We have to accept or reject a large shipment of items. For quality control purposes, we collect a sample of 200 items and find 24 defective items. Construct a 95% percent confidence interval for the proportion of defective items in the whole shipment.

Answers

Answer 1

Answer:

A 95% confidence for the population proportion of defective items in the whole shipment is [0.075, 0.165] .

Step-by-step explanation:

We are given that for quality control purposes, we collect a sample of 200 items and find 24 defective items.

Firstly, the pivotal quantity for finding the confidence interval for the population proportion is given by;

                             P.Q.  =  [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex]  ~  N(0,1)

where, [tex]\hat p[/tex] = sample proportion of defective items = [tex]\frac{24}{200}[/tex] = 0.12

            n = sample of items = 200

            p = population proportion  of defective items

Here for constructing a 95% confidence interval we have used a One-sample z-test statistics for proportions.

So, 95% confidence interval for the population proportion, p is ;

P(-1.96 < N(0,1) < 1.96) = 0.95  {As the critical value of z at 2.5% level

                                                      of significance are -1.96 & 1.96}  

P(-1.96 < [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < 1.96) = 0.95

P( [tex]-1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < [tex]{\hat p-p}[/tex] < [tex]1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ) = 0.95

P( [tex]\hat p-1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < p < [tex]\hat p+1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ) = 0.95

95% confidence interval for p = [ [tex]\hat p-1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] , [tex]\hat p+1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ]

  = [ [tex]0.12-1.96 \times {\sqrt{\frac{0.12(1-0.12)}{200} } }[/tex] , [tex]0.12+1.96 \times {\sqrt{\frac{0.12(1-0.12)}{200} } }[/tex] ]

 = [0.075, 0.165]

Therefore, a 95% confidence for the population proportion of defective items in the whole shipment is [0.075, 0.165] .


Related Questions


8.What side of the road will you see speed, yield, and guide signs on ?

Answers

Answer:

we see it in our left side of the road

you will be able to spot these signs on your left hand side :)

Claire has to go to the movie theater the movie starts at 4:15 pm it is a 25min walk to the theater from her home what time dose the have to leave the house to get there on time

Answers

Answer:

claire has to leave at 3:50 from her house.

Answer:

She needs to leave by 3:50 to get there on time.

Step-by-step explanation:

4:15 - 0:25 = 3:50.

Simplify using calculator.. I'm not sure if i am putting it in the calculator right

Answers

Answer: D) 64

You would type in

32^(6/5)

Or you could type in

32^(1.2)

since 6/5 = 1.2

Either way, the final result is 64

G={3,7,8,9} h={2,5,7,8} what is the intersection of the sets

Answers

Answer:

The answer is { 7 , 8 }

Step-by-step explanation:

G = { 3 , 7 , 8 , 9 }

H = { 2 , 5 , 7 , 8 }

The intersection of any two or more sets are the members that occur in both sets.

To find the intersection of G and H look for the members that occur in both sets

From the question , the members that occur in both G and H are 7 and 8

So the intersection of the sets is

{ 7 , 8 }

Hope this helps you

Y=-×+1 and y=2×+4 how many solutions when graphed

Answers

Answer:

One solution (-1,2)

Step-by-step explanation:

Since these two linear equations have different slopes, different y-intercepts, and are indeed linear, these equations will only have one crossing when graphed, and hence one solution.

To find that solution, we can simply set the equations equal to each other.

y = -x + 1

y = 2x + 4

-x + 1 = 2x + 4

-3 = 3x

-1 = x

Now plug that value back into one of the equations:

y = -x + 1

y = -(-1) + 1

y = 2

So now you know the crossing for these two equations occurs at (-1,2).

Cheers.

In the given figure, if POQ is a straight line then find ∠POT. please help !!!!!!

