Answer:
Explanation:
As far as the displacement goes, we have 2 displacement vectors. If we didn't have the angles to deal with, this would be a much simpler process, but then that wouldn't be any fun at all, would it? I'll deal with the average speed first, then the displacement, which is a vector addition problem.
The average speed is found by adding together the distances the student traveled and then dividing this sum by the total time he spent traveling. If we are told that the student runs at 4.5 m/s for 3.0 minutes, we can use this to find out the distance he ran during that time interval. However, the units are not the same. We will find the distance the student traveled by convering the time to seconds.
3.0 minutes = 180 seconds, and
4.1 minutes = 246 seconds.
That means that the distance he ran in 180 seconds is found by multiplying this time be the speed at which he ran:
4.5 m/s(180 s) = 810 m and
3.5 m/s(246 s) = 860 m (rounded to follow the rules of sig dig).
This makes the speed equation look like this:
[tex]s=\frac{810+861}{180+246}=\frac{1671}{426}=3.9\frac{m}{s}[/tex] That's the average speed, which is NOT at all the same as the displacement. Displacement is where he ended up in reference to where he started. The angles play a huge part in this math (that is very involved, to say the least). We begin by restating the displacement of each "leg" of this journey.
The first leg took him 810 m at 207 degrees and
the second leg took him 860 m at 325 degrees
To find the x and y components of these 2 legs, or parts, we have to use the cos and sin formulas. We will call the first leg A and the second leg B. First the x components of both A and B:
[tex]A_x=810cos207[/tex] and
[tex]A_x=-720[/tex]
[tex]B_x=860cos325[/tex] and
[tex]B_x=704[/tex] and we add these to get the x-component of the resultant vector, C:
-720
+ 704
-10 (rounded, as needed, to the tens place).
Now for the y-components of the resultant vector:
[tex]A_y=810sin207[/tex] and
[tex]A_y=-370[/tex]
[tex]B_y=860sin325[/tex] and
[tex]B_y=-490[/tex] and we add these to get the y-component of the resultant vector, C:
-370
+ -490
-860
Since the x component is negative and so is the y, we are in QIII, so when we finally find our angle, we will have to add 180 to it.
For the magnitude of the displacement vector, in m:
[tex]C_{mag}=\sqrt{(-10)^2+(-860)^2}[/tex] which gives us
[tex]C_{mag}=860m[/tex]
Now, because displacement is vector, we also need the angle. We find that is the formula
[tex]\theta=tan^{-1}(\frac{C_y}{C_x})[/tex] and filling in:
[tex]\theta=tan^{-1}(\frac{-860}{-10})=90[/tex] (rounded correctly), and then we add 180 to give us a final direction of 270 degrees.
So the final displacement of the student is 860 m at 270 degrees
A neutral object must have _______________ A. An equal amount of positive and negative charges B. no charges present at all C. more positive than negative charges D. more negative than positive
Answer:
A
Explanation:
Consider a question you may not have considered before. Suppose you have a mole of sodium in a container that contains nothing that it will react with. A mole of anything is 6.02 * 10^23 (in this case atoms).
Suppose that every one of those atoms has contributed 1 electron to something.
Do you think it would be safe to touch the container knowing that there are 6.02 * 10^23 positive charges all eager to get another electron, because they don't like repelling each other.
Safe or not? I'll give you a hint. A lightning bolt does not contain anywhere near 6.02*10^23 charges. No where near.
So -- since you never get a shock from just touching anything, There must not be electrons or ions present.
The answer is A
A spring attached to a mass is at rest in the initial position (not shown). The spring is compressed in position A and is then released, as shown in position B. Which equation describes conservation of energy in position A?
Answer:
Explanation:
When the spring is compressed, it is compressed to its amplitude (whereas equilibrium is the spring's natural length with no mass attached to it and displacement is the spring's reaction to a mass hung on the end of it without any "extra" pushing or pulling on the mass). It is at the amplitude where the spring experineces max potential energy, which is choice 2, E = mph
Answer:
its c
Explanation:
...
A gas at a pressure p is compressed to half it original volume and twice its original temperature. The new pressure is
Answer:
4p
Explanation:
If you halve the volume the pressure will double as they are inversely proportional. If you double the temperature the particles have double the kinetic energy so the pressure will double again.
So:
p×2×2 = 4p
Answer:
P V = n R T
P2 V2 / (P1 V1) = T2 / T1
P2 = (T2 / T1) (V1 / V2) P1 = 2 * 2 = 4
If displacement has a magnitude AND direction is it a scalar or vector quantity?
scalar
vector
Explanation:
Obviously vector quantity
While using a digital radiography system, suppose a radiographer uses exposure factors of 10 mAs and 70 kVp with an 8:1 grid for an AP shoulder radiograph with acceptable anatomical part penetration and detector element (DEL) exposure. If the radiographer desires to increase scatter absorption using a 12:1 grid, what new exposure factors should be used to maintain the same DEL exposure
Answer:
b. 12.5 mAs, 70 kVp
Explanation:
The given parameter are;
The initial exposure factors := 10 mAs and 70 kVp
The initial Grid Ratio, G.R.₁ = 8:1
The Grid Ratio with which the radiographer desires to increase the scatter absorption, G.R.₂ = 12:1
Given that the lead content in the 12:1 grid, is higher than the lead content in 8:1 grid and that 12:1 grid needs more mAs to compensate, and provides a higher image contrast, the amount of extra mAs is given by the Grid Conversion Factors, GCF, as follows;
The GCF for G.R. 8:1 = 4
The GCF for G.R. 12:1 = 5
Therefore, given that the mAs used by the radiographer for 8:1 Grid Ratio is 10 mAs, the mAs required for a G.R. of 12:1 in order to maintain the same exposure is given as follows;
mAs for G.R. of 12:1 = 10 mAs × 5/4 = 12.5 mAs
Therefore the new exposure factors are;
12.5 mAs, 70 kVp
A vehicle starts from rest with a uniform acceleration of 2m/s2.Find the final velocity of the vehicle after covering a distance of 400m
Answer:
40
Explanation:
vi=0
a=2
vf=?
d=400
vf^2=vi^2+2ad
vf^2=0+2×2×400=1600
vf=√1600=40m/s
SINGLE CORRECT OBJECTIVE
Question 9
speed of a moving object is said to be uniform if it covers equal distances in equal interva
time.
о O
ghte
O false
Your Answer:
Next
Answer:
True
Explanation:
Formula for speed is;
Speed = distance/time
Now, if an object covers an equal distance in equal time intervals, it means the speed will remain the same.
For example if an object covers 3 m every 1 second it means speed will always be; 3/1 = 3 m/s.
Thus the statement is correct.
the weight of body is less at moon than its weight is more at earth
Answer:
Gravity
Explanation:
There's no gravity on space so you're floating
A system has a pressure of 5 N/m2
If a force of 2000N is applied, what is the area that the force is applied to?
Give the units.
400 m2
Explanation:
Pressure = Force ÷ Area
5 N/m2 = 2000 N ÷ A
A = 2000 N ÷ 5
= 400 m2
If a force of 2000N is applied, the area that the force is applied to is 400 m²
What is force?The word "force" has a specific meaning in science. At this level, calling a force a push or a pull is entirely appropriate. A force is not something an object "has in it" or that it "contains."
One thing experiences a force from another. There are both living things and non-living objects in the concept of a force.
The amount of force applied to a certain region is referred to as pressure. The force per unit area is called pressure. F in this condensed version of the equation stands in for the force, which is expressed in newtons.
Given that the pressure of 5 N/m²
Force is 2000N
Pressure = Force ÷ Area
5 N/m² = 2000 N ÷ A
A = 2000 N ÷ 5 = 400 m²
Therefore, the area that the force is applied to is 400 m².
To learn more about force, refer to the link:
https://brainly.com/question/19529052
#SPJ2
9. In a __________ collision, 100% of both vehicles' speed is directed towards the point of impact. A. head-on B. rear-end C. side-impact
Answer: A
Explanation:
:)
Jake launches a water balloon at an angle of 35° above the horizontal. If he sends it flying with an initial velocity of 3 m/s, how far away does Fred (who is the same height as Jake) need to be for it to hit him (assuming Jake has a good aim)?
Answer:
R = 0.86 m
Explanation:
The formula for the range of the projectile motion can be used here:
[tex]R = \frac{v^2 Sin2\theta}{g}[/tex]
where,
R = Range of projectile = distance between Jake and Fred = ?
v = launch speed = 3 m/s
θ = Launch Angle = 35°
g = acceleration due to gravity = 9.81 m/s²
Therefore,
[tex]R = \frac{(3\ m/s)^2Sin[(2)(35^o)]}{9.81\ m/s^2}\\\\[/tex]
R = 0.86 m
Capacitance (C) is measured in farads, where 1 farad is equivalent to 1 coulomb per volt. Resistance (R) is measured in ohms, and 1 ohm is equal to 1 volt per ampère. The coulomb is defined as the amount of charge passing when a current of 1 ampère flows for 1 second. What is the unit of RC expressed in its simplest form?
When fundamental units are combined, they result in derived units. RC (which means Resistance Capacitance) is a derived unit and its unit in the simplest form is Coulomb per Ampere (C/A)
Given that:
Capacitance (C) [tex]\to[/tex] Farads (f)
and
[tex]1f = 1\frac CV[/tex] ----- 1 farad = 1 capacitance per volt
Resistance (R) [tex]\to[/tex] Ohms [tex]\Omega[/tex]
[tex]1 \Omega = 1\frac{V}{A}[/tex]
The unit of RC is the product of the unit of R by the unit of C.
i.e.
[tex]RC = 1f \times 1\Omega[/tex]
Substitute [tex]1f = 1\frac CV[/tex]
[tex]RC = 1\frac CV \times 1\Omega[/tex]
Substitute [tex]1 \Omega = 1\frac{V}{A}[/tex]
[tex]RC = 1\frac CV \times 1\frac VA[/tex]
Cancel out volts (V)
[tex]RC = 1\frac CA[/tex]
[tex]\frac CA[/tex] means Coulomb per Ampere
Hence, the unit of RC is Coulomb per Ampere.
Read more about units at:
https://brainly.com/question/10167613
what is acceleration
[tex]\boxed{\large{\bold{\blue{ANSWER~:) }}}}[/tex]
[tex]\sf What \: is \: acceleration? \\ \\ \sf The \: rate \: of \: change \: of \: velocity \: of \: an \\ \sf object \: with \: respect \: to \: time \\ \sf is \: known \: as \: acceleration. [/tex]
Having the correct posture and the degree or severity of braking, acceleration and steering inputs have a direct result on the ability of a motorist to effectively address changes in __________?
Answer: Vehicle Balance
Explanation:
Vehicle balance simply means how the weight of a vehicle is distributed across its tires which connects to the road
It should be noted that there'll be a shift in the balance of a vehicle when the braking, acceleration, or turning bring about a scenario in which the weight of th vehicle moves from one area to another.
Light strikes a smooth wooden tabletop.
What happens to the light after it is reflected?
The light rays bounce off the table and all move in the same direction.
The light rays bounce off the table and move in different directions.
The light rays pass through the table and all move in the same direction.
The light rays pass through the table and move in different directions.
Answer:
For smooth surface:The light rays bounce off the table and all move in the same direction.
A jet plane lands at a speed of 100 m/s and can accelerate at a maximum rate of -5.00 m/s^2 as it comes to a rest.
(a from the instant the plane touches the runaway, what is the minimum time needed before it can come to a rest?
(b Can this plane land on a runaway that is only 0.800 km long?
shown work pls will reward alot of points
Answer:
a) t = 20 s, b) x = 1000 m, As the runway is only 800 m long, the plane cannot land at this distance
Explanation:
This is a kinematics exercise
a) in minimum time to stop,
v = vo + at
v = 0
t = -v0 / a
we calculate
t = -100 / (5.00)
t = 20 s
b) Let's find the length you need to stop
v² = vo² + 2 a x
x = -v0 ^ 2 / 2a
x = - 100² / 2 (-5.00)
x = 1000 m
As the runway is only 800 m long, the plane cannot land at this distance.
01:28:29
What type of relationship occurs when two variables both increase or decrease together?
O an inverse relationship
O a positive relationship
a direct relationship
O an indirect relationship
Answer:
an inverse relationship
Internal energy of a diatomic gas consists of:
OA. kinetic energy due to vibration and rotation.
B. kinetic energy due to translation, vibration, and rotation.
C. potential energy due to intermolecular forces.
D. kinetic energy due to translation only.
Answer:
C) Potential energy due to intermolecular forces.
A thin rod of length 1.4 m and mass 180 g is suspended freely from one end. It is pulled to one side and then allowed to swing like a pendulum, passing through its lowest position with angular speed 1.80 rad/s. Neglecting friction and air resistance, find (a) the rod's kinetic energy at its lowest position and (b) how far above that position the center of mass rises.
Answer:
[tex]K.E = 0.1905 J[/tex]
Explanation:
From the question we are told that:
Length [tex]L=1.4m[/tex]
Mass [tex]m=180g[/tex]
Angular Velocity [tex]\omega=1.80rads/s[/tex]
Generally the equation for Kinetic energy K.E is mathematically given by
[tex]K.E =0.5 (1/3 ML^2 )w^2[/tex]
[tex]K.E =0.5 ( 1/3 * 0.18 * 1.4^2 ) 1.8^2[/tex]
[tex]K.E = 0.1905 J[/tex]
The most successful types of plants on Earth are
Answer:
The angiosperms dominate Earth's surface and vegetation in more environments, particularly terrestrial habitats, than any other group of plants. As a result, angiosperms are the most important ultimate source of food for birds and mammals, including humans.
Explanation:
plz mark brainlest
What is matter made of.
Answer:
Matter is made up of atoms
Answer:
Mater is made up of atoms.
Explanation:
Atoms come together to form molecules,which are the building blocks for all types of matter.
how long the period of the earth's circulation (365 1/4) in seconds?
Answer:
31,556,736 seconds
Explanation:
The period of Earth's orbit around the Sun, T = (365 + 1/4) days (three hundred and sixty five and a quarter days
The period of Earth's orbit around the Sun in seconds is given by converting, T = [tex]365\frac{1}{4} \, days[/tex] into seconds as follows;
There are 60 seconds per minute, 60 minutes in each hour, 24 hours within each day, therefore, we get;
T = [tex]365\frac{1}{4}[/tex]×60 sec/min × 60 min/hr. × 24hr/day = 31,556,736 seconds
An ammeter with a resistance of 5.0 ohm is connected in series with a 3.0V cell and a lamp rated at 300 mA, 3V. Calculate the current that the ammeter will measure
Answer:
I = 0.2 A
Explanation:
Lamp is rated at 300 mA
I_lamp = 0.3 A
Voltage is; V = 3V
Thus; Resistance is given by;
R = V/I
R = 3/0.3
R = 10 ohms
Now, since the ammeter of 5 ohms is connected in series with the lamp. Thus equivalent resistance;
R_eq = 10 + 5
R_eq = 15 ohms
Ammeter current will be;
I = V/R_eq
I = 3/15
I = 0.2 A
Find the transformation matrix that rotates a rectangular coordinate system through an angle of 60 about axes equal angels with original three coordinate axes
Answer:
[tex]M = \left[\begin{array}{ccc}cos \ 60&0\\0&-sin \ 60\end{array}\right][/tex]
Explanation:
To find the matrix, let's decompose the vectors, the rotated angle is (-60C) for the prime system
x ’= x cos (-60)
y ’= y sin (-60)
we use
cos 60 = cos (-60)
sin 60 = - sin (-60)
we substitute
x ’= x cos 60
y ’= - y sin 60
the transformation system is
[tex]\left[\begin{array}{ccc}x'\\y'\end{array}\right] = \left[\begin{array}{ccc}cos 60&0\\0&-sin60\end{array}\right] \ \left[\begin{array}{ccc}x\\y\end{array}\right][/tex]x '
the transformation matrix is
[tex]M = \left[\begin{array}{ccc}cos \ 60&0\\0&-sin \ 60\end{array}\right][/tex]
the bodies in this universe attract one another name the scientist who propounded this statement
Answer:
It was proposed by Isaac Newton
Explanation:
The law of universal attraction of expression
F = [tex]G \ \frac{m_1m_2}{ r^2}[/tex]G m1m2 / r ^ 2
where G is a constant, m₁ and m₂ are the masses of the bodies and r the distance between them.
It was proposed by Isaac Newton
With this law Newton explained that the force that pulls the moon towards the earth is the same as that which attracts an apple towards the earth
difine scalar quantity
Scalar quantity are physical quantities that have just magnitude, not direction.
It is always positive.Examples: Speed, distanceA boy is moving a stone in a horizontal circle by mean of a thread attached to ut. The length if the threads us 1 m and the weight of the stone is 0.02 kg . The maximum tension of the thread can withstand us 1 ×10 ^-4 N. The boy is gradually increasing the speed if rotation. At what speed if the stone does the thread break ?
Answer:
Explanation:
This is a centripetal force problem where tension supplies the centripetal force needed to keep the stone moving in a circular manner. That formula for that is
[tex]F_c=T=\frac{mv^2}{r}[/tex] and filling in what we know:
[tex]1*10^{-4}=\frac{.02v^2}{1}[/tex] and solve that for v:
[tex]v=\sqrt{\frac{1*10^{-4}}{.02} }[/tex] which gives us a velocity of .07 m/s. Anything greater than this will break the string.
A ball of mass 0.3 kg is released from rest at a height of 8 m. How fast is it going when it hits the ground? (Gravity being equal to 9.8)
Answer:
Explanation:
Mass doesn't matter here because when something is falling, gravity plays fairly; an elephant falls at the same rate of acceleration as does a feather. What DOES matter is everything pertinent to the y-dimension of free-fall:
a = -9.8 m/s/s
v₀ = 0 (since the ball was held before it was dropped)
v = ??
Δx = -8 m (negative because the ball drops this far below the point from which it was released).
Putting all this together in one equation:
v² = v₀² + 2aΔx and filling in this equation:
v² = (0)² + 2(-9.8)(-8) and
v² = 156.8 so
v = 12.5 which rounds to 13 if you're using 2 sig figs, and rounds to 10 if you're only using 1 (which you should be, according to the way the numbers have been given in this problem)
The work function for silver is 4.73 eV. (a) Convert the value of the work function from electron volts to joules.
Answer:
[tex]W=7.56\times 10^{-19}\ J[/tex]
Explanation:
Given that,
The work function for silver is 4.73 eV.
We need to find the value of the work function from electron volts to joules.
We know that,
[tex]1\ eV=1.6\times 10^{-19}\ J[/tex]
For 4.73 eV,
[tex]4.73\ eV=1.6\times 10^{-19}\times 4.73\\\\=7.56\times 10^{-19}\ J[/tex]
So, the work function for silver is [tex]7.56\times 10^{-19}\ J[/tex].
Margy is trying to improve her cardio endurance by performing an exercise in which she alternates walking and running 100.0 m each. If Margy is walking at 1.4 m/s and accelerates at 0.20 m/s2 during
Complete question is;
Margy is trying to improve her cardio endurance by performing an exercise in which she alternates walking and running 100.0 m each. If Margy is walking at 1.4 m/s and accelerates at 0.20 m/s² during one of the running portions, what is her final velocity at the end of the 100.0 m? Round your answer to the nearest tenth.
Answer:
6.5 m/s
Explanation:
We are told that she is walking at 1.4 m/s and accelerates at 0.20 m/s².
Thus;
Initial velocity; u = 1.4 m/s
Acceleration; a = 0.2 m/s²
Distance; s = 100 m
From Newton's equation of motion, we know that;
v² = u² + 2as
Where v is final velocity.
Thus;
v² = 1.4² + 2(0.2 × 100)
v² = 41.96
v = √41.96
v ≈ 6.5 m/s