Answer:
x = y/( ku-1)
Step-by-step explanation:
Here in this question, we are asked to solve for x.
we have;
Ux = x+ u/ k
cross multiply;
k * Ux = x + y
kUx = x + y
kUx- x = y
x(KU-1) = y
x = y/( ku-1)
Reduce 5/15 to its lowest terms
Answer:
The answer is 1/3
Answer:
1/3
Step-by-step explanation:
The factors of 5 are 1,5;
* The factors of 15 are 1,3,5,15.
We can see that the GCD is 5 because it is the largest number by which 5 y 15 can be divided without leaving any residue.
To reduce this fraction, simply divide the numerator and denominator by 5 (the GCF).
So, 5 /15
= 5÷5 /15÷5
= 1 /3
4.
Aliyah, Brenda and Candy share a sum of money in the ratio of 3:5:6. After
Candy gives $100 to Aliyah and $50 to Brenda, the ratio becomes 2 : 3:3.
(a) Suppose Aliyah has $3x at the start, express Candy's initial sum of money in
terms of x.
(b) Find the value of x.
(c) Hence, how much money does Brenda have in the end?
Answer:
(a) Candy's initial sum as a terms of x is $6x
(b) x = $60
(c) $350
Step-by-step explanation:
The given parameters are;
The ratio in which Aliyah, Brenda and Candy share the sum of money = 3:5:6
The amount Candy later gives Aliyah = $100
The amount Candy later gives Brenda = $50
The new ratio of the sum of the shared money between Aliyah, Brenda and Candy = 2:3:3
(a) Whereby Aliyah has $3x at the start, we have;
Total sum of mony = Y
Amount of Aliyah's initial share = Y × 3/(3 + 5 + 6) = Y×3/14
Therefore, Y×3/14 = $3x
x = Y×3/14 ÷ 3 = Y/14
Amount of Candy's initial share = Y × 6/14
Therefore Candy's initial sum as a terms of x = $6x
(b) Given that Aliyah's and Candy's initial sum as a function of x are $3x and $6x, therefore, in the ratio 3:5:6, Brenda's initial sum as a function of x = $5x
Which gives;
Total amount of money = $14x
With
6x - 150, 3x + 100, and 5x + 50, the ratio =is 2:3:3
Therefore, we have;
14·x × 2/(2 + 3 + 3) = (6·x - 150)
14·x × 2/(8) = (6·x - 150)
14·x × 1/4 = (6·x - 150)
7·x/2 = (6·x - 150)
12·x - 300 = 7·x
12·x - 7·x = 300
5·x = 300
x = $60
(b) The final amount of money with Brenda = 5x + 50 = 5 × 60 + 50 = $350
The final amount of money with Brenda = $350.
What is 12.5% of 72
Answer:
[tex]\boxed{9}[/tex]
Step-by-step explanation:
[tex]\sf of \ refers \ to \ multiplication.[/tex]
[tex]12.5\% \times 72[/tex]
[tex]\frac{12.5}{100} \times 72[/tex]
[tex]\sf Multiply.[/tex]
[tex]\frac{900}{100} =9[/tex]
Name a real world context to describe the sums of rational numbers.
Step-by-step explanation:
when you are cooking you need to measure fractions of ingredients
divide the sum of -5,-10 and -9 by the product of 2 and -3
Answer: 1/4
Step-by-step explanation:
Answer:
4
Step-by-step explanation:
=(-5)+(-10)+(-9)/2*(-3)
=-5-10-9/-6
=-24/-6
=4 ans.....
in a 10 team league, each teams play every other team exactly twice. find the total number of games played in the league
Addition can be defined as the process of adding two numbers. The total number of games played in the league is 90.
What is Addition?Addition can be defined as the process of adding two numbers such that the result is the combined value of the two numbers.
Given that in a 10-team league, each team play every other team exactly twice. Therefore, the total number of games that will be played by the first team is 18, similarly, the number of games that will be played by the second team is 16.