Answers

Answer:

∠POT = 78°

Step-by-step explanation:

If POQ is straight then

x + 18° + 50° + x + 24° = 180° add like terms

2x + 92° = 180°

2x = 180° - 92°

2x = 88° and x = 44 If we say SOT is a straight line then

∠POT + 50° + x + 18° = 180°

∠POT + 102° = 180°

∠POT = 78°

A nutrition laboratory tested 25 "reduced sodium" hotdogs of a certain brand, finding that the mean sodium content is 310 mg with a standard deviation of 36 mg.
Construct a 95% confidence interval for the mean sodium content of this brand of hot dog and interpret a 95% level of confidence. Show all work

Answers

Answer:

The  95% confidence interval is  [tex]295.9 < \mu< 324.1[/tex]

A   95% level of confidence mean that there is 95%  chance  that the true population mean will be in this interval

Step-by-step explanation:

From the question we are told that

    The sample size is  [tex]n = 25[/tex]

    The mean is  [tex]\= x = 310 \ mg[/tex]

     The standard deviation is  [tex]\sigma = 36 \ mg[/tex]

Given that the confidence level is  95% then the level of significance is mathematically represented as

           [tex]\alpha = 100 - 95[/tex]

=>        [tex]\alpha = 5\%[/tex]

=>        [tex]\alpha = 0.05[/tex]

Next we obtain the critical value of  [tex]\frac{\alpha }{2}[/tex] from the normal distribution table , the value is  

           [tex]Z_{\frac{\alpha }{2} } =Z_{\frac{0.05 }{2} } = 1.96[/tex]

Generally the margin of error is mathematically represented as

        [tex]E = Z_{\frac{\alpha }{2} } * \frac{\sigma }{\sqrt{n} }[/tex]

substituting values

        [tex]E = 1.96 * \frac{36 }{\sqrt{25} }[/tex]

        [tex]E = 14.1[/tex]

The 95% level of confidence interval  is mathematically represented as

      [tex]\= x - E < \mu<\ \= x - E[/tex]

substituting values

     [tex]310- 14.1 < \mu< 310+ 14.1[/tex]

     [tex]295.9 < \mu< 324.1[/tex]

The  95% level of confidence mean that there is 95%  chance  that the true population mean will be in this interval

∠ACB is a circumscribed angle. Solve for x. 1) 46 2) 42 3) 48 4) 44

Answers

Answer:

[tex]\Huge \boxed{x=44}[/tex]

Step-by-step explanation:

The circumscribed angle and the central angle are supplementary.

∠ACB and ∠AOB add up to 180 degrees.

Create an equation to solve for x.

[tex]3x+10+38=180[/tex]

Add the numbers on the left side of the equation.

[tex]3x+48=180[/tex]

Subtract 48 from both sides of the equation.

[tex]3x=132[/tex]

Divide both sides of the equation by 3.

[tex]x=44[/tex]

Answer:

4)44

Step-by-step explanation:

What will be the effect on the graph of y = Ixl if x is replaced with -x?

Answers

Answer:

If x is replaced with -x the graph will stay the same because the absolute value makes 2 values so a negative number and a positive one.

Step-by-step explanation:

Go search it up on desmos.

Can somebody explain how trigonometric form polar equations are divided/multiplied?

Answers

Answer:

Attachment 1 : Option C

Attachment 2 : Option A

Step-by-step explanation:

( 1 ) Expressing the product of z1 and z2 would be as follows,

[tex]14\left[\cos \left(\frac{\pi \:}{5}\right)+i\sin \left(\frac{\pi \:\:}{5}\right)\right]\cdot \:2\sqrt{2}\left[\cos \left(\frac{3\pi \:}{2}\right)+i\sin \left(\frac{3\pi \:\:}{2}\right)\right][/tex]

Now to solve such problems, you will need to know what cos(π / 5) is, sin(π / 5) etc. If you don't know their exact value, I would recommend you use a calculator,

cos(π / 5) = [tex]\frac{\sqrt{5}+1}{4}[/tex],

sin(π / 5) = [tex]\frac{\sqrt{2}\sqrt{5-\sqrt{5}}}{4}[/tex]

cos(3π / 2) = 0,

sin(3π / 2) = - 1

Let's substitute those values in our expression,

[tex]14\left[\frac{\sqrt{5}+1}{4}+i\frac{\sqrt{2}\sqrt{5-\sqrt{5}}}{4}\right]\cdot \:2\sqrt{2}\left[0-i\right][/tex]

And now simplify the expression,

[tex]14\sqrt{5-\sqrt{5}}+i\left(-7\sqrt{10}-7\sqrt{2}\right)[/tex]

The exact value of [tex]14\sqrt{5-\sqrt{5}}[/tex] = [tex]23.27510\dots[/tex] and [tex](-7\sqrt{10}-7\sqrt{2}\right))[/tex] = [tex]-32.03543\dots[/tex] Therefore we have the expression [tex]23.27510 - 32.03543i[/tex], which is close to option c. As you can see they approximated the solution.

