Answer: its b bro
Explanation:
ajafa'jfbA'FJ
If you exert a force of 5 N into a nutcracker, and it outputs a force of 20 N, what is the mechanical advantage of the nutcracker. Show formula PLSSS HELPPPP!!! i'll make you brainliest
Answer: 4
Explanation:
MA = output force / input force
MA = 20 / 5
MA = 4
Hope this helps. Please mark brainliest.
2. The given graph shows that the object is
(a) in non-uniform motion
(b) in uniform motion
(c) at rest
(d) in an oscillatory motion.
distance
time
Answer:
(c) at rest
Explanation:
Given
See attachment for the distance time graph
Required
What does the graph illustrate?
From the graph, we can see that the line of distance is a horizontal line.
This suggests that a time increases, the distance remains unchanged
When distance remains unchanged over time, then it means the object is at rest.
Hence, (c) is correct
The viscid silk produced by the European garden spider (Araneus diadematus) has a resilience of 0.35. If 10.0 J of work are done on the silk to stretch it out, how many Joules of work are released as thermal energy as it relaxes?
Answer: The energy released as thermal energy is 6.5 J
Explanation:
Energy stored by the spider when it relaxes is given by:
[tex]E_o=\text{Resilience}\times \text{Work}[/tex]
We are given:
Resilience = 0.35
Work done = 10.0 J
Putting values in above equation, we get:
[tex]E_o=0.35\times 10\\\\E_o=3.5J[/tex]
Energy released at thermal energy is the difference between the work done and the energy it takes to relaxes, which is given by the equation:
[tex]E_T=\text{Work done}-E_o[/tex]
Putting values in above equation, we get:
[tex]E_T=(10-3.5)=6.5J[/tex]
Hence, the energy released as thermal energy is 6.5 J
The energy released as thermal energy when 10 J of work is done to stretch silk will be 6.5 J
What is thermal energy?Thermal energy refers to the energy contained within a system that is responsible for its temperature. Heat is the flow of thermal energy.
Energy stored by the spider when it relaxes is given by:
[tex]\rm E_o=Resilience \ \times Work[/tex]
We are given:
Resilience = 0.35
Work done = 10.0 J
Putting values in above equation, we get:
[tex]\rm E_o=0.35\times 10[/tex]
[tex]E_o=3.5\ J[/tex]
Energy released at thermal energy is the difference between the work done and the energy it takes to relaxes, which is given by the equation:
[tex]E_T=\rm Work done -E_o[/tex]
Putting values in above equation, we get:
[tex]E_T=(10-3.5)=6.5\ J[/tex]
Hence, the energy released as thermal energy is 6.5 J
To know more about thermal energy follow
https://brainly.com/question/19666326