Answer:
I am in 5 classso i did not known answer
Find the nth term of the arithmetic
sequence - 1,2,5, ....
A. 3n - 2
B. -2n + 1
C. 2n + 2
D. 3n - 4
Answer:
3n -4
Step-by-step explanation:
We are adding 3 each time
-1+3 =2
2+3 = 5
The formula for an arithmetic sequence is
an = a1+d(n-1) where a1 is the first term and d is the common difference
an = -1+3(n-1)
= -1 +3n -3
= 3n -4
If the equation of the line is
(5y + 1)/10 = x, then what is the slope of the line?
A. 10
B. 5
C. 2
D. -1
Answer:
2
Step-by-step explanation:
(5y + 1)/10 = x
Multiply each side by 10
(5y + 1)/10*10 =10 x
(5y + 1) = 10x
Subtract 1
5y +1-1 = 10x-1
5y = 10x-1
Divide by 5
5y/5 = 10x/5 - 1/5
y = 2x-1/5
This is in slope intercept form y = mx+b where m is the slope and b is the y intercept
The slope is 2
a circle has a radius of 8.5cm correct to the nearest 0.1cm.
the lower bound of the area of the circle is pπ cm².
the upper bound of the area of the circle is qπ cm².
find the value of p and the value of q.
Answer:
The area of the circle is exactly π times the square of its radius. If you are given that the radius is within 0.1cm of 8.5cm, i.e. lies between 8.4 cm and 8.6 cm, its square will lie between p=8.4² = 70.56 and q=8.6² = 73.96 cm².
Answer:
The area of the circle is exactly π times the square of its radius. If you are given that the radius is within 0.1cm of 8.5cm, i.e. lies between 8.4 cm and 8.6 cm, its square will lie between p=8.4² = 70.56 and q=8.6² = 73.96 cm².
Step-by-step explanation:
thanks for question dear
Which function is the inverse of 6) = 2x+39
ASAP
Answer:
The inverse is 1/2x - 3/2
Step-by-step explanation:
y = 2x+3
To find the inverse, exchange x and y
x = 2y+3
Solve for y
x-3 =2y+3-3
x-3 = 2y
Divide by 2
1/2x - 3/2 = 2y/2
1/2x - 3/2 = y
The inverse is 1/2x - 3/2
A coin contains 9 grams of nickel and 161616 grams of copper, for a total weight of 25 grams.
What percentage of the metal in the coin is copper?
Answer:
64percents
Step-by-step explanation:
25-9=16 grams - weight of copper
(16/25)*100=64 percents
Shane and Abha earned a team badge that required their team to collect no less than 2000 cans for recycling. Abha collected 178 more cans than Shane did.
Write an inequality to determine the number of cans, S, that Shane could have collected.
What is the solution set of the inequality?
Answer:
Shane=x
Abha=y
x+y>=2000
x-y=178 Which leads to x=178+y ..... #1
hence by substitution in the inequality
178+2y>=2000
2y>=2000-178
2y>=1822
y>=911 ......in #1
x>=178+911
x>=1089
Solutions x>=1089 & y>=911
in the triangle below which of the following best describes dh
write down amultiple of 4 and 14 which is less than 30
28
How?
Multiples of 4=8,12,16,20,24,28Multiples of 14=28,42We can see that 28 is the lowest common multiple also it is <30
Answer: 28.
Step-by-step explanation: 28 is divisible by 4: 28 / 4 = 7. 28 is divisible by 14: 28 / 14 = 2. And 28 is less than 30
8.52 The heights of 2-year-old children are normally distributed with a mean of 32 inches and a standard deviation of 1.5 inches. Pediatricians regularly measure the heights of toddlers to determine whether there is a problem. There may be a problem when a child is in the top or bottom 5% of heights. Determine the heights of 2-year-old children that could be a problem.
Answer:
Heights of 29.5 and below could be a problem.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
The heights of 2-year-old children are normally distributed with a mean of 32 inches and a standard deviation of 1.5 inches.
This means that [tex]\mu = 32, \sigma = 1.5[/tex]
There may be a problem when a child is in the top or bottom 5% of heights. Determine the heights of 2-year-old children that could be a problem.
Heights at the 5th percentile and below. The 5th percentile is X when Z has a p-value of 0.05, so X when Z = -1.645. Thus
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]-1.645 = \frac{X - 32}{1.5}[/tex]
[tex]X - 32 = -1.645*1.5[/tex]
[tex]X = 29.5[/tex]
Heights of 29.5 and below could be a problem.
four less than the product of a number and 7 is eight more than that number
Answer:
2
Step-by-step explanation:
Replace the number with x, then the equation would be:
7x-4=x+8
7x-x=8+4
6x=12
6x/6=12/6
x=2
4 is a square number and also an even number. How many other whole numbers less than 50 are an even, square number?
