Answer:
The roots(Zeros) are
x=2.7913 and -1.7913
Simplify the following by removing parentheses and combining terms
- (2x + 8) + 3(2x + 8) - 2x
Answer:
2x+16
Step-by-step explanation:
PEMDAS
Help !!!!!!!!!!!!!!!
Answer:
9/4 = 2 1/4
Hope this Helps!?
use different method of depreciation for each of the assests and explain why u used the method (ex : straight line method, double declining method, unit of production method)
Step-by-step explanation:
sorry but I don't know this answerEvaluate u + xy, if u = 18, x = 10, and y = 8.
Hi there!
[tex]\large\boxed{u + xy = 98}[/tex]
We can do substitution to solve.
We are given the values of all of the letters, so:
u = 18
x = 10
y = 8
Substitute:
(18) + (10)(8)
Use the order of operations:
18 + 80 = 98
Step-by-step explanation:
u + xy
make u = 18
x = 10
y = 8
18 + 10 × 8
18 + 80
= 98
I hope this answers your question
3(8a - 5b) – 2(a + b); use a = 3 and b = 2
Answer:
32
Step-by-step explanation:
3(8(3)-5(2))-2((3)+(2))
3(24-10) -2(5)
3(14) -10
42-10
32
[tex]\huge\text{Hey there!}[/tex]
[tex]\huge\textsf{3(8a - 5b) - 2(a + b)}\\\\\huge\textsf{= 3(8(3) - 5(2)) - 2(3 + 2)}\\\\\huge\textsf{= 3(24 - 10) - 2(3 + 2)}\\\\\huge\textsf{= (3)(14) - 2(3 + 2)}\\\\\huge\textsf{= 42 - 2(3 + 2)}\\\\\huge\textsf{= 42 - 2(5)}\\\\\huge\textsf{= 42 - 10}\\\\\huge\textsf{= 32}}[/tex]
[tex]\huge\boxed{\textsf{Answer: 32}}\huge\checkmark[/tex]
[tex]\huge\text{Good luck on your assignment \& enjoy your day!}[/tex]
~[tex]\huge\boxed{\frak{Amphitrite1040:)}}[/tex]
first person to coment on this gets a brainliest
Answer:
..?.
Step-by-step explanation:
Please help I need the answer ASAP!!
The hypotenuse will always be the longest side of the triangle. Option C is correct: AB > DC.
AB is the hypotenuse of triangle ABC. Therefore, it is greater than leg AC. AC is the hypotenuse of triangle ACD. If AC is less than AB, then DC must also be less than AB because DC is less than AC.
Hope this helps!
A sample tested the claim that heights of men and heights of women have difference variances, with s=7.42388 cm for women and 7.14974 cm for men. The sample sizes are n1=144 and n2=156. When using the F test with these data, is it correct to reason that there is no need to check for normality because n1>30 and n2>30?
No. The F test has a requirement that samples be from the normally distributed populations, regardless of how large the samples are.
The F-test simply shows whether the variances that are in the numerator and the denominator are equal. The F-test can be applied on a large sampled population.
One main assumption of the F test is that the populations where the two samples are drawn are normally distributed.
Regarding the question, it's important to note that when using the F test with these data, it's not correct to reason that there is no need to check for "normality".
It should be noted that the F test has a requirement that samples are from the normally distributed populations, regardless of how large such samples are.
Read related link on:
https://brainly.com/question/16786843
Divide and check by multiplying the quotation by the divisor 8m^4+12m^3 over 4m
Answer:
2m^3 + 3m^2
Step-by-step explanation:
8m^4+12m^3
---------------------
4m
2m^3 + 3m^2
Check
4m(2m^3+3m^2)
8m^4 + 12 m^3
In a lottery game, a single ball is drawn at random from a container that contains 25 identical balls numbered from 1 through 25. Use the equation P(AUB)=P(A) + P(B) - P(ANB), where A and B are any events, to compute the probability that the number drawn is prime or greater than 12.
The probability that the number drawn is prime or greater than 12 is : ___________
Answer:
17/25
Step-by-step explanation:
The equation for the probability of two events that are not mutually exclusive is:
p(A ∨ B) = p(A) + p(B) - p(A ∧ B)
A = the number is prime
B = the number is prime
The numbers are:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
Here are the 8 prime numbers that satisfy event A:
3, 5, 7, 11, 13, 17, 19, 23
p(A) = 8/25
Here are the 13 numbers that are greater than 12 that satisfy event B:
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
p(B) = 13/25
Here are the 4 numbers that satisfy both event A and event B:
13, 17, 19, 23
p(A ∧ B) = 4/25
p(A ∨ B) = p(A) + p(B) - p(A ∧ B)
p(A ∨ B) = 8/25 + 13/25 - 4/25
p(A ∨ B) = 17/25
The probability that the number drawn is prime or greater than 12 = [tex]\frac{18}{25}[/tex]
What is probability?"Probability is a branch of mathematics which deals with finding out the likelihood of the occurrence of an event."
Formula of the probability of an event A is:P(A) = n(A)/n(S)
where, n(A) is the number of favorable outcomes, n(S) is the total number of events in the sample space.
For given question,
In a lottery game, a single ball is drawn at random from a container that contains 25 identical balls numbered from 1 through 25.
n(S) = 25
Let event A: the number drawn is prime
The prime numbers from 1 to 25 are:
2, 3, 5, 7, 11, 13, 17, 19, 23
So, n(A) = 9
The probability that the number drawn is prime,
[tex]P(A)=\frac{n(A)}{n(S)}\\\\ P(A)=\frac{9}{25}[/tex]
Let event B: the number drawn is greater than 12
So, n(B) = 13
The probability that the number drawn is greater than 12,
[tex]P(B)=\frac{n(B)}{n(S)}\\\\ P(B)=\frac{13}{25}[/tex]
The number drawn is prime as well as greater than 12.
Such numbers are : 13, 17, 19, 23
n(A ∩ B) = 4
So, the probability that the number drawn is prime as well as greater than 12,
[tex]P(A\cap B)=\frac{n(A\cap B)}{n(s)}\\\\ P(A\cap B)=\frac{4}{25}[/tex]
Using the equation P(AUB) = P(A) + P(B) - P(A ∩ B) to find the probability that the number drawn is prime or greater than 12,
[tex]\Rightarrow P(A\cup B)=P(A)+P(B)-P(A\cap B)\\\\\Rightarrow P(A\cup B)=\frac{9}{25}+ \frac{13}{25} -\frac{4}{25} \\\\\Rightarrow P(A\cup B)=\frac{9+13-4}{25}\\\\ \Rightarrow P(A\cup B)=\frac{18}{25}[/tex]
Therefore, the probability that the number drawn is prime or greater than 12 = [tex]\frac{18}{25}[/tex]
Learn more about probability here:
brainly.com/question/11234923
#SPJ2
Write the degree of [tex] {x}^{2} + 2x + 3 {x}^{5} + 4 {x}^{3} + 9[/tex].
Answer:-
5
Explanation:-The highest degree included in the polynomial is known as degree of polynomial
[tex]\sf \checkmark[/tex] Polynomial with degree 1=monomial
[tex]\sf \checkmark[/tex] Polynomial with degree 2 =binomial
[tex]\sf \checkmark[/tex] Polynomial with degree 3=Trinomial
Is 43,093 less than 43,903
Answer: yes
Step-by-step explanation:
43093 is less than 43903
Find the product and simplify your answer 6w(5w^2-5w+5)
NEED HELP ASAPPPPP !!!
Answer:
2160
Step-by-step explanation:
because c is 15 and d is 12 therefore d² is 144 and 144x15 is 2160
Answer:
2160
Step-by-step explanation:
Substitute
[tex](15)(12) {}^{2} [/tex]
[tex]15 \times 144 = 2160[/tex]
Kelly said that 97/1000 can be written as 0.97 is correct? Explain.
Answer:
No
97/1000 is the same as 97 divided by 1000
the decimal would be .097, not .97
If a tank holds 6000 gallons of water, which drains from the bottom of the tank in 50 minutes, then Toricelli's Law gives the volume V of water remaining in the tank after t minutes as
V=5000 (1-1/50*t)^2 0⤠t ⤠50.
1. Find the rate at which water is draining from the tank after the following amount of time. (Remember that the rate must be negative because the amount of water in the tank is decreasing.)
a. 5 min
b. 10 min
c. 20 min
d. 50 min
2. At what time is the water flowing out the fastest?
3. At what time is the water flowing out the slowest?
Answer: hello from the question the volume of tank = 6000 gallons while the value in the Torricelli's equation = 5000 hence I resolved your question using the Torricelli's law equation
answer:
1) a) -180 gallons/minute ,
b) -160 gallons/minute
c) -120 gallons/minute
d) 0
2) The water is flowing out fastest when t = 5 min
3) The water is flowing out slowest after t = 20 mins
Step-by-step explanation:
Volume of tank = 5000 gallons
Time to drain = 50 minutes
Volume of water remaining after t minutes by Torricelli's law
V = 5000 ( 1 - [tex]\frac{1}{50}t[/tex] )^2 ----- ( 1 )
1) Determine the rate at which water is draining from the tank
First step : differentiate equation 1 using the chain rule to determine the rate at which water is draining from the tank
V' = [tex]-10000[ ( 1 - \frac{1}{50}t ) (\frac{1}{50}) ][/tex]
a) After t = 5minutes
V' = - 10000[ ( 1 - 0.1 ) * ( 0.02 ) ]
= -180 gallons/minute
b) After t = 10 minutes
V' = - 10000[ ( 1 - 0.2 ) * ( 0.02 ) ]
= - 160 gallons/minute
c) After t = 20 minutes
V' = - 10000 [ ( 1 - 0.4 ) * ( 0.02 ) ]
= -120 gallons/minute
d) After t = 50 minutes
V' = - 10000 [ ( 1 - 1 ) * ( 0.02 ) ]
= 0 gallons/minute
2) The water is flowing out fastest when t = 5 min
3) The water is flowing out slowest after t = 20 mins because no water flows out after 50 minutes
Which expression is the best estimate of the product of 7/8and 8 1/10?
Answer:
7 7/80 or 7.0875
Step-by-step explanation:
product is the result of multiplication
7/8 * 81/10 = 567/80 = 7 7/80 or 7.0875
what principle will amount to Rs. 4000 in 20 yrs at 2.5%?
Answer:
3200Step-by-step explanation:
Consider principle =Rs.P, Time (T)=4 years
Consider principle =Rs.P, Time (T)=4 yearsRate =6
Consider principle =Rs.P, Time (T)=4 yearsRate =6 4
Consider principle =Rs.P, Time (T)=4 yearsRate =6 41
Consider principle =Rs.P, Time (T)=4 yearsRate =6 41
Consider principle =Rs.P, Time (T)=4 yearsRate =6 41 =
Consider principle =Rs.P, Time (T)=4 yearsRate =6 41 = 4
Consider principle =Rs.P, Time (T)=4 yearsRate =6 41 = 425
Consider principle =Rs.P, Time (T)=4 yearsRate =6 41 = 425
Consider principle =Rs.P, Time (T)=4 yearsRate =6 41 = 425 %
Consider principle =Rs.P, Time (T)=4 yearsRate =6 41 = 425 %Simple interest =
Consider principle =Rs.P, Time (T)=4 yearsRate =6 41 = 425 %Simple interest = 100
Consider principle =Rs.P, Time (T)=4 yearsRate =6 41 = 425 %Simple interest = 100P×T×R
Consider principle =Rs.P, Time (T)=4 yearsRate =6 41 = 425 %Simple interest = 100P×T×R
Consider principle =Rs.P, Time (T)=4 yearsRate =6 41 = 425 %Simple interest = 100P×T×R =
Consider principle =Rs.P, Time (T)=4 yearsRate =6 41 = 425 %Simple interest = 100P×T×R = 100
Consider principle =Rs.P, Time (T)=4 yearsRate =6 41 = 425 %Simple interest = 100P×T×R = 100P×
Consider principle =Rs.P, Time (T)=4 yearsRate =6 41 = 425 %Simple interest = 100P×T×R = 100P× 4
Consider principle =Rs.P, Time (T)=4 yearsRate =6 41 = 425 %Simple interest = 100P×T×R = 100P× 425
Consider principle =Rs.P, Time (T)=4 yearsRate =6 41 = 425 %Simple interest = 100P×T×R = 100P× 425
Consider principle =Rs.P, Time (T)=4 yearsRate =6 41 = 425 %Simple interest = 100P×T×R = 100P× 425 ×4
Consider principle =Rs.P, Time (T)=4 yearsRate =6 41 = 425 %Simple interest = 100P×T×R = 100P× 425 ×4
Consider principle =Rs.P, Time (T)=4 yearsRate =6 41 = 425 %Simple interest = 100P×T×R = 100P× 425 ×4 =
Consider principle =Rs.P, Time (T)=4 yearsRate =6 41 = 425 %Simple interest = 100P×T×R = 100P× 425 ×4 = 4
Consider principle =Rs.P, Time (T)=4 yearsRate =6 41 = 425 %Simple interest = 100P×T×R = 100P× 425 ×4 = 4P
Consider principle =Rs.P, Time (T)=4 yearsRate =6 41 = 425 %Simple interest = 100P×T×R = 100P× 425 ×4 = 4P
Consider principle =Rs.P, Time (T)=4 yearsRate =6 41 = 425 %Simple interest = 100P×T×R = 100P× 425 ×4 = 4P
Consider principle =Rs.P, Time (T)=4 yearsRate =6 41 = 425 %Simple interest = 100P×T×R = 100P× 425 ×4 = 4P =∴ Amount =P+
Consider principle =Rs.P, Time (T)=4 yearsRate =6 41 = 425 %Simple interest = 100P×T×R = 100P× 425 ×4 = 4P =∴ Amount =P+ 4
Consider principle =Rs.P, Time (T)=4 yearsRate =6 41 = 425 %Simple interest = 100P×T×R = 100P× 425 ×4 = 4P =∴ Amount =P+ 4P
Consider principle =Rs.P, Time (T)=4 yearsRate =6 41 = 425 %Simple interest = 100P×T×R = 100P× 425 ×4 = 4P =∴ Amount =P+ 4P
Consider principle =Rs.P, Time (T)=4 yearsRate =6 41 = 425 %Simple interest = 100P×T×R = 100P× 425 ×4 = 4P =∴ Amount =P+ 4P =
Consider principle =Rs.P, Time (T)=4 yearsRate =6 41 = 425 %Simple interest = 100P×T×R = 100P× 425 ×4 = 4P =∴ Amount =P+ 4P = 4
Consider principle =Rs.P, Time (T)=4 yearsRate =6 41 = 425 %Simple interest = 100P×T×R = 100P× 425 ×4 = 4P =∴ Amount =P+ 4P = 45P
Consider principle =Rs.P, Time (T)=4 yearsRate =6 41 = 425 %Simple interest = 100P×T×R = 100P× 425 ×4 = 4P =∴ Amount =P+ 4P = 45P
Consider principle =Rs.P, Time (T)=4 yearsRate =6 41 = 425 %Simple interest = 100P×T×R = 100P× 425 ×4 = 4P =∴ Amount =P+ 4P = 45P =
Consider principle =Rs.P, Time (T)=4 yearsRate =6 41 = 425 %Simple interest = 100P×T×R = 100P× 425 ×4 = 4P =∴ Amount =P+ 4P = 45P = 4
Consider principle =Rs.P, Time (T)=4 yearsRate =6 41 = 425 %Simple interest = 100P×T×R = 100P× 425 ×4 = 4P =∴ Amount =P+ 4P = 45P = 45P
Consider principle =Rs.P, Time (T)=4 yearsRate =6 41 = 425 %Simple interest = 100P×T×R = 100P× 425 ×4 = 4P =∴ Amount =P+ 4P = 45P = 45P
Consider principle =Rs.P, Time (T)=4 yearsRate =6 41 = 425 %Simple interest = 100P×T×R = 100P× 425 ×4 = 4P =∴ Amount =P+ 4P = 45P = 45P =4000
Consider principle =Rs.P, Time (T)=4 yearsRate =6 41 = 425 %Simple interest = 100P×T×R = 100P× 425 ×4 = 4P =∴ Amount =P+ 4P = 45P = 45P =40005P=4×4000
Consider principle =Rs.P, Time (T)=4 yearsRate =6 41 = 425 %Simple interest = 100P×T×R = 100P× 425 ×4 = 4P =∴ Amount =P+ 4P = 45P = 45P =40005P=4×4000P=Rs.3200
Consider principle =Rs.P, Time (T)=4 yearsRate =6 41 = 425 %Simple interest = 100P×T×R = 100P× 425 ×4 = 4P =∴ Amount =P+ 4P = 45P = 45P =40005P=4×4000P=Rs.3200Therefore, Principle =Rs.3200
Suppose the following data represent the ratings (on a scale from 1 to 5) for a certain smart phone game, with 1 representing a poor rating. The discrete probability distribution for the random variable x is given below:
Star Frequency
1 2140
2 2853
3 4734
4 4880
5 10,715
Required:
Construct a discrete probability distribution for the random variable X
Answer:
[tex]\begin{array}{cc}{Status} & {Probability} & {1} & {0.0845} & {2} & {0.1127} & {3} & {0.1870} & {4} & {0.1927}& {5} & {0.4231} \ \end{array}[/tex]
Step-by-step explanation:
Given
The above table
Required
The discrete probability distribution
The probability of each is calculated as:
[tex]Pr = \frac{Frequency}{Total}[/tex]
Where:
[tex]Total = 2140+ 2853 + 4734 + 4880 + 10715[/tex]
[tex]Total = 25322[/tex]
So, we have:
[tex]P(1) = \frac{2140}{25322} = 0.0845[/tex]
[tex]P(2) = \frac{2853}{25322} = 0.1127[/tex]
[tex]P(3) = \frac{4734}{25322} = 0.1870[/tex]
[tex]P(4) = \frac{4880}{25322} = 0.1927[/tex]
[tex]P(5) = \frac{10715}{25322} = 0.4231[/tex]
So, the discrete probability distribution is:
[tex]\begin{array}{cc}{Status} & {Probability} & {1} & {0.0845} & {2} & {0.1127} & {3} & {0.1870} & {4} & {0.1927}& {5} & {0.4231} \ \end{array}[/tex]
Does the point (7,34) satisfy the equation y = 2x + 8
Answer:
no
Step-by-step explanation:
Substitute the point into the equation and see if it is true
34 = 2(7) +8
34 = 14+8
34 = 22
Since this is not true, the point does not satisfy the equation
Answer:
No
Step-by-step explanation:
because 7 is X and 34 is Y
So its 2 *7 +8=22
so no
A circular water fountain in the town square has a 112-foot circumference. How far is the center of the fountain from the outer edge? Round to the nearest whole number.
Answer:
18 feet
Step-by-step explanation:
The distance of the center of the fountain from the enter edge is equal to the radius of the circular fountain.
Use the circumference formula, c = 2[tex]\pi[/tex]r, to find the radius.
c = 2[tex]\pi[/tex]r
112 = 2[tex]\pi[/tex]r
18 = r
So, to the nearest whole number, the distance between the center of the fountain and outer edge is 18 feet.
trigonometric identities
Without knowing what Juan's exact steps were, it's hard to say what he did wrong. The least you could say is that his solution is simply not correct.
4 sin²(θ) - 1 = 0
==> sin²(θ) = 1/4
==> sin(θ) = ±1/√2
==> θ = π/4, 3π/4, 5π/4, 7π/4
a² +6²
a-b
if a = 3 and b = 4
Evaluate each expression using the variable replacements.
Answer:
-45Step-by-step explanation:
let a= 3 and b= 4a² + 6² / a - b= 3² + 6² / 3 - 4= 9 + 36 / -1= 45 / -1= -45[tex]\tt{ \green{P} \orange{s} \red{y} \blue{x} \pink{c} \purple{h} \green{i} e}[/tex]
7. Kylie bikes at a speed of 100 yards per minute. Robert bikes at a speed of 240 feet per minute. In feet per second, how much faster does Kylie bike than Robert?
NO LINKS OR ANSWERING QUESTIONS YOU DON'T KNOW!!!
The zeros of the polynomial 3x^4 - 5x^3 - 62x^2 - 92x - 24 are x = {-2, -1/3, 6}. Determine the intervals where the value of f(x) is a negative value. Check all that apply.
a. -∞ < x < -2
b. -2 < x < -1/3
c. -1/3 < x < 6
d. 6 < x < ∞
Answer:
c. -1/3 < x < 6Step-by-step explanation:
There are 3 zero's but we see the polynomial is of degree 4.
It means it has 2 same zero's. We can verify it is -2. Since -2 is doubled, it reflects the local minimum and it is on the x-axis.
In reality we need to consider the other two zero's.
It is obvious the negative interval is between -1/3 and 6 since the polynomial is of even degree and has positive leading coefficient.
Correct choice is c.
The graph is attached to confirm the theory.
a display order of numbers are called
Answer:
I think
A display order of numbers are called sequences.
I need help answering this question
Answer:
the correct answer is B) 10 + 10 + x = 50
If f(x) = 5x squared -3 and g(x) = x squared - 4x -8, find (f-g)(x)
Answer:
[tex]4x^2+4x+5[/tex]
Step-by-step explanation:
[tex]f(x)=5x^2-3\\g(x)=x^2-4x-8[/tex]
Set up an expression.
[tex]5x^2-3-(x^2-4x-8)[/tex]
Distribute the negative (-1)
[tex]5x^2-3-x^2+4x+8[/tex]
Solve / Simplify
[tex]4x^2+4x+5[/tex]
I'm late, but I hope this helps!
What is the area of the polygon given below?
Answer:
diện tích đa giác trong hình là :
186 cm2
Step-by-step explanation:
hãy tách hình đa giác trên thành 4 hình chữ nhật và tính diện tích từng hình chữ nhật
In how many different ways can the letter of word
CORPORATION" be
arranged. So that the vowel always
come together"
Answer:
= 6 ways = Required number of ways = (120×6)=720