground.
When the ball hit the ground, its height above the ground is zero. Therefore, we can set h(t) to 0 and solve for t:
[tex]0=-16t^2+104t+56[/tex]
We can simplify a bit. Divide both sides by -8:
[tex]0=2t^2-13t-7[/tex]
We can factor. Find two numbers that multiply to 2(-7) = -14 and add to -13.
-14 and 1 works! Therefore, split the second term into -14 and 1:
[tex]\displaystyle 0=2t^2-14t+t-7[/tex]
Factor out a 2t from the first two terms and group the last two terms:
[tex]0=2t(t-7)+(t-7)[/tex]
Factor by grouping:
[tex]0=(2t+1)(t-7)[/tex]
Zero Product Property:
[tex]2t+1=0\text{ or } t-7=0[/tex]
Solve for each case:
[tex]\displaystyle t=-0.5\text{ or } t=7[/tex]
Since time cannot be negative, we can ignore the first case.
Therefore, it takes seven seconds for the ball to hit the ground.
There are 48 students o the school bus, 28 girls and 20 boys. what is the ratio of boys ad girls on the bus ?
Step-by-step explanation:
28:20
Once simplified its 7:5
How long will it take 500 dollars to double if it is invested at 7% interest compounded semi-annually
Answer:
11 half years
Step-by-step explanation:
The formula for compound interest is
A = P(1+r/n)^(nt), with r representing the interest rate, n being the number of times interest is applied over the time period, and t being the amount of time periods.
If we make the time period a half year (so interest is compounded once per time period), n=2. Then, our interest rate is 7%, or 0.07 (to convert from percent to decimal, simply divide by 100). Our starting amount is 500, and we want it to double, making it 1000. Our formula is thus
1000 = 500 (1+0.07)^(t)
divide both sides by 500
2 = (1+0.07)^(t)
2 = (1.07)^(t)
Using logarithms, we can say that
[tex]log_{1.07} 2 = t[/tex]
and using a calculator, we get
10.24 = t
Since interest is only compounded once per time period, though, we have to round up to make sure it doubles, so t = 11
Need answer urgently
Answer:
x = -2; y = 1
Step-by-step explanation:
See picture below.
We are told matrices B is the inverse of matrix A.
The product of a matrix and its inverse is the identity matrix.
what is the formula for triangle
Answer:
BH/2
Step-by-step explanation:
For the area of the triangle, (BH)/2. B=base and H=height
Peter is 8 years younger than Alex. In 9 years time, the sum of their ages will be 76 . How old is Alex now?
Answer:
Peter is a-8 in 9 years, (a-8)+ 9+ a+ 9= 76
Answer:
P = 25
A = 33
Step-by-step explanation:
P + 8 = A
P + 9 + A + 9 = 76
P + A = 58
~~~~~~~~~~~~~~
P = 58 - A
P = 58 - P - 8
2 P = 50
P = 25
A = 33
Suppose the sales (1000s of $) of a fast food restaurant are a linear function of the number of competing outlets within a 5 mile radius and the population (1000s of people) within a 1 mile radius. The regression equation quantifying this relation is (sales)
Answer:
[tex]Sales = 86.749[/tex]
Step-by-step explanation:
Given
[tex]Sales = 0.845*(competitors) + 5.79*(population) + 13.889[/tex]
[tex]Competitors = 4[/tex]
[tex]Population = 12000[/tex]
See comment for complete question
Required
The sales
We have:
[tex]Sales = 0.845*(competitors) + 5.79*(population) + 13.889[/tex]
Substitute values for competitors and population
[tex]Sales = 0.845*4 + 5.79*12 + 13.889[/tex]
[tex]Sales = 3.38 + 69.48 + 13.889[/tex]
[tex]Sales = 86.749[/tex]
one strip is cut into 9 equal bars shade 1/3:of strip
hiiksbsjxbxjsoahwjsissnsks
The sum of three numbers is 3. The first number minus the second plus the third is -3. The first minus the third is 1 more than the second.
Find the numbers. What is the first number? What is the second number? What is the third number?
Answer: The first number is 2, the second number is 3 and the third number is -2
Step-by-step explanation:
Let the first number be 'x', the second number be 'y' and the third number be 'z'
The equations according to the question becomes:
⇒ x + y + z = 3 ....(1)
⇒ x - y + z = -3 ....(2)
⇒ x - z = 1 + y ....(3)
Rearranging equation 3:
⇒ x - y = 1 + z .....(4)
Putting in equation 2:
⇒ 1 + z + z = -3
⇒ 1 + 2z = -3
⇒ z = -2
Putting this value in equation 4 and equation 1, we get:
⇒ x - y = -1
⇒ x + y = 5
Cancelling 'y' by eliminiation method and equation becomes:
⇒ 2x = 4
⇒ x = 2
Putting value of 'x' and 'z' in equation 1:
⇒ 2 + y - 2 = 3
⇒ y = 3
Hence, the first number is 2, the second number is 3 and the third number is -2
Use reduction of order to find a second linearly independent solution
(2x+5)y′′−4(x+3)y′+4y=0,x>−52,y1=e2x
Given that exp(2x) is a solution, we assume another solution of the form
y(x) = v(x) exp(2x) = v exp(2x)
with derivatives
y' = v' exp(2x) + 2v exp(2x)
y'' = v'' exp(2x) + 4v' exp(2x) + 4v exp(2x)
Substitute these into the equation:
(2x + 5) (v'' exp(2x) + 4v' exp(2x) + 4v exp(2x)) - 4 (x + 3) (v' exp(2x) + 2v exp(2x)) + 4v exp(2x) = 0
Each term contains a factor of exp(2x) that can be divided out:
(2x + 5) (v'' + 4v' + 4v) - 4 (x + 3) (v' + 2v) + 4v = 0
Expanding and simplifying eliminates the v term:
(2x + 5) v'' + (4x + 8) v' = 0
Substitute w(x) = v'(x) to reduce the order of the equation, and you're left with a linear ODE:
(2x + 5) w' + (4x + 8) w = 0
w' + (4x + 8)/(2x + 5) w = 0
I'll use the integrating factor method. The IF is
µ(x) = exp( ∫ (4x + 8)/(2x + 5) dx ) = exp(2x - log|2x + 5|) = exp(2x)/(2x + 5)
Multiply through the ODE in w by µ :
µw' + µ (4x + 8)/(2x + 5) w = 0
The left side is the derivative of a product:
[µw]' = 0
Integrate both sides:
∫ [µw]' dx = ∫ 0 dx
µw = C
Replace w with v', then integrate to solve for v :
exp(2x)/(2x + 5) v' = C
v' = C (2x + 5) exp(-2x)
∫ v' dx = ∫ C (2x + 5) exp(-2x) dx
v = C₁ (x + 3) exp(-2x) + C₂
Replace v with y exp(-2x) and solve for y :
y exp(-2x) = C₁ (x + 3) exp(-2x) + C₂
y = C₁ (x + 3) + C₂ exp(2x)
It follows that the second fundamental solution is y = x + 3. (The exp(2x) here is already accounted for as the first solution.)