Therefore, as mentioned above the series will continue with a common difference of -2 and will continue till 0. Thus, the total number of games played in the league is,
Total number of games = 18 + 16 + 14 + 12 + 10 + 8 + 6 + 4 + 2 = 90
Learn more about Addition:
https://brainly.com/question/13167637
#SPJ2
**Yoxelt buys 4 1/2 gallons of soda. One-fourth of the soda he bought was Pepsi and the rest was Sprite. How many gallons of Pepsi did Yoxelt buy? Show all work below.
Answer:
1 1/8
Step-by-step explanation:
1/4 of the 4 1/2 gallons were Pepsi, so the amount is ...
(1/4)(9/2) = (1·9)/(4·2) = 9/8 = 1 1/8
Yoxelt bought 1 1/8 gallons of Pepsi.
Which polynomial is a factor of both expressions? x – 8 x + 7 x – 2 (x – 2)2
Answer:
C. x-2
Step-by-step explanation:
edge
Answer: the 3rd the answer c
x-2
Step-by-step explanation:
what is the sum of the interior angles of a regular hexagon
Answer:
see below
Step-by-step explanation:
The sum of the interior angles of any polygon can be found with the formula 180(n - 2) where n = number of sides. In this case, n = 6 so the answer is 180(6 - 2) = 180 * 4 = 720°.
Answer:
The sum of the interior angles of a regular hexagon is 720°
Step-by-step explanation:
As we know that the sum of interior angle is 180(n-2). So the number of sides of hexagon is 6. Now, 180(6-2)=180*4=720°
If the initial amount of iodine-131 is 537 grams , how much is left after 10 days?
Answer:
225.78 grams
Step-by-step explanation:
To solve this question, we would be using the formula
P(t) = Po × 2^t/n
Where P(t) = Remaining amount after r hours
Po = Initial amount
t = Time
In the question,
Where P(t) = Remaining amount after r hours = unknown
Po = Initial amount = 537
t = Time = 10 days
P(t) = 537 × 2^(10/)
P(t) = 225.78 grams
Therefore, the amount of iodine-131 left after 10 days = 225.78 grams
help8b2 • 2b3 a) 16b-2 ,b) 16b6 ,c) 16b-4 ,d) 16b5
Answer:
16b^5
Step-by-step explanation:
8b^2×2b^3
= 16b^2+3
= 16b^5
Answer:
D)16b5
Step-by-step explanation:
8b2×2b3
= 16b2+3
= 16b5
What is the difference between sin^-1 and sin?
Answer:
Step-by-step explanation:
sin of angle x is the trig ratio sine of x.
sin-1 x is the angle whose sine is x.
sin-1 x can also be written as arcsin x.
Two buildings are 12m apart on the same horizontal level. From the top of the taller building, the angle of depression of the bottom of the shorter building is 48degrees and from the bottom, the angle of of elevation of the top of the shorter building is 36 degrees. Calculate the difference in the heights of the buildings
Answer:
4.61 m
Step-by-step explanation:
The angle of depression of the bottom of the shorter building from the top of the taller building = 48° equals the angle of elevation of the top of the taller building from the bottom of the shorter building
Using trig ratios
tan48° = H/d where H = height of taller building and d = their distance apart = 12 m
H = dtan48° = 12tan48° = 13.33 m
Also, the angle of elevation of the top of the shorter building from the bottom of the taller building is 36°
Using trig ratios
tan36° = h/d where h = height of shorter building
h =dtan36° = 12tan36° = 8.72 m
Now, the difference in height of the buildings is thus H - h = 13.33 m - 8.72 m = 4.61 m
4x
5.
If 7:5 = (x + 2y): (x - y), find the value of
5y
Answer:
5/2 OR 2.5
Step-by-step explanation:
( x + 2y ) = 7 , ( x - 2y ) = 5
x = 7 - 2y , x = 5 + 2y
substitute the two eqns together:
7 - 2y = 5 + 2y
7 - 5 = 2y + 2y
2 = 4y
y = 1/2
when y = 1/2 ,
5y = 5(1/2)
= 5/2 OR 2.5
20 POINTS! ***CORRECT*** ANSWER GETS BRAINLIEST!!!!
The fraction model below shows the steps that a student performed to find a quotient.
Which statement best interprets the quotient?
A. There are 5 1/6 three-fourths in 4 1/8
B. There are 5 1/6 three and one-eights in 3/4
C. There are 5 1/2 three and one-eights in 3/4
D. There are 5 1/2 three-fourths in 4 1/8
Answer:
The answer is A pls mark me brainly
What’s is the greatest common factor of 100x^2 - 250xy + 75x
Answer:
The greatest common factor of the expression is 25x
Step-by-step explanation:
Here, we are interested in giving the greatest common factor of the expression.
We can do this by factorization till we have no common factors left.
the expression is;
100x^2 -250xy + 75x
we start with the common factor x;
x(100x -250y + 75)
The next thing to do here is to find the greatest common factor of 100,250 and 75.
The greatest common factor here is 25.
Thus, we have;
25x(4x -10y + 3)
There is no more factor to get from the terms in the bracket. This simply means that the terms in the bracket are no longer factorizable
So the greatest common factor we have is 25x
Can someone please tell me how to solve this problem??!! I literally have to go back in math if I don’t pass this HELP!!
Answer:
D. 270° < φ < 360°Step-by-step explanation:
Imagine coordinate system
I quarter is where x>0 and y>0 {right top} and it is (0°,90°)
II quarter is where x<0 and y>0 {left top} and it is (90°,180°)
III quarter is where x<0 and y<0 {left bottom} and it is (180°,270°)
IV quarter is where x>0 and y<0 {right bottom} and it is (270°,360°)
Now, we have an angle wich vertex is point (0,0) and one of its sides is X-axis and the second lay at one of the quarters.
For the trig functons of an angle created by this second side always are true:
In first quarter all functions are >0
in second one only sine
in third one: tangent and cotangent
and in fourth one: cosine
{You can check this by selecting any point on the second side of angle and put it's coordinates to formulas of these functions:
[tex]\sin \phi=\dfrac y{\sqrt{x^2+y^2}}\,,\quad \cos \phi=\dfrac x{\sqrt{x^2+y^2}}\,,\quad \tan\phi=\dfrac yx\,,\quad \cot\phi=\dfrac xy[/tex] }
So:
sinφ<0 ⇒ III or IV quarter
tanφ<0 ⇒ I or IV quarter
IV quarter ⇒ φ ∈ (270°, 360°)
I answered all my work correctly but I don’t understand this one.
I NEED YOUR HELP PLS
Answer:
For question 1 you can try dividing each of the value
For instance, you can divide 9 by 25 and see if you get a nice number
e.g. 1/8=0.125, numbers like these
For the second question, you can find the fraction by dividing 1000 starting with the decimal points
e.g 0.650, you would be plotting 650/1000 and you would simplify the fraction to the lowest value any value above the decimal point you can multiply by the denominator and add the nominator value to get your final answer.
Step-by-step explanation:
Answer:
Write the denominator in its prime factors. If the prime factorization of the denominator of a fraction has only factors of 2 and factors of 5, the decimal expression terminates. If there is any prime factor in the denominator other than 2 or 5, then the decimal expression repeats.
example: 9/25
25 = 5*5, so it will be terminating
example: 7/12
12 = 3*2*2, which contains a 3, so it will be repeating.
All the edges of a cube have the same length. Tony claims that the formula SA = 6s, where s is the length of
each side of the cube, can be used to calculate the surface area of a cube.
a. Draw the net of a cube to determine if Tony's formula is correct.
b. Why does this formula work for cubes?
Frances believes this formula can be applied to calculate the surface area of any rectangular prism. Is
she correct? Why or why not?
d. Using the dimensions of Length, Width and Height, create a formula that could be used to calculate the
surface area of any rectangular prism, and prove your formula by calculating the surface area of a
rectangular prism with dimensions L = 5m, W = 6m and H=8m.
Answer:
Here's what I get
Step-by-step explanation:
a. Net of a cube
Fig. 1 is the net of a cube
b. Does the formula work?
Tony's formula works if you ignore dimensions.
There are six squares in the net of a cube.
If each side has a unit length s, the total area of the cube is 6s.
c. Will the formula work for any rectangular prism?
No, because a rectangular prism has sides of three different lengths — l, w, and h — as in Fig. 2.
d. Area of a rectangular prism
A rectangular prism has six faces.
A top (T) and a bottom (b) — A = 2×l×w
A left (L) and a right (R) — A = 2×l×h
A front (F) and a back (B) — A = 2×w×h
Total area = 2lw + 2lh + 2wh
If l = 5 m, w = 6 m and h = 8 m,
[tex]\begin{array}{rl}A &=& \text{2$\times$ 5 m $\times$ 6 m + 2$\times$ 5 m $\times$ 8 m + 2 $\times$ 6 m $\times$ 8 m}\\&=& \text{60 m}^{2} + \text{80 m}^{2} + \text{96 m}^{2}\\&=& \textbf{236 m}^{2}\\\end{array}[/tex]
A, B, C, D, E, F, ... 2, 3, 5, 7, 11, 13, ... what number is the letter Z replaced with?
Answer:
Z=101
Step-by-step explanation:
A=2
B=3
C=5
D=7
E=11
F=13
From the above illustration, it can be deduced that A to Z represent prime numbers in ascending order.
Prime numbers are natural numbers that are greater than 1 and are only divisible by 1 and itself.
Therefore,
G=17
H=19
I=23
J=29
K=31
L=37
M=41
N=43
O=47
P=53
Q=59
R=61
S=67
T=71
U=73
V=79
W=83
X=89
Y=97
Z=101
how do you find the area of an open cylinder... what is the Formula?? please help
Answer:
Cylinder has a formula
π×r²×h
so of it is open
π×r²×h - π×r²
Answer:
pls give brainiest
Step-by-step explanation:
A=2πr×h(r+h)
URGENT PLZ HELP THANK YOU!
Answer:
[tex](-5)^{11}[/tex]
Step-by-step explanation:
We can use the exponent rules. If we have [tex]\frac{a^b}{a^c}[/tex], then it will simplify to [tex]a^{b-c}[/tex].
b is 5, c is -6, and a is -5 so:
[tex]-5^{5-(-6)}\\-5^{11}[/tex]
Hope this helped!
Type the correct answer in the box. Use numerals instead of words. If necessary, use / for the fraction bar. Stacy goes to the county fair with her friends. The total cost of ride tickets is given by the equation c = 3.5t, where c is the total cost of tickets and t is the number of tickets. If Stacy bought 15 tickets, she would spend $
Answer:
$52.2Step-by-step explanation:
Given her total cost of ride tickets modeled by the equation c = 3.5t where c is the total cost of tickets and t is the number of tickets, If Stacy bought 15 tickets, to know the amount she would spend on 15 tickets, we will substitute t = 15 into the modeled equation as shown;
[tex]c = 3.5t\\when t = 15\\\\c = 3.5(15)\\\\c = \frac{35}{10} * 15\\ \\c = \frac{5*7}{5*2} * 15\\\\[/tex]
[tex]c = \frac{7}{2} * 15\\ \\c = \frac{105}{2}\\ \\c = \ 52.2[/tex]
Hence Stacy would spend $52.2 on 15 tickets
Answer:
I hope this helps!
Step-by-step explanation:
Find f(x) and g(x) so the function can be expressed as y = f(g(x)). (1 point) [tex]y=\frac{7}{x^{2} } +10[/tex]
Answer:
The functions are [tex]f(x) = 7\cdot x+10[/tex] and [tex]g(x) = \frac{1}{x^{2}}[/tex], respectively.
