Using a linear approximation, the estimated cube root of 217 is 6.00925.
Given that the number is,
The cube root of 217
Now, for the cube root of 217 using a linear approximation, use differentials.
So, the derivative of the function [tex]f(x) = x^{(1/3)[/tex] at a known point.
Taking the derivative of [tex]f(x) = x^{(1/3)[/tex], we get:
[tex]f'(x) = (\dfrac{1}{3} )x^{-2/3[/tex]
Now, we can choose a point near 217 to evaluate the linear approximation.
Let's use x = 216, which is a perfect cube.
Substituting x = 216 into the derivative, we get:
[tex]f'(216) = (\dfrac{1}{3} )(216)^{-2/3[/tex]
[tex]= 0.00925[/tex]
Next, use the linear approximation formula:
Δy ≈ f'(a)Δx
Since our known point is a = 216 and we want to estimate the cube root of 217,
since 217 - 216 = 1
Hence, Δx = 1
Δy ≈ f'(216)
Δx ≈ 0.00925 × 1
≈ 0.00925
Finally, add this linear approximation to the known value at the known point to get our estimate:
Estimated cube root of 217 ;
f(216) + Δy = 6 + 0.00925
= 6.00925
Therefore, the estimated cube root of 217 is 6.00925.
To learn more about the linear approximation visit:
https://brainly.com/question/2272411
#SPJ4
A bottle maker believes that 23% of his bottles are defective.If the bottle maker is accurate, what is the probability that the proportion of defective bottles in a sample of 602 bottles would differ from the population proportion by less than 4%? Round your answer to four decimal places.
Answer:
The appropriate answer is "0.9803".
Step-by-step explanation:
According to the question,
The probability of sample proportion differs from population proportion by les than 4% will be:
= [tex]P(-\frac{0.04}{\sqrt{\frac{0.23\times 0.77}{602} } }<z<\frac{0.04}{\sqrt{\frac{0.23\times 0.77}{602} } } )[/tex]
= [tex]P(-\frac{0.04}{\sqrt{\frac{0.1771}{602} } }<z<\frac{0.04}{\sqrt{\frac{0.1771}{602} } } )[/tex]
= [tex]P(-2.33<z<2.33)[/tex]
= [tex]0.9803[/tex]
Ben starts walking along a path at 3 mi/h. One and a half hours after Ben leaves, his sister Amanda begins jogging along the same path at 7 mi/h. How long (in hours) will it be before Amanda catches up to Ben?
Enter the exact answer.
Hint: The distance formula is that distance = rate * time, so for example in one and a half hours, Ben has walked 3 * 1.5 miles.
Amanda catches up to Ben in ____________ hours.
Answer:
1.125 hours
Step-by-step explanation:
Given :
Ben's speed = 3 mi/hr
Time before Amanda starts = 1.5 hours
Amanda's speed = 7 mi/hr
Time before Amanda catches up with Ben
Recall :
Distance = speed * time
Distance already covered by Ben before Amanda starts :
(3 * 1.5) = 4.5
Hence, we can setup the equation :
Ben's distance = Amanda's distance
Let time taken = x
4.5 + 3x = 7x
4.5 = 7x - 3x
4.5 = 4x
x = 4.5 / 4
x = 1.125 hours
1.125 * 60 = 67. 5 minutes
A random sample of 16 values is drawn from a mound-shaped and symmetric distribution. The sample mean is 12 and the sample standard deviation is 2. Use a level of significance of 0.05 to conduct a two-tailed test of the claim that the population mean is 11.5.
Answer:
we conclude that population mean is not 11.5
Step-by-step explanation:
The hypothesis :
H0 : μ = 11.5
H1 : μ ≠ 11.5
The test statistic :
(xbar - μ) ÷ (s/√(n))
Test statistic = (12 - 11.5) ÷ (2/√(16))
Test statistic = (0.5) ÷ (2 ÷ 4)
Test statistic = 0.5 / 0.5
Test statistic = 1
The Pvalue from test statistic value, df = n - 1 = 16 - 1 = 15
Pvalue = 0.333
Pvalue > α ; we fail to reject the null ; Hence, we conclude that population mean is not 11.5
4ab-3a+3bx-2ab anyone know the answer to this problem?
Answer:
-3a+3bx+2ab
Step-by-step explanation:
Each of these extreme value problems has a solution with both a maximum value and a minimum value. Use Lagrange multipliers to find the extreme values of the function subject to the given constraint.
(a) f (x, y) = x^2 - y^2; x^2 + y^2 = 1
Max of 1 at (plusminus 1, 0), min of - 1 at (0, plusminus l)
(b) f (x, y) = 3x + y; x^2 + y^2 = 10
Max of 10 at (3, 1), min of - 10 at (- 3, - 1)
(c) f (x, y) = xy; 4x^2 + y^2 = 8
Max of 2 at plusminus (1, 2), min of - 2 at plusminus (l, - 2)
Answer:
a) f(x,y) = - 1 minimum at P ( 0 ; -1 )
b) f (x,y) = 10 maximum at P ( 3 , 1 ) and f (x,y) = - 10 minimum at Q ( - 3 , - 1 )
c) Max f ( x , y ) = 2 for points P ( 1, 2 ) and T ( -1 , -2 )
Min f ( x , y ) = -2 for points Q ( 1 , - 2 ) and R ( -1 , 2 )
Step-by-step explanation:
A) f(x,y) = x² - y² subject to x² + y² = 1 g(x,y) = x² + y²- 1
δf(x,y)/ δx = 2*x δg(x,y)/ δx = 2*x
δf(x,y)/ δy = - 2*y δg(x,y)/ δy = 2*y
δf(x,y)/ δx = λ* δg(x,y)/ δx
2*x = λ*2*x
δf(x,y)/ δy = λ* δg(x,y)/ δy
- 2*y = λ*2*y
Then, solving
2*x = λ*2*x x = λ*x λ = 1
- 2*y = λ*2*y y = - 1
x² + y²- 1 = 0 x² + ( -1)² - 1 = 0 x = 0
Point P ( 0 ; -1 ) ; then at that point
f(x,y) = x² - y² f(x,y) = 0 - ( -1)² f(x,y) = - 1 minimum
b) f( x, y ) = 3*x + y g ( x , y ) = x² + y² = 10
δf(x,y)/ δx = 3 δg(x,y)/ δx = 2*x
δf(x,y)/ δy = 1 δg(x,y)/ δy = 2*y
δf(x,y)/ δx = λ * δg(x,y)/ δx ⇒ 3 = 2* λ *x (1)
δf(x,y)/ δy = λ * δg(x,y)/ δy ⇒ 1 = 2*λ * y (2)
x² + y² - 10 = 0 (3)
Solving that system
From ec (1) λ = 3/2*x From ec (2) λ = 1/2*y
Then (3/2*x ) = 1/2*y 3*y = x
x² + y² = 10 ⇒ 9y² + y² = 10 10*y² = 10
y² = 1 y ± 1 and
y = 1 x = 3 P ( 3 , 1 ) y = - 1 x = -3 Q ( - 3 , - 1 )
Value of f( x , y ) at P f (x,y) = 3*x + y f (x,y) = 3*(3) +1
f (x,y) = 10 maximum at P ( 3 , 1 )
Value of f( x , y ) at Q f (x,y) = 3*x + y f (x,y) = 3*(- 3) + ( - 1 )
f (x,y) = - 10 minimum at Q ( - 3 , - 1 )
c) f( x, y ) = xy g ( x , y ) = 4*x² + y² - 8
δf(x,y)/ δx = y δg(x,y)/ δx = 8*x
δf(x,y)/ δy = x δg(x,y)/ δy = 2*y
δf(x,y)/ δx = λ * δg(x,y)/ δx ⇒ y = λ *8*x (1)
δf(x,y)/ δy = λ * δg(x,y)/ δy ⇒ x = λ *2*y (2)
4*x² + y² - 8 = 0 (3)
Solving the system
From ec (1) λ = y/8*x and From ec (2) λ = x/2*y Then y/8*x = x/2*y
2*y² = 8*x² y² = 4*x²
Plugging that value in ec (3)
4*x² + 4*x² - 8 = 0
8*x² = 8 x² = 1 x ± 1 And y² = 4*x²
Then:
for x = 1 y² = 4 y = ± 2
for x = -1 y² = 4 y = ± 2
Then we get P ( 1 ; 2 ) Q ( 1 ; - 2)
R ( - 1 ; 2 ) T ( -1 ; -2)
Plugging that values in f( x , y ) = xy
P ( 1 ; 2 ) f( x , y ) = 2 R ( - 1 ; 2 ) f( x , y ) = - 2
Q ( 1 ; - 2) f( x , y ) = -2 T ( -1 ; -2 ) f( x , y ) = 2
Max f ( x , y ) = 2 for points P and T