Which relation is not a function?
Answer:
A
For something to be a function every x value bust have at most 1 y value and in A 9 has 2 y values so it cant be a function
amusement park is 1.50$ for children and $4 for adults. on certain day 220 people entered the park, and the admission fee collected totalled 630.00. how many children and how many adults were admitted? write and use an equation to solve
230.000 childrenㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
Answer:
230 children
Step-by-step explanation:
If the odds against Deborahs winning first prize in a chess tournament are 1 to 11 what is the probability of the event that she will win first prize
Answer: [tex]\dfrac{11}{12}[/tex]
Step-by-step explanation:
Given
The odds against winning in a chess tournament are 1 to 11.
Odds is defined as the ratio of the probability of occurrence to the non-occurrence of event.
[tex]\therefore \text{Probability that event will occur is P'=}\dfrac{1}{1+11}\\\\\Rightarrow P'=\dfrac{1}{12}[/tex]
Probability of non-occurrence i.e. she wins the first prize is
[tex]\Rightarrow P=1-\dfrac{1}{12}\\\\\Rightarrow P=\dfrac{11}{12}[/tex]
what is the range of the function y = 2x - 3 if the domain is 1
Answer:
1.5
Step-by-step explanation:
y=2x - 3
0 = 2x - 3
-2x = - 3 /÷(-2)
x = 3 ÷ 2
x = 1.5 3/2
Which of the following statements best describes the relationship between
any point on an ellipse and each of its two foci?
A. The quotient of the distances to each focus equals a certain
constant.
B. The difference of the distances to each focus equals a certain
constant.
C. The sum of the distances to each focus equals a certain constant.
D. The product of the distances to each focus equals a certain
constant.
Answer:
C
Step-by-step explanation:
The sum of distances from any point on the ellipse to each foci equals a certain amount, no matter what point on the ellipse it starts from. The foci are on the major radius of the ellipse (the longer length of horizontal/vertical). The foci are of equal distance from the center, with one on each side.
If you wanted to find where the foci are using the major and minor radius, we can find that, representing the distance between the center and any foci as g,
g² = major radius² - minor radius². Then, the distance between the center and the foci is equal to g
As above, let
$$f(x) = 3\cdot\frac{x^4+x^3+x^2+1}{x^2+x-2}.$$Give a polynomial $g(x)$ so that $f(x) + g(x)$ has a horizontal asymptote of $y=0$ as $x$ approaches positive infinity.
Answer:
Hello,
Step-by-step explanation:
[tex]\dfrac{f(x)}{3} =\dfrac{x^4+x^3+x^2+1}{(x-1)(x+2)} \\\\=\dfrac{(x^2+3)(x-1)(x+2)-3x+7}{(x-1)(x+2)} \\=x^2+3-\dfrac{3x-7}{(x-1)(x+2)} \\\\=x^2+3-\dfrac{3}{x-1} +\dfrac{1}{(x-1)(x-2)} \\\\\dfrac{f(x)}{3}-\dfrac{3x^2+9}{3} =-\dfrac{3}{x-1} +\dfrac{1}{(x-1)(x-2)} \\\\\\ \lim_{x \to +\infty} (\dfrac{f(x)}{3}-\dfrac{3x^2+9}{3} )\\\\=0+0=0\\\\\\P(x)=-x^2-3[/tex]
Answer:
[tex]g(x)=-3x^2-9[/tex]
Explanation:
[tex]3\frac{x^4+x^3+x^2+1}{x^2+x-2}[/tex]
+[tex]\frac{p(x)(x^2+x-2)}{x^2+x-2}[/tex]
We need p(x) need to be a degree 2 polynomial so the numerator of the second fraction is degree 4. Our goal is to cancel the terms of the first fraction's numerator that are of degree 2 or higher.
So let p(x)=ax^2+bx+c.
[tex]3\frac{x^4+x^3+x^2+1}{x^2+x-2}[/tex]
+[tex]\frac{p(x)(x^2+x-2)}{x^2+x-2}[/tex]
Plug in our p:
[tex]3\frac{x^4+x^3+x^2+1}{x^2+x-2}[/tex]
+[tex]\frac{(ax^2+bx+c)(x^2+x-2)}{x^2+x-2}[/tex]
Take a break to multiply the factors of our second fraction's numerator.
Multiply:
[tex](ax^2+bx+c)(x^2+x-2)[/tex]
=[tex]ax^4+ax^3-2ax^2[/tex]
+[tex]bx^3+bx^2-2bx[/tex]
+[tex]cx^2+cx-2c[/tex]
=[tex]ax^4+(a+b)x^3+(-2a+b+c)x^2+(-2b+c)-2c[/tex]
Let's go back to the problem:
[tex]3\frac{x^4+x^3+x^2+1}{x^2+x-2}[/tex]
+[tex]\frac{ax^4+(a+b)x^3+(-2a+b+c)x^2+(-2b+c)x-2c}{x^2+x-2}[/tex]
Let's distribute that 3:
[tex]\frac{3x^4+3x^3+2x^2+3}{x^2+x-2}[/tex]
+[tex]\frac{ax^4+(a+b)x^3+(-2a+b+c)x^2+(-2b+c)x-2c}{x^2+x-2}[/tex
So this forces [tex]a=-3[/tex].
Next we have [tex]a+b=-3[/tex]. Based on previous statement this forces [tex]b=0[/tex].
Next we have [tex]-2a+b+c=-3[/tex]. With [tex]b=0[/tex] and [tex]a=-3[/tex], this gives [tex]6+0+c=-3[/tex].
So [tex]c=-9[tex].
Next we have the x term which we don't care about zeroing out, but we have [tex]-2b+c[/tex] which equals [tex]-2(0)+-9=-9[/tex].
Lastly, [tex]-2c=-2(-9)=18[/tex].
This makes [tex]p(x)=-3x^2-9[/tex].
This implies [tex]g(x)\frac{(-3x^2-9)(x^2+x-2)}{x^2+x-2}[/tex] or simplified [tex]g(x)=-3x^2-9[/tex]
please someone answer! i need it rn!
A viewfinder has a triangular lens. Some of the measurements of the lens are
shown below. Which of the following best represents the length of a?
B
26°
a
С
389
10
A
Triangle not drawn to scale
=========================================================
Explanation:
It's a bit strange why your teacher has the "26 degree" label pointing at a side length, rather than an actual angle. I'm assuming your teacher meant to aim it at angle C. In other words, I'm assuming they meant to say angle C = 26 degrees.
If that assumption is correct, then,
A+B+C = 180
38+B+26 = 180
B+64 = 180
B = 180-64
B = 116
Then we can use the law of sines like so:
a/sin(A) = b/sin(B)
a/sin(38) = 10/sin(116)
a = sin(38)*10/sin(116)
a = 6.84986152123146
a = 6.8
Side 'a' is approximately 6.8 inches long. So that's why the answer is choice A.
(x+4)^2 - (x-6)^2 - (x-1)*(x+1)
Answer:
-9
Step-by-step explanation:
Please hurry I will mark you brainliest
What is the equation of the line parallel to y = 2x - 4 and with the same x - intercept as 3x – 4y = 12?
Answer:
y=2x-8
Step-by-step explanation:
Hi there!
We want to find an equation of the line parallel to y=2x-4 but has the same x intercept as 3x-4y=12
Parallel lines have the same slope, but different y intercepts
In y=2x-4, which is written in y=mx+b form, m is the slope and b is the y intercept
2 is in the place of where the slope would be, so the slope of that line is 2
That means the slope of the line parallel to it would also have a slope of 2
Here is the equation of the parallel line so far:
y=2x+b
We need to find b, the y intercept
Typically, we'll substitute a point into the equation to solve for b, but we don't have a point, yet
We're given that the new line has the same x intercept as 3x-4y=12
The x intercept is the point where the line passes through the x axis, and so the value of y at that point is 0
Let's substitute 0 for y in 3x-4y=12 and solve for x to find the x intercept
3x-4(0)=12
Multiply
3x=12
Divide both sides by 3
x=4
So the value of the x intercept is 4. As a point, it's (4,0)
So now substitute the values of the point (4,0) into y=2x+b to find b
0=2(4)+b
Multiply
0=8+b
Subtract 8 from both sides
-8=b
Substitute -8 as b into the equation
y=2x-8
Hope this helps!
If the lengths of the legs of a right triangle are 4 and 8, what is the length of the hypotenuse?
PLEASE HELP
Answer:
[tex]4\sqrt{5}[/tex]
Step-by-step explanation:
In order to solve this problem, we can use the pythagorean theorem, which is
a^2 + b^2 = c^2, where and b are the legs of a right triangle and c is the hypotenuse. Since we are given the leg lengths, we can substitute them in. So, where a is we can put in a 4 and where b is we can put in an 8:
a^2 + b^2 = c^2
(4)^2 + (8)^2 = c^2
Now, we can simplify and solve for c:
16 + 64 = c^2
80 = c^2
c = [tex]\sqrt{80}[/tex]
Our answer is not in simplified radical form because the number under is divisible by a perfect square, 16. We can divide the inside, 80, by 16, and add a 4 on the outside, as it is the square root of 16:
c = [tex]4\sqrt{5}[/tex]
The length of the hypotenuse in the given right triangle, with legs measuring 4 and 8, is approximately 8.94.
To find the length of the hypotenuse in a right triangle, we can use the Pythagorean theorem. According to the theorem, in a right triangle, the square of the hypotenuse's length is equal to the sum of the squares of the lengths of the other two sides.
In this case, let's label the lengths of the legs as 'a' and 'b', with 'a' being 4 and 'b' being 8. The hypotenuse, which we need to find, can be represented as 'c'.
Applying the Pythagorean theorem, we have:
[tex]a^2 + b^2 = c^2[/tex]
Substituting the given values:
[tex]4^2 + 8^2 = c^2[/tex]
16 + 64 = [tex]c^2[/tex]
80 = [tex]c^2[/tex]
To find the length of the hypotenuse 'c', we need to take the square root of both sides:
√80 = √ [tex]c^2[/tex]
√80 = c
The square root of 80 is approximately 8.94.
Therefore, the length of the hypotenuse in the given right triangle, with legs measuring 4 and 8, is approximately 8.94.
To know more about hypotenuse , here
https://brainly.com/question/2217700
#SPJ2
the best way to learn math formulas
Writing down the formulas on charts and pasting it in your room,by seeing this daily it helps to memorize the formulas.
Saying the formulas louder also helps to memorize the formula.
Watching videos related to maths formulas and equations helps to remember the formulas easier.
Doing many problems regularly will helps you to remember the formulas.
lastly study to Understand The Formula not to memorize
please help:
give an example of an undefined term and how it relates to a circle.
8TH GRADE MATH ¯\_(ツ)_/¯
What is the fractional equivalent of the repeating decimal n = 0.1515.... ?
Answer the questions to find out.
1. How many repeating digits does the number represented by n have?
2. You need to multiply n by a power of 10 to help you find the fraction. Decide on the power of 10 to multiply by, and tell how you identified that number.
3. Write an equation where the left side is your power of 10 time n and the right side is the result of multiplying 0.1515... by that power.
4. Write the original equation, n = 0.1515... underneath your equation from question 3. Then subtract the equations. Show your work!
5. Write n as a fraction in simplest form. Show your work!
If n = 0.151515…, then 100n = 15.151515…
Then
100n - n = 15.151515… - 0.151515…
99n = 15
n = 15/99 = 5/33
3a
[tex] \frac{3a + a {}^{2} }{a} [/tex]
Simplify.
Answer:
(3+a)
Step-by-step explanation:
3a + a^2
-------------
a
Factor out an a in the numerator
a(3+a)
-------------
a
Cancel like terms
(3+a)
Step-by-step explanation:
[tex] \frac{3a + {a}^{2} }{a} \\ = \frac{3a}{a} + \frac{ {a}^{2} }{a} \\ = 3 + a \\ thank \: you[/tex]
What is the solution to the linear equation?
2/7+x=6/7+3/7x
Group of answer choices
1
7
1/2
4
Answer:
The answer to your question is 1, or answer choice A.
Step-by-step explanation:
x+ 2 /7 = 3 /7 x+ 6 /7
x+ 2 /7 − 3 /7 x= 3 /7 x+ 6 /7 − 3 /7 x
4 /7 x+ 2 /7 = 6 /7
4 /7 x+ 2 /7 − 2 /7 = 6 /7 − 2 /7
4 /7 x= 4 /7
( 7 /4)*( 4 /7 x)=( 7 /4 )*( 4 /7 )
x=1
Which is the equation of a parabola with Vertex (0,0) and focus (0, 2)?
a. ya = 8x
c. x2 = 8
b. y2 = 4x
d. x2 = 4y
Answer:
So the equation of the parabola is x2=8y i don't really know
191+13=13+191191+13=13+191
what type of property is that
what nice question that we can understand ok
A. Explain why the point (100,2) is on the graph.
B. What is the x-intercept of the graph? Explain how you know.
49
C. When will the graph meet the line y = 5? Explain how you know.
Answer:
the log function is the "inverse" function of an exponential function
by definition [tex]log_{a} b = c[/tex] then [tex]a^{c} = b[/tex]
in this problem you have [tex]log_{10} 100[/tex]
thus what x solves this ? [tex]10^{x} = 100[/tex] the answer is [tex]10^{2}[/tex]
thus (100,2)
B) the x intercept is when y = 0
[tex]10^{0} = 1[/tex]
x intercept at (1,0)
C) at 100, the curve will hit y = 5000
Step-by-step explanation: