Answer:
a. At a distance greater than r
b. T_m is greater than T_e.
Explanation:
a. Two identical satellites orbit the earth in stable orbits. One satellite orbits with a speed vat a distance r from the center of the earth. The second satellite travels at a speed that is less than v. At what distance from the center of the earth does the second satellite orbit?
Since the centripetal force on any satellite, F equals the gravitational force F' at r,
and F = mv²/r and F' = GMm/r² where m = mass of satellite, v = speed of satellite, G = universal gravitational constant, M = mass of earth and r = distance of satellite from center of earth.
Now, F = F'
mv²/r = GMm/r²
v² = GM/r
v = √GM/r
Since G and M are constant,
v ∝ 1/√r
So, if the speed decreases, the radius of the orbit increases.
Since the second satellite travels at a speed less than v, its radius, r increases since v ∝ 1/√r.
So, the distance the second satellite orbits is at a distance greater than r
b. An identical satellite is orbiting the moon at the same distance with a speed v_m. How does the time T_m it takes the satellite circling the moon to make one revolution compare to the time T_e it takes the satellite orbiting the earth to make one revolution?
Since the speed of the satellite, v = √GM/r where M = mass of planet
Since the satellite is orbiting at the same distance, r is constant
So, v ∝ √M
Since mass of earth M' is greater than mass of moon, M", the speed of satellite circling moon, v_m is less than v the speed of satellite circling earth at the same distance, r
Now, period T = 2πr/v where r = radius of orbit and v = speed of satellite
Since r is constant for both orbits, T ∝ 1/v
Now, since the speed of the speed of the satellite on earth orbit v is greater than the speed of the satellite orbiting the moon, v_m, and T ∝ 1/v, it implies that the period of the satellite orbiting the earth, T_e is less than the period of the satellite orbiting the moon, T_m since there is an inverse relationship between T and v. T_e is less T_m implies T_m is greater than T_e
So, T_m is greater than T_e.
If you drive first at 40 km/h west and later at 60 km/h west, your average velocity is 50 km/h west.
and what else? is that all?
Give the missing ammeter reading a and b. suggest why more current flow through some bulbs than through others Grade 10 question and Answer
Answer:
becaude of electricity
Two children stretch a jump rope between them and send wave pulses back and forth on it. The rope is 3.3 m long, its mass is 0.52 kg, and the force exerted on it by the children is 47 N. (a) What is the linear mass density of the rope (in kg/m)
Answer:
The linear mass density of rope is 0.16 kg/m.
Explanation:
mass, m = 0.52 kg
force, F = 47 N
length, L = 3.3 m
(a) The linear mass density of the rope is defined as the mass of the rope per unit length.
Linear mass density = m/L = 0.52/3.3 = 0.16 kg/m
A girl and her bicycle have a total mass of 40.0 kg. At the top of the hill her speed is 5.0 m/s, and her speed doubles as she rides down the hill. The hill is 10.0 m high and 100 m long. How much kinetic energy and potential energy is lost to friction
Answer:
The kinetic energy and potential energy lost to friction is 2,420 J.
Explanation:
Given;
total mass, m = 40 kg
initial velocity of the girl, Vi = 5 m/s
hight of the hill, h = 10 m
length of the hill, L = 100 m
initial kinetic energy of the girl at the top hill:
[tex]K.E_{i} = \frac{1}{2} mv_i^2 = \frac{1}{2} \times 40 \times (5)^2\\\\K.E_{i} = 500 \ J[/tex]
initial potential energy of the girl at the top hill:
[tex]P.E_{i} = mgh_i = 40 \times 9.8 \times 10\\\\P.E_{i}= 3920 \ J[/tex]
Total energy at the top of the hill:
E = 500 J + 3920 J
E = 4,420 J
At the bottom of the hill:
final velocity = double of the initial velocity = 2 x 5 m/s = 10 m/s
hight of the hill = 0
final kinetic energy of the girl at the bottom of the hill:
[tex]K.E_{f} = \frac{1}{2} mv_f^2 \\\\K.E_f = \frac{1}{2} \times 40 \times (10)^2 = 200 0 \ J[/tex]
final potential energy of the girl at the bottom of the hill:
[tex]P.E_f = mgh_f = 40 \times 9.8 \times 0 = 0[/tex]
Based on the principle of conservation of energy;
the sum of the energy at the top hill = sum of the energy at the bottom hill
The energy at the bottom hill is less due to energy lost to friction.
[tex]E_{friction} \ + E_{bottom}= E_{top}\\\\E_{friction} = E_{top} - E_{bottom}\\\\E_{friction} = 4,420 \ J - 2,000 \ J\\\\E_{friction} = 2,420 \ J[/tex]
Therefore, the kinetic energy and potential energy lost to friction is 2,420 J.
a. A horse pulls a cart along a flat road. Consider the following four forces that arise in this situation.
1. the force of the horse pulling on the cart
2. the force of the cart pulling on the horse
3. the force of the horse pushing on the road
4. the force of the road pushing on the horse
b. Suppose that the horse and cart have started from rest; and as time goes on, their speed increases in the same direction. Which one of the following conclusions is correct concerning the magnitudes of the forces mentioned above?
1. Force 1 exceeds Force 2.
2. Force 2 is less than Force 3.
3. Force 2 exceeds Force 4.
4. Force 3 exceeds Force 4.
5. Forces 1 and 2 cannot have equal magnitudes.
Answer:
a) F₁ = F₂, F₃ = F₄, b) the correct answer is 3
Explanation:
a) In this exercise we have several action and reaction forces, which are characterized by having the same magnitude, but different direction and being applied to different bodies
Forces 1 and 2 are action and reaction forces F₁ = F₂
Forces 3 and 4 are action and reaction forces F₃ = F₄
as it indicates that the
b) how the car increases if speed implies that force 1> force3
F₁ > F₃
therefore the correct answer is 3
what is the frequency of a wave related to
Answer:
Frequency is the number of complete oscillations or cycles or revolutions made in one second.
A car is stopped for a traffic signal. When the light turns green, the car accelerates, increasing its speed from zero to 9.41 m/s in 4.24 s. What is the magnitude of the linear impulse experienced by a 67.0 kg passenger in the car during this time
Answer:
the impulse experienced by the passenger is 630.47 kg
Explanation:
Given;
initial velocity of the car, u = 0
final velocity of the car, v = 9.41 m/s
time of motion of the car, t = 4.24 s
mass of the passenger in the car, m = 67 kg
The impulse experienced by the passenger is calculated as;
J = ΔP = mv - mu = m(v - u)
= 67(9.41 - 0)
= 67 x 9.41
= 630.47 kg
Therefore, the impulse experienced by the passenger is 630.47 kg
If you are driving a car with a velocity of -25 m/s and you have an acceleration of -2 m/s^2, are you speeding up or slowing down? Why?
Answer:
Hmmm...
This is a bit tricky
Ok...
Negative Velocity means you're Moving in the Opposite direction....
Negative Acceleration (deceleration) means you're slowing down.
Deceleration would mean slowing down if you were Moving with a Positive velocity.
But In this case...
You're Moving with negative velocity and Negative acceleration...
This simply means that the acceleration and velocity vector are in the same direction....
Its means that...
"YOU'RE SPEEDING UP"
Just that you're doing it in the opposite direction.
Hope this helps.
A lens with a focal length of 15 cm is placed 45 cm in front of a lens with a focal length of 5.0 cm .
Required:
How far from the second lens is the final image of an object infinitely far from the first lens?
Answer:
the required distance is 6 cm
Explanation:
Given the data in the question;
f₁ = 15 cm
f₂ = 5.0 cm
d = 45 cm
Now, for first lens object distance s = ∝
1/f = 1/s + 1/s' ⇒ 1/5 = 1/∝ + 1/s'
Now, image distance of first lens s' = 15cm
object distance of second lens s₂ will be;
s₂ = 45 - 15 = 30 cm
so
1/f₂ = 1/s₂ + 1/s'₂
1/5 = 1/30 + 1/s'₂
1/s'₂ = 1/5 - 1/30
1/s'₂ = 1 / 6
s'₂ = 6 cm
Hence, the required distance is 6 cm
The distance of the final image from the first lens will be is 6 cm.
What is mirror equation?The mirror equation expresses the quantitative connection between object distance (do), image distance (di), and focal length (fl).
The given data in the problem is;
f₁ is the focal length of lens 1= 15 cm
f₂ s the focal length of lens 2= 5.0 cm
d is the distance between the lenses = 45 cm
From the mirror equation;
[tex]\frac{1}{f} = \frac{1}{s} +\frac{1}{s'} \\\\ \frac{1}{5} = \frac{1}{\alpha} +\frac{1}{s'} \\\\[/tex]
If f₁ is the focal length of lens 1 is 15 cm then;
[tex]s'=15 cm[/tex]
f₂ s the focal length of lens 2= 5.0 cm
s₂ = 45 - 15 = 30 cm
From the mirror equation;
[tex]\frac{1}{f_2} = \frac{1}{s_1} +\frac{1}{s_2'} \\\\ \frac{1}{5} = \frac{1}{30} +\frac{1}{s_2'} \\\\ \frac{1}{s_2'}= \frac{1}{5} -\frac{1}{30} \\\\ \frac{1}{s_2'}= \frac{1}{6} \\\\ \rm s_2'= 6 cm[/tex]
Hence the distance of the final image from the first lens will be is 6 cm.
To learn more about the mirror equation refer to the link;
https://brainly.com/question/3229491
Pete is investigating the solubility of salt (NaCl) in water. He begins to add 50 grams of salt to 100 grams of
room temperature tap water in a beaker. After adding all of the salt and stirring for several minutes, Pete
notices a solid substance in the bottom of the beaker. Which statement best explains why there is a solid
substance in the bottom of the beaker?
A. The salt he is using is not soluble in water.
B. The salt is changing into a new substance that is not soluble in water,
C. The dissolving salt is causing impurities in the water to precipitate to the bottom
D. The water is saturated and the remaining salt precipitates to the bottom
Answer:
would the answer be c
Explanation: that what i think in my opian
Answer:
A
Explanation:
When two bodies at different temperatures are placed in thermal contact with each other, heat flows from the body at higher temperature to the body at lower temperature until them both acquire the same temperature. Assuming that there is no loss of heat to the surroundings, the heatSingle choice.
(1 Point)
(a) gained by the hotter body will be equal to the heat lost by the colder body
(b) the heat gained by the hotter body will be less than the heat lost by the colder body
(c) the heat gained by the hotter body will be greater than the heat lost by the colder body
(d) the heat lost by the hotter body will be equal to the heat gained by the colder body.
Answer:
Part d is correct.
E=kq/r^2 chứng minh điện thế V=kq/r từ mối liên hệ giữa điện trường E và điện thế V
Answer:
hindi ko maintindihan teh
nariz (am
miria amy
0 = 0 +260 + (0)
U= 29 mb
6= ut +1 (04)
Car I was sitting at rest when it nous hit from
the rear by car 2 of identical mass. Both cant had
their heaks on and they stidled together Guy
in the original directioned of motion. If the stopping
force is notx (Combined weight of the cars), die
u=0 to find the approximate speed of car a just
before the collision took place on
Answer:
33 mph
Explanation:
My best guess
A hoop rolls with constant velocity and without sliding along level ground. Its rotational kinetic energy is:______a- half its translational kinetic energyb- the same as its translational kinetic energyc- twice its translational kinetic energyd- four times its translational kinetic energy
Answer:
The same as its translational KE.
The easy way to do this is to make up numbers and use them.
So, I'll say m=2 and r=3. I will also say v=3 .
Rot. Inertia of a hoop is mr^2. So the rot KE is: 1/2 (mr^2)(w^2)
note: (1/2*I*w^2)
Translational kinetic energy is basically normal KE, so 1/2(m)(v^2)
Now, lets plug our made up values in:
Rot Ke : 1/2 (9*2)(3/3) *note w = v/r
Tran Ke: 1/2(2)(9)
Rot Ke: 9
Tran Ke: 9
9=9, same.
Two identical loudspeakers 2.0 m apart are emitting sound waves into a room where the speed of sound is 340 m/sec. John is standing 5.0m in front of one of the speakers, perpendicular to the line joining the speakers, and hears a maximum in the intensity of the sound. What is the lowest possible frequency of sound for which this is possible?
Answer: The lowest possible frequency of sound for which this is possible is 212.5 Hz.
Explanation:
It is known that formula for path difference is as follows.
[tex]\Delta L = (n + \frac{1}{2}) \times \frac{\lambda}{2}[/tex] ... (1)
where, n = 0, 1, 2, and so on
As John is standing perpendicular to the line joining the speakers. So, the value of [tex]L_{1}[/tex] is calculated as follows.
[tex]L_{1} = \sqrt{(2)^{2} + (5)^{2}}\\= 5.4 m[/tex]
Hence, path difference is as follows.
[tex]\Delta L = (5.4 - 5) m = 0.4 m[/tex]
For lowest frequency, the value of n = 0.
[tex]\Delta L = (0 + \frac{1}{2}) \times \frac{\lambda}{2} = \frac{\lambda}{4}[/tex]
[tex]\lambda = 4 \Delta L[/tex]
where,
[tex]\lambda[/tex] = wavelength
The relation between wavelength, speed and frequency is as follows.
[tex]\lambda = \frac{\nu}{f}\\4 \Delta L = \frac{\nu}{f}\\[/tex]
where,
[tex]\nu[/tex] = speed
f = frequency
Substitute the values into above formula as follows.
[tex]f = \frac{\nu}{4 \Delta L}\\f = \frac{340}{4 \times 0.4 m}\\= 212.5 Hz[/tex]
Thus, we can conclude that the lowest possible frequency of sound for which this is possible is 212.5 Hz.
An investigator collects a sample of a radioactive isotope with an activity of 490,000 Bq.48 hours later, the activity is 110,000 Bq. Part A For the steps and strategies involved in solving a similar problem, you may view a Video Tutor Solution What is the half-life of the sample?
Answer:
The correct answer is "22.27 hours".
Explanation:
Given that:
Radioactive isotope activity,
= 490,000 Bq
Activity,
= 110,000 Bq
Time,
= 48 hours
As we know,
⇒ [tex]A = A_0 e^{- \lambda t}[/tex]
or,
⇒ [tex]\frac{A}{A_0}=e^{-\lambda t}[/tex]
By taking "ln", we get
⇒ [tex]ln \frac{A}{A_0}=- \lambda t[/tex]
By substituting the values, we get
⇒ [tex]-ln \frac{110000}{490000} = -48 \lambda[/tex]
⇒ [tex]-1.4939=-48 \lambda[/tex]
[tex]\lambda = 0.031122[/tex]
As,
⇒ [tex]\lambda = \frac{ln_2}{\frac{T}{2} }[/tex]
then,
⇒ [tex]\frac{ln_2}{T_ \frac{1}{2} } =0.031122[/tex]
⇒ [tex]T_\frac{1}{2}=\frac{ln_2}{0.031122}[/tex]
[tex]=22.27 \ hours[/tex]
If the loading is 0.4, the coinsurance rate is 0.2, the number of units of medical care is 100, and the number of units of medical care is 1. What is the premium of this insurance?
Answer:
72 is the premimum of the insurance.
Explanation:
Below is the given values:
The loading = 0.4
Coinsurance rate = 0.2
Number of units = 100
Total number of units = 100 * 0.4 = 40
Remaining units = 60 * 0.2 = 12
Add the 60 and 12 values = 60 + 12 = 72
Thus, 72 is the premimum of the insurance.
plz answer the question
Answer:
Ray A = Incidence ray
Ray B = Reflected ray
Explanation:
From the law of reflection,
Normal: This is the line that makes an angle of 90° with the reflecting surface.
Ray A is the incidence ray: This is the ray that srikes the surface of a reflecting surface. The angle formed between the normal and the incidence ray is called the incidence angle
Ray B is the reflected ray: This is the ray leaves the surface of a reflecting surface. The angle formed between the reflected ray and the normal is called reflected angle
which of the following is a correct statement. a. In dc steady state conditions, the voltages across the capacitors are constant and the currents through the capacitance are zero. The current through the inductors are constant and the voltage across the inductances are constant. b. In dc steady state conditions, the voltages across the capacitors are zero and the currents through the capacitance are constant. The current through the inductors are constant and the voltage across the inductances are zero. c. In dc steady state conditions, the voltages across the capacitors are constant and the currents through the capacitance are zero. The current through the inductors are zero and the voltage across the inductances are constant. d. WIn dc steady state conditions, the voltages across the capacitors are constant and the currents through the capacitance are zero. The current through the inductors are constant and the voltage across the inductances are zero.
Answer:
d. In dc steady state conditions, the voltages across the capacitors are constant and the currents through the capacitance are zero. The current through the inductors are constant and the voltage across the inductances are zero.
Explanation:
The current through a capacitor is given by i = CdV/dt where C = capacitance of capacitor and V = voltage across capacitor. At steady state dV/dt = 0 and V = constant. So, i = CdV/dt = C × 0 = 0.
So, in dc steady state, the voltage across a capacitor is constant and the current zero.
The voltage across an inductor is given by V = Ldi/dt where L = inductance of inductor and i = current through inductor. At steady state di/dt = 0 and V = constant. So, V = Ldi/dt = L × 0 = 0.
So, in dc steady state, the voltage across an inductor is zero and the current constant.
So, In dc steady state conditions, the voltages across the capacitors are constant and the currents through the capacitance are zero. The current through the inductors are constant and the voltage across the inductances are zero.
The answer is d.
How far did you travel in 10 hours if you drove at a constant speed of 5km/hr? *
Answer:
you drove 50km
Explanation:
10×5 hope this helps
Answer:
50 Km
Explanation:
This is how far you have got on your journey if traveling like this.
Please Mark as Brainliest
Hope this Helps
What are the messing forces that would make the object be in equilibrium?
Answer:
A) 20 N, B) 20 N, & C) 8 N
Explanation:
For the object to be in equilibrium, the upward forces must be equal to the downward forces and the forward forces must be equal to the backward forces.
1. Determination of A and B.
Forward forces = Backward forces
A + 10 + B = 25 + 25
A + 10 + B = 50
Collect like terms
A + B = 50 – 10
A + B = 40
Assume A and B to be equal. Thus, A is 20 N and B is 20 N.
2. Determination of C
Upward forces = Downward forces
C + 112 = 20 + 100
C + 112 = 120
Collect like terms
C = 120 – 112
C = 8 N
Thus, for the object to be in equilibrium, A must be 20 N, B must be 20 N and C must be 8N.
Calculate the rms speed of helium atoms near the surface of the Sun at a temperature of about 5100 K. Express your answer to two significant figures and include the appropriate units.
Answer:
[tex]V_{rms}=5.6*10^3m/s[/tex]
Explanation:
From the question we are told that:
Temperature [tex]T=5100K[/tex]
Generally the equation for RMS Speed is mathematically given by
[tex]V_{rms}=\sqrt{\frac{3kT}{m}}[/tex]
Where
[tex]K=Boltzman's constant[/tex]
[tex]K=1.38*10^{-23}[/tex]
And
[tex]M=molecular mass[/tex]
[tex]M=4*1.67*10^{-27}[/tex]
[tex]V_{rms}=\sqrt{\frac{3(1.38*10^{-23})5100}{4*1.67*10^{-27}}}[/tex]
[tex]V_{rms}=5.6*10^3m/s[/tex]
Which of the following elements has the largest atomic radius?
Silicon
Aluminum
Sulfur
Phosphorous
Answer:
francium
Atomic radii vary in a predictable way across the periodic table. As can be seen in the figures below, the atomic radius increases from top to bottom in a group, and decreases from left to right across a period. Thus, helium is the smallest element, and francium is the largest.
Hai điện tích điểm Q1 = 8 C, Q2 = –6
C đặt tại hai điểm A, B cách nhau 0,1
m trong không khí. Tính cường độ điện
trường do hai điện tích này gây ra tại
điểm M, biết MA = 0,2 m
Answer:
English please
Explanation:
I don't understand the question
g Calculate the final speed of a solid cylinder that rolls down a 5.00-m-high incline. The cylinder starts from rest, has a mass of 0.750 kg, and has a radius of 4.00 cm.
Answer:
[tex]V=8.08m/s[/tex]
Explanation:
From the question we are told that:
Height[tex]h=5.00m[/tex]
Mass [tex]m=0.750kg[/tex]
Radius [tex]r=4.00cm=>0.04m[/tex]
Generally the equation for Total energy is mathematically given by
[tex]mgh=\frac{1}{2}mv^2+\frac{1}{2}Iw^2[/tex]
Therefore
[tex]V=\sqrt{\frac{4gh}{3}}[/tex]
[tex]V=\sqrt{\frac{4*9.8*5}{3}}[/tex]
[tex]V=8.08m/s[/tex]
Copy the diagram. add a voltmeter to show how you would measure the voltage of the cell
Answer: the answer is 23voltage
Explanation: because the voltage and time put together is 23
why material selection is important to design and manufacturing?
Answer:
. You want your product to be as strong and as long lasting as possible. There are also the safety implications to consider. You see, dangerous failures arising from poor material selection are still an all too common occurrence in many industries. yep that the answer have a Great day
Explanation:
(◕ᴗ◕✿)
One way families influence healthy technology use is when siblings explain the use of media to each other. Which of these outfits would you expect if this guideline was followed?
Answer:
The answer would be C.
Explanation:
This is what I would expect when you show someone else how to do something then is also known as teaching.
Please Mark as Brainliest
Hope this Helps
help asap PLEASE I will give u max everything all that
steps if possible
Explanation:
2. [tex]R_T = R_1 + R_2 + R_3 = 625\:Ω + 330\:Ω + 1500\:Ω[/tex]
[tex]\:\:\:\:\:\:\:= 2455\:Ω = 2.455\:kΩ[/tex]
3. Resistors in series only need to be added together so
[tex]R_T = 8(140\:Ω) = 1120\:Ω = 1.12\:kΩ[/tex]
The image shows the right-hand rule being used for a current-carrying wire.
An illustration with a right hand with fingers curled and thumb pointed up.
Which statement describes what the hand shows?
When the current flows down the wire, the magnetic field flows out on the left side of the wire and in on the right side of the wire.
When the current flows up the wire, the magnetic field flows out on the left side of the wire and in on the right side of the wire.
When the current flows down the wire, the magnetic field flows in on the left side of the wire and out on the right side of the wire.
When the current flows up the wire, the magnetic field flows in on the left side of the wire and out on the right side of the wire.
Answer:
The answer is (D): When the current flows up the wire, the magnetic field flows in on the left side of the wire and out on the right side of the wire.
Explanation: