Answer:
1) a) accepting the new drug is better based on its effectiveness when in reality the drug ain't better than the drug in current use because of its side effects
b) Accepting and using the current drug in use when it is not as effective as the new drug
c) Type 1 error
2) a) rejecting the vitamin supplement based on not knowing the harmful side effects
b) Accepting the Vitamin supplement based on just health benefits it portrays without comparison with other supplement.
c) Type II error
3) Increase the significance level ( A )
Step-by-step explanation:
1)
a) To make a type 1 error in this situation is accepting the new drug is better and prescribing it to the millions of people based only on its effectiveness when in reality the drug ain't better than the drug in current use because of its side effects
b) A type II error in context is :Accepting and using the current drug in use when it is not as effective as the new drug
c) Type I error
2)
a) Type 1 error is rejecting the vitamin supplement based on not knowing the harmful side effects
b) Accepting the Vitamin supplement based on just health benefits it portrays without comparison with other supplement.
c) Type II error
3) If committing a type 1 error is much worse
Increase the significance level
Suppose 46% of politicians are lawyers. If a random sample of size 662 is selected, what is the probability that the proportion of politicians who are lawyers will differ from the total politicians proportion by less than 4%
Answer:
0.9606 = 96.06% probability that the proportion of politicians who are lawyers will differ from the total politicians proportion by less than 4%
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
Suppose 46% of politicians are lawyers.
This means that [tex]p = 0.46[/tex]
Sample of size 662
This means that [tex]n = 662[/tex]
Mean and standard deviation:
[tex]\mu = p = 0.46[/tex]
[tex]s = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.46*0.54}{662}} = 0.0194[/tex]
What is the probability that the proportion of politicians who are lawyers will differ from the total politicians proportion by less than 4%?
p-value of Z when X = 0.46 + 0.04 = 0.5 subtracted by the p-value of Z when X = 0.46 - 0.04 = 0.42. So
X = 0.5
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.5 - 0.46}{0.0194}[/tex]
[tex]Z = 2.06[/tex]
[tex]Z = 2.06[/tex] has a p-value of 0.9803
X = 0.42
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.42 - 0.46}{0.0194}[/tex]
[tex]Z = -2.06[/tex]
[tex]Z = -2.06[/tex] has a p-value of 0.0197
0.9803 - 0.0197 = 0.9606
0.9606 = 96.06% probability that the proportion of politicians who are lawyers will differ from the total politicians proportion by less than 4%
Allie rode her bike up a hill at an average speed of 12 feet/second. She then rode back down the hill at an average speed of 60 feet/second. The entire trip took her 2 minutes. What is the total distance she traveled. [Hint: use t = time traveling down the hill]
Answer:
The total distance Allie traveled was 0.81 miles.
Step-by-step explanation:
Since Allie rode her bike up a hill at an average speed of 12 feet / second, and she then rode back down the hill at an average speed of 60 feet / second, and the entire trip took her 2 minutes, to determine what is the total distance she traveled, the following calculation must be performed:
12 + 60 = 72
72 x 60 = 4320
1000 feet = 0.189394 miles
4320 feet = 0.8181818 miles
Therefore, the total distance Allie traveled was 0.81 miles.
g At a certain gas station, 30% of all customers use the restroom. What is the probability that, out of the next 10 customers, (a) exactly 4 will use the restroom
Answer:
[tex]P(x=4) = 0.200[/tex]
Step-by-step explanation:
Given
[tex]n=10[/tex] --- selected customers
[tex]x = 4[/tex] --- those that are expected to use the restroom
[tex]p =30\% = 0.30[/tex] --- proportion that uses the restroom
Required
[tex]P(x = 4)[/tex]
The question illustrates binomial probability and the formula is:
[tex]P(x) = ^nC_x * p^x * (1 - p)^{n - x}[/tex]
So, we have:
[tex]P(x=4) = ^{10}C_4 * (0.30)^4 * (1 - 0.30)^{10 - 4}[/tex]
[tex]P(x=4) = ^{10}C_4 * (0.30)^4 * (0.70)^6[/tex]
[tex]P(x=4) = 210* (0.30)^4 * (0.70)^6[/tex]
[tex]P(x=4) = 0.200[/tex]
Sarah ordered 39 shirts that cost $8 each. She can sell each shirt for $16.19. She sold 32 shirts to customers. She had to return 7 shirts and pay a $1.4 charge for each returned shirt. Find Sarah's profit.
Answer:
$196.28
Step-by-step explanation:
Original cost: 39 × $8 = $312
Revenue: 32 × $16.19 = $518.08
Return charge: 7 × $1.4 = $9.8
$312 + $9.8 = total cost, which is $321.8
$518.08 - $321.8 = profit
Profit = $196.28
The force F (in pounds) needed on a wrench handle to loosen a certain bolt varies inversely with the length L (in inches) of the handle. A force of 40 pounds is needed when the handle is 7 inches long. If a person needs 20 pounds of force to loosen the bolt, estimate the length of the wrench handle. Round answer to two decimal places if necessary.
in inches
Answer:
14 inches
Step-by-step explanation:
Since F is inversely proportional to L,
[tex]f = \frac{k}{l} \\ when \: f = 40 \: l \: = 7 \\ \frac{k}{7} = 40 \\ k = 280 \\ when \: f = 20 \\ 20 = \frac{280}{l} \\ l = 14[/tex]
A certain list of movies were chosen from lists of recent Academy Award Best Picture winners, highest grossing movies, series movies (e.g. the Harry Potter series, the Spiderman series), and from the Sundance Film Festival and are being analyzed. The mean box office gross was $138.64 million with a standard deviation of $11.2526 million. Given this information, 98.49% of movies grossed greater than how much money (in millions)
What is the solution to the linear equation?
-12 + 3b - 1 = -5 - b
Answer:
b=2
Step-by-step explanation:
A party supply company makes cone shaped party hats for children using thin cardboard. To the nearest square centimeter, how much cardboard is required to make the party hate use pie = 3.14.
Answer:
A. 754 cm²
Step-by-step explanation:
Amount of cardboard needed = surface area of the cone
Curved surface area of the cone = πrl
Where,
π = 3.14
r = ½(20) = 10 cm
l = 24 cm
Plug in the values into the formula
Curved surface area = 3.14 × 10 × 24 = 753.6 ≈ 754 cm²
Which of the following equations describes this graph?
A. y=(x-1)^2-
B. y=(x-3)^2+2
C. y=(x+1)^2-2
D. y=(x-2)^2+3
Answer:
The choose (A)
y=(x-1)²-2
a pie chart is divided into four sectors in fig. 12.42. Each sector represents a percentage of the whole. The two larger sectors are equal and each represents x%. What is the angle subtended by one of those larger sectors ?
Answer:
Angle formed by the sector measuring x% will be 126°.
Step-by-step explanation:
Since, sum of all sectors formed in a circle is 100%.
By adding the measures of all the sectors,
x + x + 21 + 9 = 100
2x + 30 = 100
2x = 70
x = 35%
Now we know sum of all the central angles formed at the center of a circle = 360°
Therefore, angle formed by x% = 360° × 35%
= [tex]\frac{360\times 35}{100}[/tex]
= 126°
alvin is 5 years older than elga. the sum of their age is 85. what is elga age
Answer:
40 years old.
Step-by-step explanation:
We can let Elga's age equal [tex]x[/tex]. Alvin's age can be equal to [tex]y[/tex]. We can make several equations from the information we know. We know that Elga's age plus five equal's Alvin's age.
[tex]x+5=y[/tex]
We also know that the sum of their ages is 85.
[tex]x+y=85[/tex]
We can substitute [tex]x+5[/tex] for [tex]y[/tex] in the second equation since [tex]x+5=y[/tex], so we have the following equation:
[tex]x+(x+5)=85[/tex]
We can combine like terms to get
[tex]2x+5=85[/tex]
Subtracting 5 from both sides results in
[tex]2x=80[/tex]
After that, we can divide both sides by 2 to get
[tex]x=40[/tex]
Thus, Elga is 40 years old.
Answer:
e = 40
a=45
Step-by-step explanation:
a + e = 85
a = e+5
e + 5 + e = 85
2e = 80
e = 40
a=45
the complement of guessing 5 correct answers on a 5 question true or false examination is
Answer:
Guessing at least one incorrect answer
Step-by-step explanation:
The complement of guessing 5 correct answers on a 5-question true/false exam is-
Guessing at least one incorrect answer because, when 1 or more questions are incorrectly guessed, the event of 5 correct answers can not occur.
The distribution of the number of apples trees a farmer can plant each day is bell-shaped and has a mean of 62 and a standard deviation of 8. Use the empirical rule to help you answer the following. What is the approximate percentage of trees planted between 38 and 68
Answer:
The empirical rule, the approximate percentage of trees planted between 38 and 68 is 99.7%.
Step-by-step explanation:
The Empirical Rule states that, for a normally distributed random variable:
Approximately 68% of the measures are within 1 standard deviation of the mean.
Approximately 95% of the measures are within 2 standard deviations of the mean.
Approximately 99.7% of the measures are within 3 standard deviations of the mean.
In this problem, we have that:
Mean of 62, standard deviation of 8.
What is the approximate percentage of trees planted between 38 and 86?
38 = 62 - 3*8
86 = 62 + 3*8
So within 3 standard deviations of the mean, which, by the empirical rule, the approximate percentage of trees planted between 38 and 68 is 99.7%.
Can someone help me with this problem?
please help i am stuck on this assignment
Answer:
answer
x = -13/ 15, 0
Step-by-step explanation:
15x^2 + 13 x = 0
or, x(15x + 13) = 0
either, x = 0
or, 15x + 13 = 0
x = -13/15
Answer:
The answer should be C...............
imma sorry if I'm wrong
Find the solution for this system of equations.
2x + 4y = 8
x = 3y − 6
Answer:
[tex]{ \tt{2x + 4y = 8 - - - (a)}} \\ { \tt{x = 3y - 6 - - - (b)}} [/tex]
Substitute for x in equation (a) :
[tex]{ \tt{2(3y - 6) + 4y = 8}} \\ { \tt{6y - 12 + 4y = 8}} \\ { \tt{10y = 20}} \\ y = 2[/tex]
Substitute for y in equation (b) :
[tex]{ \tt{x = (3 \times 2) - 6}} \\ x = 0[/tex]
2x+4y =8
x=3y-6 ——> x–3y=–6
x–3y = – 6 ] ×(–2) ——> –2x +6y=12
2x+4y=8
–2x+6y =12
__o_o____
0+10y=20 —> 10y= 20 —> y= 20/10 —> y= 2
2x+4y=8 —> 2x + 4(2) = 8 —> 2x + 8=8 —> 2x = 0 —> x=0
(x,y) —> (0,2)
Find the value of x in each case
The answer is 36 degrees
Step 1
Angle GEH=180-2x (angles on a a straight line are supplementary)
Step 2
4x= G^+GE^H(sum of exterior angle)
4x=x+(180-2x)
4x=180-x
4x+x=180
5x=180
x=36 degrees
Solve the inequality and write the solution set using both set-builder notation and interval notation. -3a-15≤-2a+6
Answer:
[tex]\{a[/tex] ∈ [tex]R\ -21 \le a \le \infty \}[/tex] --- set builder
[tex][-21,\infty)[/tex] --- interval notation
Step-by-step explanation:
Given
[tex]-3a - 15 \le -2a + 6[/tex]
Required
Solve
Collect like terms
[tex]-3a + 2a \le 15 + 6[/tex]
[tex]-a \le 21[/tex]
Divide by -1
[tex]a \ge - 21[/tex]
Rewrite as:
[tex]-21 \le a[/tex]
Using set builder
[tex]\{a[/tex] ∈ [tex]R\ -21 \le a \le \infty \}[/tex]
Using interval notation, we have:
[tex][-21,\infty)[/tex]
An arch is in the form of a parabola given by the function h = -0.06d^2 + 120, where the origin is at ground level, d meters is the horizontal distance and h is the height of the arch in meters.
Graph this function on your graphing calculator then complete the following statements.
The height of the arch is: ------- m
The width to the nearest meter, at the base of the arch is ------ m
Answer:
See attachment for graph
The height of the arch is: 120 m
The width to the nearest meter, at the base of the arch is 22 m
Step-by-step explanation:
Given
[tex]h = -0.06d^2 + 120[/tex]
Solving (a): The graph
See attachment for graph
Variable h is plotted on the vertical axis while variable d is plotted on the horizontal axis.
Solving (b): The height
The curve of [tex]h = -0.06d^2 + 120[/tex] opens downward. So, the maximum point on the vertical axis represents the height of the arch,
Hence:
[tex]height = 120[/tex]
Solving (c): The width
The curve touches the horizontal axis at two different points.
[tex]x_1 = -11[/tex]
[tex]x_2 = 11[/tex]
The absolute difference of both points represents the width.
So:
[tex]Width = |x_2 - x_1|[/tex]
[tex]Width = |11 - -11|[/tex]
[tex]Width = |11 +11|[/tex]
[tex]Width = |22|[/tex]
Hence:
[tex]Width = 22[/tex]
it's tooooo easy who wants brain list
Answer:
1) Isosceles
2) Acute
3) Right angled
4( Obtuse
5) Equilateral
the perimeter of a rectangle garden is 330 feet. If the length of the garden is 94 feet , what is its width ?
Answer:
71 feet
Step-by-step explanation:
94×2=188
330-188=142
142÷2=71
One number is 1/4 of another number. The sum of the two numbers is 5. Find the two numbers. Use a comma to separate your answer
Answer: 1, 4
Step-by-step explanation:
Number #1 = xNumber #2 = [tex]\frac{1}{4} x[/tex][tex]\frac{1}{4} x+x=5\\\\\frac{1}{4} x+\frac{4}{4} x=5\\\\\frac{5}{4} x=5\\\\5x=4*5\\5x=20\\x=4[/tex]
Number #1 = x = 4Number #2 = [tex]\frac{1}{4} x[/tex] = [tex]\frac{1}{4} *4=\frac{4}{4} =1[/tex]Multiplying 10x² and (2x²)² we get …..
Hi there!
[tex]\large\boxed{40x^{6}}[/tex]
Begin by simplifying (2x²)²
2² · (x²)² <-- Power rule for exponents, multiply them together:
4 · x⁴ = 4x⁴
Multiply by 10x². ADD exponents when multiplying.
10x² · 4x⁴ = 40 · x²⁺⁴
40x⁶
* Insert a digit to make numbers that are divisible by 6 if it is possible:
234_6
Answer:
i put in 3 to make 23436 because 36 is divisible by 6
If h(x) is the parent function, which equation describes the function song shifted 3 units left and 5 units down?
Answer:
h(x + 3) - 5Step-by-step explanation:
Given function h(x).
Shift left:
h(x) → h(x + 3)Shift down:
h(x + 3) → h(x + 3) - 5Given function is,
→ h(x)
As we shift left,
→ h(x) = h(x + 3)
As we shift down,
→ h(x + 3) = h(x+3)-5
Then the equation is,
→ h(x+3)-5
It is correct answer.
Use the coordinates of the labeled point to find a point-slope equation of the
line.
5
5
(-2,-5) 6.5
>
O A. y- 5 = -2(x - 2)
O B. y + 5 = 2(x + 2)
O C. y + 5 = -2(x + 2)
OD. y- 5 = 2(x - 2)
Answer:
B. [tex] y + 5 = 2(x + 2) [/tex]
Step-by-step explanation:
Point-slope equation is given as [tex] y - b = m(x - a) [/tex], where,
(a, b) = (-2, -5)
[tex] m = slope = \frac{y_2 - y_1}{x_2 - x_1} [/tex]
Using two points on the line (-2, -5) and (0, -1),
Slope (m) = (-1 -(-5))/(0 -(-2)) = 4/2
m = 2
✔️To write the equation in point-slope form, substitute a = -2, b = -5, and m = 2 into [tex] y - b = m(x - a) [/tex]
Thus:
[tex] y - (-5) = 2(x - (-2)) [/tex]
[tex] y + 5 = 2(x + 2) [/tex]
At the 6th grade school dance, there are 132 boys, 89 girls, and 14 adults. What is the ratio of adults to boys at the school dance?
Answer:
14 to 132
Step-by-step explanation:
We are given that there are 132 boys and 14 adults. Since the question is only asking for the ratio of adults to boys, we don't have to worry about the number of girls in this question. From here, we see that the question is asking for the ratio of adults to boys, so we put it in that exact order. Our answer is 14 to 132. I hope this helps and please don't hesitate to reach out with more questions!
On dividing 12x³ by 4x the quotient is …..
Answer:
12x^3 is equivalent to
12x*12x*12x which if we multiply is
1728x
we divide by 4x
1728x divided by 4x=432x
Hope This Helps!!!
Answer:
3x^2
Step-by-step explanation:
when u divide 12x^3/4x....u divide 12/4=3 along with the x also..tat is x^3/x=x^2
An economic instructor at UCF is interested in the relationship between hours spent studying and total points earned in a course. Data collected on 11 students who took the course last semester follow:
# of observation(s) n = 30
# of independent variable(s) = 1
SSR = 1,297 SSE= 920
Required:
Find the F test statistic.
Answer:
[tex]F = 39.47[/tex]
Step-by-step explanation:
Given
[tex]n = 30[/tex] --- observations
[tex]p = 1[/tex] -- variables
[tex]SSR = 1,297[/tex]
[tex]SSE= 920[/tex]
Required
The F statistic
This is calculated using:
[tex]F = \frac{SSR}{p} \div \frac{SSE}{n - p -1}[/tex]
[tex]F = \frac{1297}{1} \div \frac{920}{30 - 1 -1}[/tex]
[tex]F = \frac{1297}{1} \div \frac{920}{28}[/tex]
[tex]F = 1297 \div \frac{920}{28}[/tex]
Rewrite as:
[tex]F = 1297 * \frac{28}{920}[/tex]
[tex]F = \frac{1297 *28}{920}[/tex]
[tex]F = \frac{36316}{920}[/tex]
[tex]F = 39.47[/tex]
Jerome is cooking dinner. He needs 8 ounces of broccoli for each person. Part A: Jerome is not sure how many people will come to dinner. Write an expression with a variable that represents the amount of broccoli Jerome needs for dinner. Identify what the variable represents. Part B: If Jerome has 32 ounces of broccoli, how many people can he feed? Create an equation and show all work to solve it.
Answer:
A. 8x = amount of broccoli needed
B. 4 people; 32÷8=4
Step-by-step explanation:
A. the variable (x) represents the amount of people.
B. 32 ounces divided by 8 ounces is enough for four people.