( 2 ) Here we will apply the following trivial identities,

cos(π / 3) = [tex]\frac{1}{2}[/tex],

sin(π / 3) = [tex]\frac{\sqrt{3}}{2}[/tex],

cos(- π / 6) = [tex]\frac{\sqrt{3}}{2}[/tex],

sin(- π / 6) = [tex]-\frac{1}{2}[/tex]

Substitute into the following expression, representing the quotient of the given values of z1 and z2,

[tex]15\left[cos\left(\frac{\pi \:}{3}\right)+isin\left(\frac{\pi \:\:}{3}\right)\right] \div \:3\sqrt{2}\left[cos\left(\frac{-\pi \:}{6}\right)+isin\left(\frac{-\pi \:\:}{6}\right)\right][/tex] ⇒

[tex]15\left[\frac{1}{2}+\frac{\sqrt{3}}{2}\right]\div \:3\sqrt{2}\left[\frac{\sqrt{3}}{2}+-\frac{1}{2}\right][/tex]

The simplified expression will be the following,

[tex]i\frac{5\sqrt{2}}{2}[/tex] or in other words [tex]\frac{5\sqrt{2}}{2}i[/tex] or [tex]\frac{5i\sqrt{2}}{2}[/tex]

The solution will be option a, as you can see.

The Airline Passenger Association studied the relationship between the number of passengers on a particular flight and the cost of the flight. It seems logical that more passengers on the flight will result in more weight and more luggage, which in turn will result in higher fuel costs. For a sample of 21 flights, the correlation between the number of passengers and total fuel cost was 0.668.


(1)
State the decision rule for 0.10 significance level: H0: Ï â‰¤ 0; H1: Ï > 0 (Round your answer to 3 decimal places.)


Reject H0 if t >
(2)
Compute the value of the test statistic. (Round your answer to 3 decimal places.)


Value of the test statistic

Answers

Answer:

Decision Rule:  To reject the null hypothesis if t > 1.328

t = 3.913

Step-by-step explanation:

The summary of the given statistics include:

sample size n = 21

the correlation between the number of passengers and total fuel cost r = 0.668

(1) We are tasked to state the decision rule for 0.10 significance level

The degree of freedom df = n - 1

degree of freedom df = 21 - 1

degree of freedom df = 19

The  null and the alternative hypothesis can be computed as:

[tex]H_o : \rho < 0\\ \\ Ha : \rho > 0[/tex]

The critical value for [tex]t_{\alpha, df}[/tex]  is  [tex]t_{010, 19}[/tex] = 1.328

Decision Rule:  To reject the null hypothesis if t > 1.328

The test statistics can be computed as follows by using the formula for t-test for Pearson Correlation:

[tex]t = r*\sqrt{ \dfrac{(n-2)}{(1-r^2)}[/tex]

[tex]t = 0.668*\sqrt{ \dfrac{(21-2)}{(1-0.668^2)}[/tex]

[tex]t = 0.668*\sqrt{ \dfrac{(19)}{(1-0.446224)}[/tex]

[tex]t = 0.668*\sqrt{ \dfrac{(19)}{(0.553776)}[/tex]

[tex]t = 0.668*5.858[/tex]

t = 3.913144

t = 3.913    to 3 decimal places

An octagonal pyramid ... how many faces does it have, how many vertices and how many edges? A triangular prism ... how many faces does it have, how many vertices and how many edges? a triangular pyramid ... how many faces does it have, how many vertices and how many edges?

Answers

1: 8 faces and 9 with the base 9 vertices and 16 edges

2: 3 faces and 5 with the bases 6 vertices and 9 edges

3: 3 faces and 4 with the base 4 vertices and 6 edges

Hope this can help you.

1: 8 faces and 9 with the base 9 vertices and 16 edges

2: 3 faces and 5 with the bases 6 vertices and 9 edges

3: 3 faces and 4 with the base 4 vertices and 6 edges

The heights of North American women are nor-mally distributed with a mean of 64 inches and a standard deviation of 2 inches. a. b. c. What is the probability that a randomly selected woman is taller than 66 inches

Answers

Answer:

0.1587

Step-by-step explanation:

Given the following :

Mean (m) of distribution = 64 inches

Standard deviation (sd) of distribution = 2 inches

Probability that a randomly selected woman is taller than 66 inches

For a normal distribution :

Z - score = (x - mean) / standard deviation

Where x = 66

P(X > 66) = P( Z > (66 - 64) / 2)

P(X > 66) = P(Z > (2 /2)

P(X > 66) = P(Z > 1)

P(Z > 1) = 1 - P(Z ≤ 1)

P(Z ≤ 1) = 0.8413 ( from z distribution table)

1 - P(Z ≤ 1) = 1 - 0.8413

= 0.1587

An octagonal pyramid ... how many faces does it have, how many vertices and how many edges? A triangular prism ... how many faces does it have, how many vertices and how many edges? a triangular pyramid ... how many faces does it have, how many vertices and how many edges?

Answers

1: 8 faces and 9 with the base 9 vertices and 16 edges

2: 3 faces and 5 with the bases 6 vertices and 9 edges

3: 3 faces and 4 with the base 4 vertices and 6 edges

Hope this can help you.

1: 8 faces and 9 with the base 9 vertices and 16 edges

2: 3 faces and 5 with the bases 6 vertices and 9 edges

3: 3 faces and 4 with the base 4 vertices and 6 edges

Solve the following system of linear equations {2x-7y=10 {5x -6y=2

Answers

2x-7y=10 = [tex]\frac{2}{7}[/tex]

5x -6y=2 = [tex]\frac{5}{6}[/tex]

Can someone help me?

Answers

Answer:

7w

Step-by-step explanation:

Identify the inverse function of f(x) = VX - 2 + 3.

Answers

Answer:

[tex]\huge\boxed{f^{-1}(x) = (x-3)^2+2}[/tex]

Step-by-step explanation:

[tex]f(x) = \sqrt{x-2} + 3[/tex]

Replace y = f(x)

[tex]y = \sqrt{x-2} + 3[/tex]

Exchange x and y

[tex]x = \sqrt{y-2}+3[/tex]

Solve for y

[tex]x = \sqrt{y-2}+3[/tex]

Subtracting both sides by 3

[tex]x - 3 = \sqrt{y-2}[/tex]

Taking square on both sides

[tex](x-3)^2 = y -2[/tex]

Adding 2 to both sides

[tex]y = (x-3)^2+2[/tex]

Substitute y = [tex]f^{-1}(x)[/tex]

[tex]f^{-1}(x) = (x-3)^2+2[/tex]

Answer:

[tex] \boxed{ {f}^{ - 1} (x) = {(x - 3)}^{2} + 2}[/tex]

Option D is the correct option

Step-by-step explanation:

[tex] \mathsf{f(x) = \sqrt{x - 2} + 3}[/tex]

Replace f(x) with y

[tex] \mathsf{y = \sqrt{x - 2} + 3}[/tex]

Interchange variables

[tex] \mathsf{x = \sqrt{y - 2} + 3}[/tex]

[tex] \mathsf{{(x - 3)}^{2} = {( \sqrt{y - 2)} }^{2} }[/tex]

[tex] \mathsf{ {(x - 3)}^{2} = y - 2}[/tex]

[tex] \mathsf{ y = {(x - 3)}^{2} + 2}[/tex]

Replace y with f ⁻¹( x )

[tex] \mathsf{ {f}^{ - 1} (x) = {(x - 3)}^{2} + 2}[/tex]

Hope I helped!

Best regards!

The lines shown below are perpendicular. If the green line has a slope of 2/5
, what is the slope of the red line?



A.


B.


C.
-

D.
-

Answers

Answer:

C. [tex] -\frac{5}{2}} [/tex]

Step-by-step explanation:

If two lines on a graph are perpendicular to each other, their slope is said to be negative reciprocals of each other. This means the slope of one, is the negative reciprocal of the other.

This can be represented as [tex] m_1 = \frac{-1}{m_2} [/tex]

Where, [tex] m_1, m_2 [/tex] are slopes of 2 lines (i.e. the red and green lines given in the question) that are perpendicular to one another.

Thus, the slope of the red line would be:

[tex] m_1 = \frac{-1}{\frac{2}{5}} [/tex]

[tex] m_1 = -1*\frac{5}{2}} [/tex]

[tex] m_1 = -\frac{5}{2}} [/tex]

The slope of the red line = [tex] -\frac{5}{2}} [/tex]

I will rate brainly if you answer this The number of weekly social media posts varies directly with the square root of the poster’s age and inversely with the cube root of the poster’s income. If a 16-year-old person who earns $8,000 makes 64 posts in a week, what is the value of k?

Answers

Answer:

[tex]\large \boxed{\sf \bf \ \ k=320 \ \ }[/tex]

Step-by-step explanation:

Hello,

The number of weekly social media posts varies directly with the square root of the poster’s age and inversely with the cube root of the poster’s income.

If a 16-year-old person who earns $8,000 makes 64 posts in a week, what is the value of k?

[tex]64=\dfrac{\sqrt{16}}{\sqrt[3]{8000}}\cdot k=\dfrac{4}{20}\cdot k=\dfrac{1}{5}\cdot k=0.2\cdot k\\\\k=64*5=320[/tex]

Hope this helps.

Do not hesitate if you need further explanation.

Thank you

k=320.

If a=age, m=income, and n=number of weekly posts:
The relationship can be modeled by
n=k * sqrt(a) / cbrt(m). sqrt(a) is in the numerator because it is directly proportional to n and cbrt(m) is in the denominator because it is inversely proportional to n.
Plugging in the given values, n=64, a=16, m=8000, 64=k* sqrt(16) / cbrt(8000). sqrt(16)=4, and cbrt(8000)=20, so 64=4k/20=k/5. So k=64*5= 320.

Compute using long division: 1,234÷68

Answers

Answer:

Quotient = 18

Remainder = 10

Step-by-step explanation:

1234/68

=> 68 x 1 = 68

=> 123 - 68 = 55

=> Take the 4 down

=> 554/68

=> 68 x 8 = 544

=> 554 - 544  = 10

So, the quotient = 18.

Remainder = 10

Which transformation was applied to Figure 1 in order to arrive at Figure 2? Geometry A

Answers

Answer:

(B) Reflection in the x-axis

Step-by-step explanation:

We can see that these triangles have the exact same x-coordinates, however their y coordinates are opposite each other. This means that if we wanted to get one of the triangles to the other, we’d have to reflect over the x-axis

(by default, if the x values are the same and y are opposite, reflect across x axis. If y values are the same and x is opposite, reflect over y. it’s sort of like opposites.)

Hope this helped!

Find the equation of the circle in standard form for the given center (h, k) and radius R:(H,K)=(4/3,-8/8),R=1/3

Answers

Answer:

The answer is option B

Step-by-step explanation:

Equation of a circle is given by

( x - h)² + ( y - k)² = r²

where r is the radius and

( h , k) is the center of the circle

From the question the radius R = 1/3

the center ( h ,k ) = (4/3 , -8/3)

Substituting the values into the above equation

We have

[tex](x - \frac{4}{3} )^{2} + {(y - - \frac{8}{3}) }^{2} = ({ \frac{1}{3} })^{2} [/tex]

We have the final answer as

[tex](x - \frac{4}{3} )^{2} + {(y + \frac{8}{3}) }^{2} = \frac{1}{9} [/tex]

Hope this helps you

1. (a) Find the probability that a 90% free-throw shooter makes 10 consecutive free-throws, assuming that individual shots are independent.

Answers

Answer:

[tex]Probability = 0.35[/tex]

Step-by-step explanation:

Given

Probability of success free throw = 90%

Number of throw = 10

Required

Determine the probability of 10 consecutive free throws

Let p represents the given probability

[tex]p = 90\%[/tex]

Convert to decimal

[tex]p = 0.9[/tex]

Let n represents the number of throw

[tex]n = 10[/tex]

Provided that each throw is independent;

The probability of n consecutive free throw is

[tex]p^n[/tex]

Substitute 0.9 for p and 10 for n

[tex]Probability = 0.9^{10}[/tex]

[tex]Probability = 0.3486784401[/tex]

[tex]Probability = 0.35[/tex] (Approximated)

What is the error in this problem

Answers

Answer:

10). m∠x = 47°

11). x = 30.96

Step-by-step explanation:

10). By applying Sine rule in the given triangle DEF,

   [tex]\frac{\text{SinF}}{\text{DE}}=\frac{\text{SinD}}{\text{EF}}[/tex]

   [tex]\frac{\text{Sinx}}{7}=\frac{\text{Sin110}}{9}[/tex]

   Sin(x) = [tex]\frac{7\times (\text{Sin110})}{9}[/tex]

   Sin(x) = 0.7309

   m∠x = [tex]\text{Sin}^{-1}(0.7309)[/tex]

   m∠x = 46.96°

   m∠x ≈ 47°

11). By applying Sine rule in ΔRST,

   [tex]\frac{\text{SinR}}{\text{ST}}=\frac{\text{SinT}}{\text{RS}}[/tex]

   [tex]\frac{\text{Sin120}}{35}=\frac{\text{Sin50}}{x}[/tex]

   x = [tex]\frac{35\times (\text{Sin50})}{\text{Sin120}}[/tex]

   x = 30.96   

A standard deck of cards contains 52 cards. One card is randomly selected from the deck: Compute the probability of randomly selecting a queen or club from a deck of cards.

Answers

Answer:

The probability of randomly selecting a queen or club from a deck of cards = 17/52

Step-by-step explanation:

Here in this question, we are concerned with computing the probability of randomly selecting a queen or club form a deck of cards

Mathematically, the probability is;

Probability of selecting a queen + Probability of selecting a club

Probability of selecting a queen = number of queens/total card number

The number of queens = 4

Probability of selecting a queen = 4/52

Probability of selecting a club card = number of club cards/ total number of cards

Number of club cards = 13

Probability of selecting a club card = 13/52

The probability of selecting a queen or club from a deck of cards = 4/52 + 13/52 = 17/52

On a coordinate plane, a line has points (negative 2, negative 4) and (4, 2). Point P is at (0, 4). Which points lie on the line that passes through point P and is parallel to the given line? Select three options. (–4, 2) (–1, 3) (–2, 2) (4, 2) (–5, –1)

Answers

Answer:

the correct options are:

(–1, 3),  (–2, 2) and (–5, –1)

Step-by-step explanation:

Given that a line passes through two points

A(-2, -4) and B(4, 2)

Another point P(0, 4)

To find:

Which points lie on the line that passes through P and is parallel to line AB ?

Solution:

First of all, let us the find the equation of the line which is parallel to AB and passes through point P.

Parallel lines have the same slope.

Slope of a line is given as:

[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]

[tex]m=\dfrac{2-(-4)}{4-(-2)} = 1[/tex]

Now, using slope intercept form ([tex]y = mx+c[/tex]) of a line, we can write the equation of line parallel to AB:

[tex]y =(1)x+c \Rightarrow y = x+c[/tex]

Now, putting the point P(0,4) to find c:

[tex]4 = 0 +c \Rightarrow c = 4[/tex]

So, the equation is [tex]\bold{y=x+4}[/tex]

So, the coordinates given in the options which have value of y coordinate equal to 4 greater than x coordinate will be true.

So, the correct options are:

(–1, 3),  (–2, 2) and (–5, –1)

Answer:

b,c,e

Step-by-step explanation:

I got it right on edge

Need help with this problem ASAP, don’t need an explanation, just an answer

Answers

Answer:

x^3-10x^2+1/9

Step-by-step explanation:

For standard form you need to put the exponents in order. So x^3 is first, followed by -10x^2, and finally 1/9. Hope this helps!

generate a continuous and differentiable function f(x) with the following properties: f(x) is decreasing at x=−5 f(x) has a local minimum at x=−3 f(x) has a local maximum at x=3

Answers

Answer:

see details in graph and below

Step-by-step explanation:

There are many ways to generate the function.

We'll generate a function whose first derivative f'(x) satisfies the required conditions, say, a quadratic.

1. f(x) has a local minimum at x = -3, and

2. a local maximum at x = 3

Therefore f'(x) has to cross the x-axis at x = -3 and x=+3.

Furthermore, f'(x) must be increasing at x=-3 and decreasing at x=+3.

f'(x) = -x^2+9

will satisfy the above conditions.

Finally f(x) must be decreasing at x= -5, which implies that f'(-5) must be negative.

Check: f'(-5) = -(-5)^2+9 = -25+9 = -16 < 0  so ok.

f(x) can then be obtained by integrating f'(x) :

f(x) = integral of -x^2+9 = -x^3/3 + 9x = 9x - x^3/3

A graph of f(x) is attached, and is found to satisfy all three conditions.

A function is differentiable at [tex]x = a[/tex], if the function is continuous at [tex]x = a[/tex]. The function that satisfy the given properties is [tex]f(x) = 9x - \frac{x^3}{3} + 3[/tex]

Given that:

The function decreases at [tex]x = -5[/tex] means that: [tex]f(-5) < 0[/tex]

The local minimum at [tex]x = -3[/tex] and local maximum at [tex]x = 3[/tex] means that:

[tex]x = -3[/tex] or [tex]x = 3[/tex]

Equate both equations to 0

[tex]x + 3 = 0[/tex] or [tex]3 - x = 0[/tex]

Multiply both equations to give y'

[tex]y' = (3 - x) \times (x + 3)[/tex]

Open bracket

[tex]y' = 3x + 9 - x^2 - 3x[/tex]

Collect like terms

[tex]y' = 3x - 3x+ 9 - x^2[/tex]

[tex]y' = 9 - x^2[/tex]

Integrate y'

[tex]y = \frac{9x^{0+1}}{0+1} - \frac{x^{2+1}}{2+1} + c[/tex]

[tex]y = \frac{9x^1}{1} - \frac{x^3}{3} + c[/tex]

[tex]y = 9x - \frac{x^3}{3} + c[/tex]

Express as a function

[tex]f(x) = 9x - \frac{x^3}{3} + c[/tex]

[tex]f(-5) < 0[/tex] implies that:

[tex]9\times -5 - \frac{(-5)^3}{3} + c < 0[/tex]

[tex]-45 - \frac{-125}{3} + c < 0[/tex]

[tex]-45 + \frac{125}{3} + c < 0[/tex]

Take LCM

[tex]\frac{-135 + 125}{3} + c < 0[/tex]

[tex]-\frac{10}{3} + c < 0[/tex]

Collect like terms

[tex]c < \frac{10}{3}[/tex]

[tex]c <3.33[/tex]

We can then assume the value of c to be

[tex]c=3[/tex] or any other value less than 3.33

Substitute [tex]c=3[/tex] in [tex]f(x) = 9x - \frac{x^3}{3} + c[/tex]

[tex]f(x) = 9x - \frac{x^3}{3} + 3[/tex]

See attachment for the function of f(x)

Read more about continuous and differentiable function at:

https://brainly.com/question/19590547

In the last 10 years, the population of Indonesia has grown at a rate of 1.12% per year to 258,316,051. If this rate continues, what will be the population in 10 more years? Round your answer to the nearest whole number.

Answers

Answer:

Final population after 10 years

= 288911718

Step-by-step explanation:

Present population p = 258,316,051

Rate of growth R%= 1.12%

Number of years t= 10 years

Number of times calculated n = 10

Final population A

= P(1+r/n)^(nt)

A= 258,316,051(1+0.0112/10)^(10*10)

A= 258,316,051(1+0.00112)^(100)

A= 258,316,051(1.00112)^100

A= 258,316,051(1.118442762)

A= 288911717.6

Approximately A= 288911718

Final population after 10 years

= 288911718

If f(x)=ax+b/x and f(1)=1 and f(2)=5, what is the value of A and B?

Answers

Answer:

[tex]\huge\boxed{a=9 ; b = -8}[/tex]

Step-by-step explanation:

[tex]f(x) = \frac{ax+b}{x}[/tex]

Putting x = 1

=> [tex]f(1) = \frac{a(1)+b}{1}[/tex]

Given that f(1) = 1

=> [tex]1 = a + b[/tex]

=> [tex]a+b = 1[/tex]  -------------------(1)

Now,

Putting x = 2

=> [tex]f(2) = \frac{a(2)+b}{2}[/tex]

Given that f(2) = 5

=> [tex]5 = \frac{2a+b}{2}[/tex]

=> [tex]2a+b = 5*2[/tex]

=> [tex]2a+b = 10[/tex]  ----------------(2)

Subtracting (2) from (1)

[tex]a+b-(2a+b) = 1-10\\a+b-2a-b = -9\\a-2a = -9\\-a = -9\\a = 9[/tex]

For b , Put a = 9 in equation (1)

[tex]9+b = 1\\Subtracting \ both \ sides \ by \ 9\\b = 1-9\\b = -8[/tex]

Other Questions
(t)What is the difference between{2, 3} and {{2, 3}}? Avi's pet hamster Chubby loves to run in his hamster wheel. During one "race", Avi counts 100100100 rotations of the wheel. She wants to know how far Chubby ran, so she measures the diameter of the wheel and finds that it is 20 \text{ cm}20 cm20, start text, space, c, m, end text. How far did Chubby run? Round your answer to the nearest \text{cm}cmstart text, c, m, end text. Farmer Green sent his two children out to count the hens and sheep. His daughter counted 40 hens, and his son counted 100 legs. How many of each animal is on the farm? Which occurs when the body responds to the environment by maintaining a stable internal environment despite changingexternal conditions?spontaneous generationhomeostasisgrowth and development reproduction For his persuasive speech, Tomas first identified all the objections to his position, and then he used evidence to argue against those objections. What organizational pattern is Tomas using for his speech A leaf blower was marked up 100% from an original cost of $152. If Eva bought the leaf blower and paid 7% sales tax, how much in total did she pay? Calculate the work performed by an ideal Carnot engine as a cold brick warms from 150 K to the temperature of the environment, which is 300 K. (Use 300 K as the temperature of the hot reservoir of the engine). The heat capacity of the brick is C what is 76.32 divided by 24.98 using compatible numbers to estimate each quotient? Question #2: Choose the answer that makes the sentence most effective. The delegates cooperated together to design a finance bill. A.with each other B.as a group C.Eliminate this part. You have just been instructed to develop a schedule for introducing a new product into the marketplace. Below are the elements that must appear in your schedule. Arrange these elements into a work breakdown structure (down through level 3), and then draw the arrow diagram. You may feel free to add additional topics as necessary.1. Production layout2. Market testing3. Review plant cost4. Select distributors5. Analyze selling cost6. Analyze customer reactions7. Storage and shipping cost8. Select salespeople9. Training salespeople10. Trained distributors Mustang Corporation had 100,000 shares of $2 par value common stock outstanding. On December 31, 2015, the company's board of directors declares a 20 percent stock dividend. This stock dividend will be distributed on January 20, 2016 to the stockholders of record on January 15, 2016. The market price of the company's stock is $10 per share on December 31, 2015. Required:Complete the necessary journal entry to record the declaration of the stock dividend by selecting the account names and dollar amounts. plz ans asap i havd limited time ill give brainliest Information processing errors consist of:_________ a. forecasting errors. b. overconfidence. c. conservatism. d. framing. Milano Gallery purchases the copyright on an oil painting for $510,000 on January 1, 2017. The copyright legally protects its owner for 12 more years. The company plans to market and sell prints of the original for 19 years. Requried:Prepare entries to record the purchase of the copyright on January 1, 2017, and its annual amortization on December 31, 2017. 23-[12+{16-(123)}] simplify The Big Five Personality refers to the structures and propensities of people that explain their patterns of thought, emotion, and behavior. Although there are literally thousands of traits that can be used to describe an individual's personality, most traits reflect one of five broad dimensions or factors of personality: conscientiousness, agreeableness, neuroticism, openness to experience, and extraversion. It is especially useful for managers to understand the personality traits of their employees since these traits often have important implications for workplace attitudes and behaviors, such as performance and commitment. The following activity takes you through the thought process of a manager trying to hire a new sales associate based on personality assessments of the candidates. Imagine that you are a midlevel manager at a paper company and you are in the process of hiring a new sales associate. So far, you have scheduled interviews with three potential candidates. You just concluded your first interview and want to spend some time reflecting on the notes you took. In particular, you want to make sure that you have a solid grasp of each candidate's personality traits since you know how important that can be on the job. Read through the notes and classify them according to the Big Five Taxonomy of personality. Conscientiousness Agreeableness Neuroticism Took Initiative Openness to Experience Cold Hardworking Extraversion Jay is copying an angle. His work so far is shown below. Explain the importance of his next step, which is placing the point of the compass on L, opening the compass to N, and drawing an arc.A. This ensures that when he draws another arc for angle Y, that it will be the right distance from point Z. CHALLENGE 7.1.1: Initialize a list. ACTIVITY Initialize the list short.names with strings 'Gus', Bob, and 'Ann'. Sample output for the given program Gus Bob Ann 1 short_names- Your solution goes here 2 # print names 4 print(short_names[0]) 5 print(short names [11) 6 print(short_names[2]) Lisa has a diagnosed learning disability and is not succeeding in a regular classroom. After discussion of this by a multidisciplinary team, Lisa is recommended for specialized instruction in a special education classroom so she can most effectively access the general curriculum. This provision is an example of Help uhh i need to know this answer