Min f ( x , y ) = -2 for points Q and R
please try this for answer my question please
Answer:
1. +30
2. +64
3. 0
4. -3
5. +24
6. +18
7. -48
8. -64
9. +21
10. -30
11. +12
12. 0
13. -4
14. +56
15. +2
Step-by-step explanation:
When multiplying integers:
two negatives = positive
two positives = positive
one negative x one positive = negative
So, if the signs are the same, the answer is positive.
If you have two different signs, the answer is negative.
You multiply the integers like normal.
Anything multiplied by zero = 0.
Anything multiplied by one = itself (just be careful of the sign).
If the domain of a function that is reflected over the x-axis is (1, 5), (2, 1), (-1, -7), what is the range?
A. (1, -5), (2, -1), (-1, 7)
B. (5, 1), (1, 2), (-7, -1)
C. (-5, -1), (-1, -2), (7, 1)
D. (-1, 5), (-2, 1), (1, -7)
Answer:
A. (1, -5), (2, -1), (-1, 7)
Step-by-step explanation:
Reflecting a function over the x-axis:
When a function is reflected over the x-axis, the x-value stays the same, while y changes the signal, so the transformation rule is:
[tex](x,y) \rightarrow (x,-y)[/tex]
To find the range:
We apply the transformation to the points in the domain. Thus:
[tex](1,5) \rightarrow (1,-5)[/tex]
[tex](2,1) \rightarrow (2,-1)[/tex]
[tex](-1,-7) \rightarrow (-1,-(-7)) = (-1, 7)[/tex]
Thus the correct answer is given by option a.
Answer:
It is letter A and please give me brainliest
Step-by-step explanation:
PLEASE HELLPP!!! Choose the best graph that represents the linear equation:
-x = 2y + 1
Graph A
On a coordinate plane, a line goes through (negative 1, 0) and (1, negative 1).
Graph B
On a coordinate plane, a line goes through (negative 3, negative 1) and (1, 1).
Graph C
On a coordinate plane, a line goes through (1, 0) and (5, negative 2).
Graph D
On a coordinate plane, a line goes through (negative 3, negative 2) and (1, 0).
a.
Graph A
c.
Graph C
b.
Graph B
d.
Graph D
Please select the best answer from the choices provided
A
B
C
D
Answer:
C
Step-by-step explanation: just C-
Answer: Its not c
Step-by-step explanation: It is A
Cathy is planning to take the Certified Public Accountant Examination (CPA exam). Records kept by the college of business from which she graduated indicate that 73% of students who graduated pass the CPA exam. Assume that the exam is changed each time it is given. Let n = 1, 2, 3, ... represent the number of times a person takes the CPA test until the first pass. (Assume the trials are independent).
(a) What is the probability that Cathy passes the CPA test on the first try?
(b) What is the probability that Cathy passes the CPA test on the second or third try?
Answer:
The responses to these question can be defined as follows:
Step-by-step explanation:
For point a:
[tex]\to P(1) = 0.73[/tex]
For point b:
[tex]\to P(2\ or\ 3) = P(2) + P(3)[/tex]
[tex]= 0.27 \times 0.73 + 0.27\times 0.27\times0.73\\\\=0.1971+0.1971\times 0.27\\\\=0.1971+0.053217\\\\=0.250317[/tex]
In May 2010, the Pew Research Center for the People & the Press carried out a national survey to gauge opinion on the Arizona Immigration Law. Responses (Favor, Oppose, Don’t Know) were examined according to groups defined by political party affiliation (Democrat, Republican, Independent). Which of the following would be appropriate for displaying these data?
a. Pie charts
b. Segmented bar chart.
c. Side by side bar chart.
d. Contigency table
Explanation:
It's most effective to use a contingency table because we have two variables here: 1) the responses, and 2) the party affiliation.
We can have the responses along the rows and the party affiliation along the columns, or vice versa.
See the example below. The values are completely random simply for the purpose of the example (and not drawn from any real life data source).
As per the given options, the appropriate for the displaying these data will be contingency table. Hence, option D is correct.
What is a Pie chart?A pie chart is a visual depiction of information in the shape of a pie, where the pieces of the pie represent the magnitude of the data. To depict data as a pie chart, you need a list of quantitative variables as well as categorical variables.
As per the given information in the question,
A contingency table in statistics is a particular kind of matrix-style table that shows the frequency of the variables. They are extensively utilized in scientific, engineering, business intelligence, and survey research.
To know more about Pie charts:
https://brainly.com/question/24207368
#SPJ5
Solve the inequality. |X-15|>9
Answer:
X<6 or X>24
Step-by-step explanation:
Young invested GH150,000 and 2.5% per annum simple interest. how long will it take this amount to. yield an interest of GH11,250,00
Answer: 3 years
Step-by-step explanation:
Interest is calculated as:
= (P × R × T) / 100
where
P = principal = 150,000
R = rate = 2.5%.
I = interest = 11250
T = time = unknown.
I = (P × R × T) / 100
11250 = (150000 × 2.5 × T)/100
Cross multiply
1125000 = 375000T
T = 1125000/375000
T = 3
The time taken will be 3 years
F(x)=-x^2-4 for x= -3
Answer:
5Step-by-step explanation:
Given:
f(x)=-x²-4Substitute x= -3:
f(-3) = (-3)² - 4 = 9 - 4 = 5A sample of 100 is drawn from a population with a proportion equal to 0.50. Determine the probability of observing between 43 and 64 successes.
Answer:
The probability of observing between 43 and 64 successes=0.93132
Step-by-step explanation:
We are given that
n=100
p=0.50
We have to find the probability of observing between 43 and 64 successes.
Let X be the random variable which represent the success of population.
It follows binomial distribution .
Therefore,
Mean,[tex]\mu=np=100\times 0.50=50[/tex]
Standard deviation , [tex]\sigma=\sqrt{np(1-p)}[/tex]
[tex]\sigma=\sqrt{100\times 0.50(1-0.50)][/tex]
[tex]\sigma=5[/tex]
Now,
[tex]P(43\leq x\leq 64)=P(42.5\leq x\leq 64.5)[/tex]
[tex]P(42.5\leq x\leq 64.5)=P(\frac{42.5-50}{5}\leq Z\leq \frac{64.5-50}{5})[/tex]
[tex]=P(-1.5\leq Z\leq 2.9)[/tex]
[tex]P(42.5\leq x\leq 64.5)=P(Z\leq 2.9)-P(Z\leq- 1.5)[/tex]
[tex]P(42.5\leq x\leq 64.5)=0.99813-0.06681[/tex]
[tex]P(43\leq x\leq 64)=0.93132[/tex]
Hence, the probability of observing between 43 and 64 successes=0.93132
Can you help me figure out this question I’ve been stuck on this for 20 minutes
Step-by-step explanation:
[tex]\dfrac{2x^2+x-6}{x+x-6} = \dfrac{(2x-3)(x+2)}{2(x-3)}[/tex]
A student takes an exam containing 16 true or false questions. If the student guesses, what is the probability that he will get exactly 14 questions right
Answer:
0.001831055
Step-by-step explanation:
Here, n = 16, p = 0.5, (1 - p) = 0.5 and x = 14
As per binomial distribution formula P(X = x) = nCx * p^x * (1 - p)^(n - x)
We need to calculate P(X = 14)
P(x =14) = 16C14 * 0.5^14 *(1-0.5)^2
= 120 * 0.5^14 *(1-0.5)^2
= 0.001831055
Please help!! How do I solve for x?
The line in the middle is half the length of the line on the outside. Multiply the middle line by 2 and set it equal to the outside line.
2(x-3) = x + 6
Simplify:
2x -6 p x + 6
Add 6 to both sides
2x = x + 12
Subtract x from both sides:
X = 12
The answer is B) 12
A(n) _____ is an expression that uses variables to state a rule.
plz help asap
Answer:
A FORMULA is an expression that uses variables to state a rule.
can someone tell me if why these triangles are similar
Answer:
Step-by-step explanation:
If the triangles given in the picture are similar,
ΔVUT ~ ΔVLM
By the property of similarity of two triangles, their corresponding sides will be proportional.
[tex]\frac{TV}{VM}= \frac{VL}{VU}[/tex]
[tex]\frac{49}{14}=\frac{28}{8}[/tex]
[tex]\frac{7}{2}=\frac{7}{2}[/tex]
True.
Therefore, ΔVUT and ΔVLM will be similar.
three friends, akira,bruno and carmela pooled thier money to start a lemonade stand. akria contributes $25, bruno contributed $20 and carmela contributed $35. after a month, thier lemoneade stand had earned 2000, and they want to distribute this money in the same ratio as the money that was invested. how many dollars will brouno recieve
plz explian
9514 1404 393
Answer:
$500
Step-by-step explanation:
Bruno's fraction of the total contribution was ...
Bruno / Total = $20/($25 +20 +35) = 20/80 = 1/4
Then Bruno's share of the earnings is this same fraction, so is ...
(1/4) × ($2000) = $500
what is the difference between the products of the digits in 425 and the sum of the digits in the numeral 92784
Answer: 10
Step-by-step explanation:
4 x 2 x 5 = 40
9 + 2 + 7 + 8 + 4 = 30
40 - 30 = 10
= 10
SOMEONE PLS HELP ME I WILL MAKE U BRAINLIST ! In a survey sample of 83 respondents, about 30.1 percent of the samplework less than 40 hours per week. What is the estimated standard error for the group of respondents who work 40 hours or more per week?
(*round to two decimal places)
Answer:
Answer = √(0.301 × 0.699 / 83) ≈ 0.050
A 68 percent confidence interval for the proportion of persons who work less than 40 hours per week is (0.251, 0.351), or equivalently (25.1%, 35.1%)
Step-by-step explanation:
√(0.301 × 0.699 / 83) ≈ 0.050
We have a large sample size of n = 83 respondents. Let p be the true proportion of persons who work less than 40 hours per week. A point estimate of p is because about 30.1 percent of the sample work less than 40 hours per week. We can estimate the standard deviation of as . A confidence interval is given by , then, a 68% confidence interval is , i.e., , i.e., (0.251, 0.351). is the value that satisfies that there is an area of 0.16 above this and under the standard normal curve.The standard error for a proportion is √(pq/n), where q=1−p.
Hope this answer helps you :)
Have a great day
Mark brainliest
2.According to www.city-data, the mean price for a detached house in Franklin County, OH in 2009 was $192,723. Suppose we know that the standard deviation was $42,000. Check the three assumptions associated with the Central Limit Theorem. What is the probability that a random sample of 75 detached houses in Franklin County had a mean price greater than $190,000 in 2009
Answer:
0.7123 = 71.23% probability that a random sample of 75 detached houses in Franklin County had a mean price greater than $190,000 in 2009.
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
The mean price for a detached house in Franklin County, OH in 2009 was $192,723. Suppose we know that the standard deviation was $42,000.
This means that [tex]\mu = 192723, \sigma = 42000[/tex]
Sample of 75:
This means that [tex]n = 75, s = \frac{42000}{\sqrt{75}}[/tex]
What is the probability that a random sample of 75 detached houses in Franklin County had a mean price greater than $190,000 in 2009?
1 subtracted by the p-value of Z when X = 190000. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{190000 - 192723}{\frac{42000}{\sqrt{75}}}[/tex]
[tex]Z = -0.56[/tex]
[tex]Z = -0.56[/tex] has a p-value of 0.2877
1 - 0.2877 = 0.7123
0.7123 = 71.23% probability that a random sample of 75 detached houses in Franklin County had a mean price greater than $190,000 in 2009.
In a box of chocolates, 12 of the chocolates are wrapped in red foil. That is 30% of the chocolates in the box. How many chocolates are there?
Answer:
The answer is 40 chocolates in the box in total
6/10 > _ > 1/3 which fraction goes in the blank?
Step-by-step explanation:
6/10 > _ > 1/3
3/5 > _ > 1/3
Taking the average of both the fraction½(⅗+⅓)
½(9+5/15)
½(14/5)
=7/15
6/10 > 7/15 > 1/3Answer:
7/15
Step-by-step explanation: 10 and 3 LCM is 30
6/10 x 3 =18/30 and 1/3x 10= 10/30
10/30 and 18/30 average is 14/30 which simplified is 7/15
The answer is 7/15
Hope it helps
Find the equation and check answer of (−8x=−2x−8)
Answer:
x = 4/3
Step-by-step explanation:
you need to move -8x to the right side.0=6x-8then, you need to move -8 to the left side.8=6xyou can get answer!x = 4/3
determine the general solution of cos2X -7cosX -3=0
Answer:
x=2pi/3 +2pi n, 4pi/3 +2pi n for all integar of n.
Step-by-step explanation:
find the equation of the line shown
Answer:
y=1/2x+1/2
Step-by-step explanation:
In order to find the slope, you can use rise/run, in this case, the slope is 1/2 and the y-intercept is at (0, 0.5)
Question 5 Multiple Choice Worth 1 points)
(01.03 MC)
Bunny Hill Ski Resort charges $35 for ski rental and $10 an hour to ski. Black Diamond Ski Resort charges $40 for ski rental and $5 an hour to ski. Create an equation to determine at what point
the cost of both ski slopes is the same.
Answer:
Bunny Hill Ski Resort:
y = 10x + 35
Diamond Ski Resort:
y = 5x + 40
Point where the cost is the same:
(1, 45)
Step-by-step explanation:
The question tells us that:
$35 and $40 are initial fees
$10 and $5 are hourly fees
This means that x and y will equal:
x = number of hours
y = total cost of ski rental after a number of hours
So we can form these 2 equations:
y = 10x + 35
y = 5x + 40
Now we are going to use System of Equations to find what point the cost of both ski slopes is the same.
Because they both equal y, we can set the equations equal to each other:
10x + 35 = 5x + 40
And we use basic algebra to solve for x:
10x + 35 = 5x + 40
(subtract 5x from both sides)
5x + 35 = 40
(subtract 35 from both sides)
5x = 5
(divide both sides by 5)
x = 1
Remember, x equals the number of hours.
That means when your rent out the skis for 1 hour, you will get the same price of $45 (you find the price by plugging in 1 into both of the equations)
Hope it helps (●'◡'●)
If 5x = 3x+12 then x = …..
↦ [tex]\huge\underline{ \underline{Answer:-}}[/tex]
[tex]5x = 3x + 12 \\ 5x - 3x = 12 \\ 2x = 12 \\ x = \frac{12}{2} \\ x = 6[/tex]
ʰᵒᵖᵉ ⁱᵗ ʰᵉˡᵖˢ
꧁❣ ʀᴀɪɴʙᴏᴡˢᵃˡᵗ2²2² ࿐
Step-by-step explanation:
Explanation is in the attachmenthope it is h helpful to you