use the figure to find x.

Use The Figure To Find X.

Answers

Answer 1

Answer:

[tex]20\sqrt{6}[/tex]

Step-by-step explanation:

In all 30-60-90 triangles, the side lengths are in the ratio [tex]x:x\sqrt{3}:2x[/tex], where [tex]2x[/tex] is the hypotenuse and [tex]x[/tex] is the side opposite to the 30 degree angle. Therefore, the hypotenuse of the 30-60-90 triangle (left) is [tex]2\cdot 10\sqrt{3}=20\sqrt{3}[/tex]. This hypotenuse also represents one leg of the 45-45-90 triangle.

In all 45-45-90 triangles, the side lengths are in ratio [tex]x:x:x\sqrt{2}[/tex] where [tex]x\sqrt{2}[/tex] is the hypotenuse of the triangle. Therefore, since [tex]x[/tex] is the hypotenuse of the triangle marked and [tex]20\sqrt{3}[/tex] is one of the legs, the value of [tex]x[/tex] must be:

[tex]20\sqrt{3}\cdot \sqrt{2}=\boxed{20\sqrt{6}}[/tex]

Answer 2

Answer:

[tex]x = 20\sqrt6[/tex]

Step-by-step explanation:

The triangle with the side that has a measure of ([tex]10 \sqrt{3}[/tex]) is a (30 - 60 - 90) triangle. This means that its angles are (30), (60), and (90) degrees. One property of a (30 - 60 -90) triangle is the ratio of its sides. This ratio, in simple terms, can be defined as the following:

angle : opposite side

[tex]30 : z\\60 : z\sqrt{3}\\90 : 2z[/tex]

Use this property here to find the measure of the side opposite the (90) degree angle, that is shared between the two triangles.

This side is opposite the (30) degree angle, therefore, multiply this side by (2) will yield the measure of the side opposite the (90) degree angle. Therefore the side opposite the (90) degree angle has the following measure:

[tex]20\sqrt{3}[/tex]

The triangle with a side of (x) is a (45 - 45 - 90) triangle. This means that its angles have a measure of (45 - 45 - 90). The ratios of the sides of a (45 - 45 - 90) triangle are as follows:

angle : opposite side

[tex]45:y\\45:y\\90:y\sqrt{2}[/tex]

Apply this ratio here; multiply the side shared between the (30 - 60 - 90) triangle and (45 - 45- 90) triangle by ([tex]\sqrt{2}[/tex]) in order to get the side with a measure of (x). When this is done, one gets the following result:

[tex]x = 20\sqrt{3}*\sqrt{2}\\x = 20\sqrt{6}[/tex]


Related Questions

how to construct angle 30°​

Answers

Answer:

Angle ABC = 30°

Step-by-step explanation:

Construct a ray AB, horizontally.Take a compass, keep the pointy edge on the origin of the ray and make an arc passing through AB.Mark the point where the arc cuts AB as XPlace the pointy edge of the compass on X, draw another arc through the existing arc.Mark the point where on arc cuts the other arc as Y.Now from the origin of AB through the point Y draw a straight line.The angle thus formed is 60°.Now make arcs keeping the compass on X and Y.Mark the point where these two arcs meet as Z.Now from the origin of AB through the point Z draw a straight line.The angle formed in this process is a 30°.

A research team is testing a product that will minimize wrinkles among older adults. Volunteers in the age group of 40 to 45 are included in the research. The research team gives a cream to be applied on the face to one group and a placebo cream to the other group.

Answers

What is the question?

If he is correct, what is the probability that the mean of a sample of 68 computers would differ from the population mean by less than 2.08 months

Answers

Complete Question

The quality control manager at a computer manufacturing company believes that the mean life of a computer is 91 months with a standard deviation of 10 months if he is correct. what is the probability that the mean of a sample of 68 computers would differ from the population mean by less than 2.08 months? Round your answer to four decimal places. Answer How to enter your answer Tables Keypad

Answer:

[tex]P(-1.72<Z<1.72)=0.9146[/tex]

Step-by-step explanation:

From the question we are told that:

Population mean \mu=91

Sample Mean \=x =2.08

Standard Deviation \sigma=10

Sample size n=68

Generally the Probability that The  sample mean  would differ from the population mean

P(|\=x-\mu|<2.08)

From Table

[tex]P(|\=x-\mu|<2.08)=P(|z|<1.72)[/tex]

T Test

[tex]Z=\frac{\=x-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex]

[tex]Z=\frac{2.08}{\frac{10}{\sqrt{68} } }[/tex]

[tex]Z=1.72[/tex]

[tex]P(|\=x-\mu|<2.08)=P(|z|<1.72)[/tex]

[tex]P(-1.72<Z<1.72)[/tex]

Therefore From Table

[tex]P(-1.72<Z<1.72)=0.9146[/tex]

identify the angles relationship

Answers

Answer:

Adjacent

Step-by-step explanation:

Adjacent angles are two angles that have a common vertex and a common side but do not overlap

What is the following product?
(V12+ V6 (16-V10
6-12-2130+6-2V15
-2 དུ་
6V3-615
31/7- V22+2/3-4
2V3+6-2V15

Answers

Answer:

The answer is A: 6√2 - 2√30 + 6 - 2√15

Believe me it right.

What two things have to be true in order to use the Zero Product Property?

A: Both sides of the equations must be zero.

B: One side of the equation must be a factored polynomial, and the other side must be -1.

C: One side of the equation must be a factored polynomial, and the other side must be 1.

D: One side of the equation must be a factored polynomial, and the other side must be zero.

Wrong answers will be reported. Thanks!

Answers

Answer:

D - One side is a factored polynomial and the other side is 0.

A - Incorrect; If each side is 0, the equation would be equal since 0 = 0.

B - Incorrect; It cannot be -1 because the property states Zero product which means 0 should be the product.

C - Incorrect; It cannot be 1 because the property states Zero product which means 0 should be the product.

D - Correct; One side is 0, and the other is a factored polynomial, which correctly displays the correct definition of Zero Product Property.

Let (-5, 2) be a point on the terminal side of 0.
Find the exact values of coso , csco, and tano.

Answers

Answer:

Following are the response to this questions:

Step-by-step explanation:

Please find the graph file in the attachment.

Given:

P=2

B=-5

H=?

[tex]H=\sqrt{P^2+B^2}[/tex]

    [tex]=\sqrt{2^2+(-5)^2}\\\\=\sqrt{4+25}\\\\=\sqrt{29}\\\\[/tex]

Using formula:

[tex]\to \ cosec \theta \ or\ \ csco \theta =\frac{H}{P}\\\\\to \cos \theta=\frac{B}{H}\\\\\to \tan \theta=\frac{p}{B}\\\\[/tex]

So,

[tex]\to \ cosec \theta \ or\ \ csco \theta =\frac{\sqrt{29}}{2}\\\\\to \cos \theta=\frac{-5}{\sqrt{29}} =\frac{-5}{\sqrt{29}}\times \frac{\sqrt{29}}{\sqrt{29}}=-\frac{5\sqrt{29}}{29}\\\\\to \tan \theta=\frac{2}{-5}= -\frac{2}{5}\\\\[/tex]

A ball is thrown from an initial height of 7 feet with an initial upward velocity of 23 ft/s. The ball's height h (in feet) after 1 seconds is given by the following.
h = 7+23t-16t^2
Find all values of 1 for which the ball's height is 15 feet.

Answers

Answer:

Step-by-step explanation:

If we are looking for the time(s) that the ball is at a height of 15, we simply sub in a 15 for the height in the position equation and solve for t:

[tex]15=-16t^2+23t+7[/tex] and

[tex]0=-16t^2+23t-8[/tex]

Factor this however you factor a quadratic in class to get

t = .59 seconds and t = .85 seconds.

This means that .59 seconds after the ball was thrown into the air it was 15 feet off the ground. Then the ball reached its max height, gravity took over, and began pulling it back down to earth. The ball passes the height of 15 feet again on its way down after .85 seconds.

In factons you divide the numerator and the whole number .. then denominator

Correct?

Answers

Answer:

Step-by-step explanation:

yes

A business rents in-line skates and bicycles to tourists on vacation. A pair of skates rents for $5 per day. A bicycle rents for $20 per day.
On a certain day, the owner of the business has 25 rentals and takes in $425.
Write a system of equation to represent this situation, then solve to find the number of each item rented.
Show both the equations and the solution.

Answers

Answer:

5x+20y=425

Step-by-step explanation:

Its 5 bucks for x pairs of skates

Its 20 dollars for y bikes

x+y rentals have to equal 25

all of this is equal to 425. All that is left to do is test with number until the statement is true.

try :

5(5)+(20)(20)=425

x + y do equal 25, and the total is equal to 425.

A punch contains cranberry juice and ginger ale in the ratio 5:3. If you require 32 L
of punch for a party, how many litres of cranberry juice and how many litres of ginger
ale are required?

Answers

you must add
6
litres of cranberry juice
Explanation:
"A fruit punch recipe calls for 3 parts of apple juice to 4 parts of cranberry juice"
Meaning: For every 3 litres of apple juice, you must add 4 litres of cranberry juice. That means if you add 6 litres of apple juice, then you must add 8 litres of cranberry juice
Now, if you add 4.5 litres of apple juice, you can think of it this way
3
apple juice
:
4
cranberry juice

4.5
apple juice
:
x
cranberry juice
x
=
4.5
×
4
3

x
=
18
3

x
=
6
Therefore, you must add
6
litres of cranberry juice
Answer link

Shwetank Mauria
Jul 25, 2018
6
liter of cranberry juice.
Explanation:
As
3
parts of apple juice are added to
4
parts of cranberry juice
and
4.5
liter of apple juice means each of three parts are
4.5
3
=
1.5
liter
and one needs
4
parts of cranberry juice i.e.
4
×
1.5
liter or
6
liter of cranberry juice.

Which value of a in the exponential function below would cause the function to stretch?
f(x) = (1)
O 0.3
O 0.9
O 1.0
O 1.5

Answers

Answer:

1.5

Step-by-step explanation:

Took the test already.

The value of a for which the exponential function below would cause the function to stretch is a > 1 Or 1.5.

What are some rules for function transformations?

Suppose we have a function f(x).

f(x) ± d = Vertical upshift/downshift by d units (x, y ±d).

f(x ± c) = Horizontal left/right shift by c units (x - + c, y).

(a)f(x) = Vertical stretch for a > 0, vertical shrink a < 0. (x, ay).

f(bx) = Horizonatal compression b > 0, horizontal stretch for b < 0. (bx , y).

f(-x) = Reflection over y axis, (-x, y).

-f(x) = Reflection over x-axis, (x, -y).

We know an exponential function f(x) = [tex]e^x[/tex].

Now if we multiply f(x) by some number 'a' which is greater than 1 let it be g(x) = [tex]ae^x[/tex] the function would stretch horizontally for a > 1.

learn more about function transformations here :

https://brainly.com/question/13810353

#SPJ6

Which of the SMART criteria are NOT met by this data analytics project goal (pay close attention to whether the options are words the SMART acronym stands for)?

Answers

Answer:

Specific

Step-by-step explanation:

The data analytics is defined as the study of analyzing the raw data and information so as to make a proper conclusion about the information. It is a process of inspecting, transforming, and  modelling the data with the intention of finding useful information and conclusions.

The acronym for S.M.A..R.T is Specific, Measurable, Attainable, Relevant and Time bounding.

The SMAR criteria which do not meet the data analytics project goal in the question is "Specific".

The regression analysis can be summarized as follows: Multiple Choice No significant relationship exists between the variables. A significant negative relationship exists between the variables. For every unit increase in x, y decreases by 12.8094. A significant positive relationship exists between the variables

Answers

Answer:

A significant negative relationship exists between the variables

Step-by-step explanation:

Base on the information given in the question which goes thus : For every unit increase in x, y decreases by 12.8094. The value 12.8094 is the slope which is the rate of change in y variable per unit change in the independent variable. The sign or nature of the slope Coefficient gives an hint about the relationship between the x and y variables. The slope Coefficient in this case is negative and thus we'll have a negative relationship between the x and y variables (an increase in x leads to a corresponding decrease in y). This is a negative association.

A certain cosine function has an amplitude of 7. Which function rule could model this situation?

Answers

Answer:

y = 7cos bx

Step-by-step explanation:

For a cosine function without pahse shift and vertical shift, but with amplitude given, it will also have period and thus , the formula for the cosine function is;

y = Acos bx

Where;

A is the amplitude

Period = 2π/b

Now, we are told that the amplitude is 7. Thus;

y = 7cos bx

What is the simplified expression for the
expression below? 4(x+8)+5(x-3)

Answers

4(x+8)+5(x-3)
= 4x+32+5(x-3)
=4x+32+5x-15
=9x+17

Answer: 9x+17

Find the sample size necessary to estimate the mean arrival delay time for all American Airlines flights from Dallas to Sacramento to within 6 minutes with 95% confidence. Based on a previous study, arrival delay times have a standard deviation of 39.6 minutes.

Answers

Answer:

The sample size necessary is of 168.

Step-by-step explanation:

We have that to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:

[tex]\alpha = \frac{1 - 0.95}{2} = 0.025[/tex]

Now, we have to find z in the Z-table as such z has a p-value of [tex]1 - \alpha[/tex].

That is z with a pvalue of [tex]1 - 0.025 = 0.975[/tex], so Z = 1.96.

Now, find the margin of error M as such

[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]

In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.

Based on a previous study, arrival delay times have a standard deviation of 39.6 minutes.

This means that [tex]\sigma = 39.6[/tex]

Find the sample size necessary to estimate the mean arrival delay time for all American Airlines flights from Dallas to Sacramento to within 6 minutes with 95% confidence.

This is n for which M = 6. So

[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]

[tex]6 = 1.96\frac{39.6}{\sqrt{n}}[/tex]

[tex]6\sqrt{n} = 1.96*39.6[/tex]

[tex]\sqrt{n} = \frac{1.96*39.6}{6}[/tex]

[tex](\sqrt{n})^2 = (\frac{1.96*39.6}{6})^2[/tex]

[tex]n = 167.34[/tex]

Rounding up:

The sample size necessary is of 168.

I need some help! thank you!

Answers

Answer:

The 1st,Thrid, Fifth Option

Step-by-step explanation:

The first option is true. We can move the orginal square root function to get g(x).

The second option is false. Function g(x) which equals

[tex] \sqrt{x - 3} - 1[/tex]

Domain is all real numbers greater than or equal to 3.

The third option is true. Since minimum point we can get is 0 in a square root function. We have a vertical shift so our new minimum point is

[tex]0 - 1 = - 1[/tex]

We can take the sqr root of 0 so

So all real numbers that are greater than or equal to -1 is true.

The fourth option is false, we need to add 3 instead of subtract 3.

The fifth option is true, we can do that to get back to our original function

4)In order to set rates, an insurance company is trying to estimate the number of sick daysthat full time workers at an auto repair shop take per year. A previous study indicated thatthe standard deviation was2.2 days. a) How large a sample must be selected if thecompany wants to be 92% confident that the true mean differs from the sample mean by nomore than 1 day

Answers

Answer:

A sample of 18 is required.

Step-by-step explanation:

We have that to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:

[tex]\alpha = \frac{1 - 0.92}{2} = 0.04[/tex]

Now, we have to find z in the Z-table as such z has a p-value of [tex]1 - \alpha[/tex].

That is z with a pvalue of [tex]1 - 0.04 = 0.96[/tex], so Z = 1.88.

Now, find the margin of error M as such

[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]

In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.

A previous study indicated that the standard deviation was 2.2 days.

This means that [tex]\sigma = 2.2[/tex]

How large a sample must be selected if the company wants to be 92% confident that the true mean differs from the sample mean by no more than 1 day?

This is n for which M = 1. So

[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]

[tex]1 = 1.88\frac{2.2}{\sqrt{n}}[/tex]

[tex]\sqrt{n} = 1.88*2.2[/tex]

[tex](\sqrt{n})^2 = (1.88*2.2)^2[/tex]

[tex]n = 17.1[/tex]

Rounding up:

A sample of 18 is required.

A jewelry box is in the shape of a rectangular prism with an area of 528 cubic inches. The length of the box is 12 inches and the height is 5 1/2 inches. What is the width of the jewelry box? A=LxWxH

please help. :)​

Answers

the height is 8 i believe

Which is heavier, 4- kilograms
or
4
4 kilograms?

Answers

Answer:

i think 4 4 kilograms if im wrong sorry

Step-by-step explanation:

Giving BrainleYst. Which Inequality is graphed on the coordinate plane?
O A. y<-2x-1
OB. y>-2x-1
OC. ys-2x-1
OD. y2-2x - 1

Answers

Answer:

A. y<-2x-1

Step-by-step explanation:

not C or D because it is a dashed line meaning the linear equation will either have the symbol ≥ or ≤.

when y is less than, you shade below

thus, the answer is A

Provided below are summary statistics for independent simple random samples from two populations. Use the pooled​ t-test and the pooled​ t-interval procedure to conduct the required hypothesis test and obtain the specified confidence interval.
x1=21, s1=4, n1=12, x2=20, s2=3, n2=15
A. What are the correct hypotheses for a​ right-tailed test?
b. Compute the test statistic.
c. Determine the​ P-value.
B. The 90​% confidence interval is from ____to ____.

Answers

Answer:

(a) [tex]H_o:\mu_1 = \mu_2[/tex]     [tex]H_a:\mu_1 > \mu_2[/tex]

(b) [tex]t = 0.74[/tex]

(c) [tex]p =0.2331[/tex]

(d) [tex]CI = (-2.095,4.095)[/tex]

Step-by-step explanation:

Given

[tex]\bar x_1=21,\ s_1=4,\ n_1=12,\\ \bar x_2=20,\ s_2=3,\ n_2=15[/tex]

Solving (a): The hypotheses

The test is right-tailed, means that the alternate hypothesis will contain greater than sign.

So, we have:

[tex]H_o:\mu_1 = \mu_2[/tex]

[tex]H_a:\mu_1 > \mu_2[/tex]

Solving (b); The test statistic (t)

This is calculated as:

[tex]t = \frac{\bar x_1 - \bar x_2}{\sqrt{\frac{s_1^2(n_1 - 1) + s_2^2(n_2 - 1)}{n_1 + n_2 - 2} * (\frac{1}{n_1} + \frac{1}{n_2})}}[/tex]

So, we have:

[tex]t = \frac{21 - 20}{\sqrt{\frac{4^2(12 - 1) + 3^2(15 - 1)}{12 + 15 - 2} * (\frac{1}{12} + \frac{1}{15})}}[/tex]

[tex]t = \frac{1}{\sqrt{\frac{302}{25} * (0.15)}}[/tex]

[tex]t = \frac{1}{\sqrt{12.08 * 0.15}}[/tex]

[tex]t = \frac{1}{\sqrt{1.812}}[/tex]

[tex]t = \frac{1}{1.346}[/tex]

[tex]t = 0.74[/tex]

Solving (c): The P-value

First, we calculate the degrees of freedom

[tex]df = n_1 + n_2 -2[/tex]

[tex]df = 12+15 -2[/tex]

[tex]df = 25[/tex]

Using the t distribution, the p-value is:

[tex]p =TDIST(0.74,25)[/tex]

[tex]p =0.2331[/tex]

Solving (d): The 90% confidence interval

Calculate significance level

[tex]\alpha = 1 - CI[/tex]

[tex]\alpha = 1 - 90\%[/tex]

[tex]\alpha = 0.10[/tex]

Calculate the t value (t*)

[tex]t^* = (\alpha/2,df)[/tex]

[tex]t^* = (0.10/2,25)[/tex]

[tex]t^* = (0.05,25)[/tex]

[tex]t^* = 1.708[/tex]

The confidence interval is calculated using:

[tex]CI = (\bar x - \bar x_2) \± t^* *\sqrt{\frac{s_1^2(n_1 - 1) + s_2^2(n_2 - 1)}{n_1 + n_2 - 2} * (\frac{1}{n_1} + \frac{1}{n_2})}[/tex]

[tex]CI = (21 - 20) \± 1.708 *\sqrt{\frac{4^2(12 - 1) + 3^2(15 - 1)}{12 + 15 - 2} * (\frac{1}{12} + \frac{1}{15})}[/tex]

[tex]CI = 1 \± 1.708 *1.812[/tex]

[tex]CI = 1 \± 3.095[/tex]

Split

[tex]CI = 1 - 3.095 \ or\ 1 + 3.095[/tex]

[tex]CI = -2.095 \ or\ 4.095[/tex]

[tex]CI = (-2.095,4.095)[/tex]

A soft drink manufacturer wishes to know how many soft drinks adults drink each week. They want to construct a 95% confidence interval with an error of no more than 0.08. A consultant has informed them that a previous study found the mean to be 3.1 soft drinks per week and found the variance to be 0.49. What is the minimum sample size required to create the specified confidence interval? Round your answer up to the next integer.

Answers

Answer:

The minimum sample size required to create the specified confidence interval is 295.

Step-by-step explanation:

We have that to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:

[tex]\alpha = \frac{1 - 0.95}{2} = 0.025[/tex]

Now, we have to find z in the Z-table as such z has a p-value of [tex]1 - \alpha[/tex].

That is z with a pvalue of [tex]1 - 0.025 = 0.975[/tex], so Z = 1.96.

Now, find the margin of error M as such

[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]

In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.

Variance of 0.49:

This means that [tex]\sigma = \sqrt{0.49} = 0.7[/tex]

They want to construct a 95% confidence interval with an error of no more than 0.08. What is the minimum sample size required to create the specified confidence interval?

The minimum sample size is n for which M = 0.08. So

[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]

[tex]0.08 = 1.96\frac{0.7}{\sqrt{n}}[/tex]

[tex]0.08\sqrt{n} = 1.96*0.7[/tex]

[tex]\sqrt{n} = \frac{1.96*0.7}{0.08}[/tex]

[tex](\sqrt{n})^2 = (\frac{1.96*0.7}{0.08})^2[/tex]

[tex]n = 294.1[/tex]

Rounding up:

The minimum sample size required to create the specified confidence interval is 295.

Let f(x) = 5 + 12x − x^3. Find (a) the x- coordinate of all inflection points, (b)
the open intervals on which f is concave up, (c) the open intervals on which
f is concave down.

Answers

Answer:

A) x = 0.

B) f is concave up for (-∞, 0).

C) f is concave down for (0, ∞).

Step-by-step explanation:

We are given the function:

[tex]f(x)=5+12x-x^3[/tex]

A)

We want to find the x-coordinates of all inflection points.

Recall that inflections points (may) occur when the second derivative equals zero. Hence, find the second derivative. The first derivative is given by:

[tex]f'(x) = 12-3x^2[/tex]

And the second:

[tex]f''(x) = -6x[/tex]

Set the second derivative equal to zero:

[tex]0=-6x[/tex]

And solve for x. Hence:

[tex]x=0[/tex]

We must test the solution. In order for it to be an inflection point, the second derivative must change signs before and after. Testing x = -1:

[tex]f''(-1) = 6>0[/tex]

And testing x = 1:

[tex]f''(1) = -6<0[/tex]

Since the signs change for x = 0, x = 0 is indeed an inflection point.

B)

Recall that f is concave up when f''(x) is positive, and f is concave down when f''(x) is negative.

From the testing in Part A, we know that f''(x) is positive for all values less than zero. Hence, f is concave up for all values less than zero. Our interval is:

[tex](-\infty, 0)[/tex]

C)

From Part A, we know that f''(x) is negative for all values greater than zero. So, f is concave down for that interval:

[tex](0, \infty)[/tex]

Evaluate − x 2 −5 y 3 when x = 4 and y =−1

Answers

Answer:

-11

Step-by-step explanation:

I am going to assume that it is -x^2-5y^3.

-(4^2)-5(-1^3)

-16-5(-1)

-16+5

-11

Answer:

- 11

Step-by-step explanation:

If x = 4,  y = -1

then,

        - x^2 - 5y^3 = - (4)^2 - 5(-1)^3

                            = - 16 + 5

                            = - 11

Mr. Shaw graphs the function f(x) = –5x + 2 for his class. The line contains the point (-2, 12). What is the point-slope form of the equation of the line he graphed?

y – 12 = –5(x + 2)
y – 12 = 2(x + 2)
y + 12 = 2(x – 2)
y + 12 = –5(x – 2)

Answers

Answer:

the answer is A y  −  12  =  − 5 ( x + 2 )

Step-by-step explanation:

y − 12 = ( − 5 x + 2 ) ⋅ ( x + 2 )

to get this answer you can plug it into point slope equation:

y-y1=m(x+x1)

plug in the given information:

-y and x will stay the same

-y1 will be 12 and x1 will be -2 (remember the given point -2,12)

-m will be the slope given from the y intercept equation

I hope this helps~

Answer:

a

Step-by-step explanation:

Which of the following have both 2 and -5 as solutions?

X2+3x-10-0

X2-3x-10=0

X2+7x+10=0

X2-7x+10=0

Answers

Answer:

X^2 + 3x - 10=0

The population of the world in 1987 was 5 billion and the annual growth rate was estimated at 2 percent per year. Assuming that the world population follows an exponential growth model, find the projected world population in 2015

Answers

Answer:

The projected world population in 2015 was 8,705,121,030 people.

Step-by-step explanation:

Given that the population of the world in 1987 was 5 billion and the annual growth rate was estimated at 2 percent per year, assuming that the world population follows an exponential growth model, to find the projected world population in 2015 the following calculation must be performed :

5,000,000,000 x 1.02 ^ (2015-1987) = X

5,000,000,000 x 1.02 ^ 28 = X

5,000,000,000 x 1.741024 = X

8,705,121,030 = X

Therefore, the projected world population in 2015 was 8,705,121,030 people.

If three times a number added to 8 is divided by the number plus 7, the result is four thirds. Find the number.​

Answers

9514 1404 393

Answer:

  4/5

Step-by-step explanation:

The wording is ambiguous, as it often is when math expressions are described in English. We assume you intend ...

  [tex]\dfrac{3n+8}{n+7}=\dfrac{4}{3}\\\\3(3n+8)=4(n+7)\qquad\text{multiply by $3(n+7)$}\\\\9n+24=4n+28\qquad\text{eliminate parentheses}\\\\5n=4\qquad\text{subtract $4n+24$}\\\\\boxed{n=\dfrac{4}{5}}\qquad\text{divide by 5}[/tex]

The number is 4/5.

Other Questions
write any six importance of social tradition and custom Solve the formula for the given variable.-2x - 6 = 4xPlease helppp Which of the following sets represent D E? {2, 4, 5, 6, 8, 15} {2, 4, 5, 6, 8, 10, 15, 20} {10, 20} {3, 7, 9, 11} Which type of map shows information on specific topics, such as land use,climate, or vegetation?Special-purpose MapPhysical MapPolitical Map ngha ca cng nghip ha trong thi k i mi What is the volume of the sphere below PLEASE HELP FAST Finding InversesFind an equation for the inve3.y = 3x + 2 A car is driving towards an intersection when the light turns red. The brakes apply a constant force of 1,398 newtons to bring the car to a complete stop in 25 meters. If the weight of the car is 4,729 newtons, how fast was the car going initially IV. Complete the passage below using the correct forms of the words in brackets.SECURITYPeople are becoming more security conscious these days. Crimes like burglary and(1.THIEF)are definitely on the increase. One of the most (2. PAIN)experiences a home (3. OWN)can have is to arrive home and find that his or her (4.VALUE)have disappeared, because a window had (5. ACCIDENT)beenleft open. What can we do to protect ourselves?The most important piece of (6. ADVISORY)is to make sure that your (7.INSURE)coverage is up to date. Another (8. SENSE)thing to do is to goalong to your local police station, where they will be more than willing to make (9. SUGGEST)on (10. RELY)ways of safeguarding your property. 4. Part of the reason why individuals have stereotypes and prejudices toward out-group members is based on how the human brain is wired due to strategies that were evolutionarily adaptive for human ancestors, as well as the motivation to fulfill fundamental human needs. Briefly elaborate on three concepts/terms that are consistent with this perspective. In the story a voyage to the Moon by Edgar Allan Poe what does the word deliberation mean State two similarities and one difference between the graphs of f(x)= 3^x and g (x)= (1/3) ^x Who would most likely be required to work with sodium hydroxide? Which one is the result of the ouWhen you move a file to the Recycle Bin, it will be immediately deleted from your computer.A. TrueB. Fals Circle the graphs of the functions.How did you know which graphs showed a function?i will mark brainliest 1. Explain the difference between Plot and Theme?2. Define Protagonist and Antagonist?3. Clear Sentence Structure.Define the following vocabulary wordsPrecise:Concise: Find the lengths of AD, EF, and BC in the trapezoid below. Please help on my hw What is the solubility of salt at 60C if 2 gm of the salt is left behind when 7 gm of its saturated solution at that temperature dried?a) 20b) 40c) 60d) 80 Please help, 20 points. Answer choices in the photoThe graph below shows the height of an object that has been launched off a 50 foot high wall. Approximately how long will it take to hit the ground?