Step-by-step explanation:
Let suppose that [tex]g(x) = \frac{1}{x^{2}}[/tex], then [tex]f(g(x))[/tex] is:
[tex]f(g(x)) = 7\cdot \left(\frac{1}{x^{2}} \right) + 10[/tex]
[tex]f(g(x)) = 7\cdot g(x) + 10[/tex]
Thus,
[tex]f(x) = 7\cdot x + 10[/tex]
The functions are [tex]f(x) = 7\cdot x+10[/tex] and [tex]g(x) = \frac{1}{x^{2}}[/tex], respectively.
. Find two polynomial expressions whose quotient, when simplified, is 1/x . Use that division problem to determine whether polynomials are closed under division.
Answer:
The two polynomials are:
(x + 1) and (x² + x)
Step-by-step explanation:
A polynomial is simply an expression which consists of variables & coefficients involving only the operations of addition, subtraction, multiplication, and non - negative integer exponents of variables.
Now, 1 and x are both polynomials. Thus; 1/x is already a quotient of a polynomial.
Now, to get two polynomial expressions whose quotient, when simplified, is 1/x, we will just multiply the numerator and denominator by the same polynomial to get more quotients.
So,
Let's multiply both numerator and denominator by (x + 1) to get;
(x + 1)/(x(x + 1))
This gives; (x + 1)/(x² + x)
Now, 1 and x are both polynomials but the expression "1/x" is not a polynomial but a quotient and thus polynomials are not closed under division.
find the multiplicative inverse of 3 by 4 minus 5 by 7
Answer:
28
Step-by-step explanation:
[tex]\frac{3}{4}-\frac{5}{7}[/tex]
Least Common Denominator of 4 & 7 is 4 * 7 = 28
[tex]\frac{3}{4}-\frac{5}{7}=\frac{3*7}{4*7}-\frac{5*4}{7*4}\\\\\\=\frac{21}{28}-\frac{20}{28}\\\\\\=\frac{21-20}{28}\\\\\\=\frac{1}{28}[/tex]
Multiplicative inverse of [tex]\frac{1}{28}[/tex] is [tex]\frac{28}{1} = 28[/tex]
A rectangular sheet of steel is being cut so that the length is four times the width the perimeter of the sheet must be less than 100 inches . Which inequality can be used to find all possible lengths,l.of the steel sheet
Answer:
w>10
length = 40
Step-by-step explanation:
Let
Width=w
Length=4w
Perimeter is less than 100 inches
Perimeter of a rectangle= 2( Length + width)
100 < 2(4w+w)
100 < 8w+2w
100 < 10w
w > 10
Length =4w
=4 × 10
=40 inches
Answer:
5/2l <100
Step-by-step explanation:
PLATO
1.Solve by factorization method: x+1/x=11 1/11 2.Comment on the nature of roots for 4x^2-5=2(〖x+1)〗^2-7 plz, help...
Answer:
The equation
[tex]4\,x^2-5=2\,(x+1)^2-7[/tex]
can be solved by first expanding all indicated operations, and later when the constant terms disappear, by factoring out 2x , leaving the equation as a product of two factors equal zero, from which it is easy to extract the roots. See below.
Step-by-step explanation:
When solving for x in the following expression, and using factoring to apply at the end the zero product theorem:
[tex]4\,x^2-5=2\,(x+1)^2-7\\4\,x^2-5=2\,(x^2+2x+1)-7\\4\,x^2-5=2\,x^2+4\,x+2-7\\4\,x^2-5=2\.x^2+4\,x-5\\4\,x^2=2\,x^2+4\,x\\4\,x^2-2\,x^2-4\,x=0\\2\,x^2-4\,x=0\\2\,x\,(x-2)=0[/tex]
We observe that for the last product, to get a zero, x has to be zero (making the first factor zero), or x has to be "2" making the binomial factor zero.
simplify 3/7
into a whole number
Answer:
You can't because it's not a "full fraction" like 7/7. The best you can do is turn that into a decimal like 0.43
Step-by-step explanation: