Answer:
Find the definitions and points below.
Step-by-step explanation:
1. Food Handling refers to any of the stages in the preparation, storage, transportation, packaging, and delivery of food.
2. Utensils are those vessels and tools that are used to carry, cut, stir, and store items and ingredients required in food preparation.
3. Three quality points for dairy and eggs which indicate quality and freshness are;
a. Smell: A decaying and pungent smell indicates a lack of quality.
b. Color: An abnormal color with physical signs of rottenness shows a lack of quality.
c. The sinking test is used to check for the freshness of eggs. If an egg sinks when put in a glass of water, it is a sign of freshness. If it floats, it is an indication of decay.
4. Three quality points for dry goods that indicate quality and freshness:
Moisture: The presence of moisture in dry food shows a lack of quality.
Weight: Heaviness might be an indication that one coconut is better than another.
Texture: A dry food that is sticky might indicate a lack of freshness. Smoothness, crunchiness, hardness, and toughness are other qualities to look out for.
5. Five ways I could increase the nutritional value of pastries include
1. Using fresh ingredients: Fresh ingredients free from contamination will guarantee that foods with good nutritional values are produced.
2. Preparing them in a hygienic environment: A hygienic environment will prevent food poisoning by bacteria and other contaminants.
3. Using proper measurements: When the right measurements are used in the preparation of pastries a balanced snack is produced.
4. Good preservation techniques: The right preservation techniques will prevent food spoilage.
5. Good packaging and wrapping: These will prevent exposure of the food to moisture, rodents, and other unwanted factors. Thus, the nutritional value is preserved.
2(P +1) + 3(P + 2 ) > 2
Answer:
P>-6/5
Step-by-step explanation:
2(P+1)+3(P+2)>2
Use the distributive property to multiply 2 by P+1
2P+2+3(P+2)>2
Use the distributive property to multiply 3 by P+2
2P+2+3P+6>2
Combine 2P and 3P to get 5P
5P+2+6>2
Add 2 and 6 to get 8
5P+8>2
Subtract 8 from both sides
5P>2−8
Subtract 8 from 2 to get −6.
5P>−6
Divide both sides by 5. Since 5 is positive
P>−6/5
The solution set of the inequality 1 + 2y
Answer:
is it four I am not quite sure
What is the domain of the function f(x) =x+1/
X^2-6x+8?
Answer:
The domain of the function is all real values of x, except [tex]x = 4[/tex] and [tex]x = 2[/tex]
Step-by-step explanation:
We are given the following function:
[tex]f(x) = \frac{x+1}{x^2-6x+8}[/tex]
It's a fraction, so the domain is all the real values except those in which the denominator is 0.
Denominator:
Quadratic equation with [tex]a = 1, b = -6, c = 8[/tex]
Using bhaskara, the denominator is 0 for these following values of x:
[tex]\Delta = (-6)^2 - 4(1)(8) = 36-32 = 4[/tex]
[tex]x_{1} = \frac{-(-6) + \sqrt{4}}{2} = 4[/tex]
[tex]x_{2} = \frac{-(-6) - \sqrt{4}}{2} = 2[/tex]
The domain of the function is all real values of x, except [tex]x = 4[/tex] and [tex]x = 2[/tex]
Lightbulbs. A company produces lightbulbs. We know that the lifetimes (in hours) of lightbulbs follow a bell-shaped (symmetric and unimodal) distribution with a mean of 7,161 hours and a standard deviation of 564 hours. Use the Empirical Rule (68-95-99.7 rule) to answer the following question: The shortest lived 2.5% of the lightbulbs burn out before how many hours
Answer:
Please find the complete question and its solution in the attached file.
Step-by-step explanation:
Shortest had survived after 6741 hours [tex]2.5\%[/tex] of the lights burnt.
[tex]\to 0.15\% + 2.35\% = 2.50\%[/tex]
Identify the domain of the function shown in the graph.
In ABC, if CB AC≅ , m∠A = 3x + 18, m∠B = 7x – 58, and m∠C = 2x – 8, find x and the measure of each angle.
9514 1404 393
Answer:
x = 19
A = 30°
B = C = 75°
Step-by-step explanation:
In an isosceles triangle, the angles opposite the congruent sides have the same measures.
A = B
3x +18 = 7x -58
76 = 4x . . . . . . . . add 58-4x
19 = x . . . . . . . . . divide by 4
Then the equal angles measure ...
A = B = 3(19) +18 = 75
C = 2(19) -8 = 30
Angles A, B, C measure 75°, 75°, 30°, respectively.
_____
Alternate solution
The sum of angles in a triangle is 180°, so you could write ...
(3x +18) +(7x -58) +(2x -8) = 180
12x = 228 . . . . . add 48
x = 19 . . . . . divide by 12
A telephone exchange operator assumes that 7% of the phone calls are wrong numbers. If the operator is accurate, what is the probability that the proportion of wrong numbers in a sample of 459 phone calls would differ from the population proportion by more than 3%
Answer:
0.0118 = 1.18% probability that the proportion of wrong numbers in a sample of 459 phone calls would differ from the population proportion by more than 3%
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
A telephone exchange operator assumes that 7% of the phone calls are wrong numbers.
This means that [tex]p = 0.07[/tex]
Sample of 459 phone calls:
This means that [tex]n = 459[/tex]
Mean and standard deviation:
[tex]\mu = p = 0.07[/tex]
[tex]s = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\sqrt{\frac{0.07*0.93}{459}}} = 0.0119[/tex]
What is the probability that the proportion of wrong numbers in a sample of 459 phone calls would differ from the population proportion by more than 3%?
Proportion below 0.07 - 0.03 = 0.04 or above 0.07 + 0.03 = 0.1. Since the normal distribution is symmetric, these probabilities are the same, which means that we find one of them and multiply by 2.
Probability the proportion is below 0.04.
p-value of Z when X = 0.04. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.04 - 0.07}{0.0119}[/tex]
[tex]Z = -2.52[/tex]
[tex]Z = -2.52[/tex] has a p-value of 0.0059
2*0.0059 = 0.0118
0.0118 = 1.18% probability that the proportion of wrong numbers in a sample of 459 phone calls would differ from the population proportion by more than 3%
Test the claim that the proportion of men who own cats is significantly different than the proportion of women who own cats at the 0.2 significance level.
Answer:
Test the claim that the proportion of men who own cats is significantly different than the proportion of women who own cats at the 0.2 significance level.
The null and alternative hypothesis would be: H 0 : μ M = μ F H 1 : μ M < μ F H 0 : μ M = μ F H 1 : μ M > μ F H 0 : p M = p F H 1 : p M ≠ p F H 0 : p M = p F H 1 : p M < p F H 0 : p M = p F H 1 : p M > p F H 0 : μ M = μ F H 1 : μ M ≠ μ F
The test is:
right-tailed
left-tailed
two-tailed
Based on a sample of 40 men, 25%Based on a sample of 40 men, 25% owned cats
Based on a sample of 40 women, 40% owned cats
The test statistic is:
The p-value is:
Based on this we:
Reject the null hypothesis
Fail to reject the null hypothesis
What is the length of an arc with a central angle of 2/3pi radians and a radius of 24 centimeters?
Use 3.14 for pi.
Enter your answer, as a decimal, in the box.
9514 1404 393
Answer:
50.24 cm
Step-by-step explanation:
Fill in the given numbers and do the arithmetic.
s = rθ
s = (24 cm)(2/3π) = (24 cm)(2/3)(3.14) = 50.24 cm
A margin of error tells us how often the confidence interval estimates the parameter incorrectly. how often a confidence interval is correct. how accurate the statistic is when using it to estimate the parameter.
Answer:
how accurate the statistic is when using it to estimate the parameter.
Step-by-step explanation:
The margin of error may be referred to as a range or interval around a calculated statistic. The margin of error usually employed when calculating the confidence interval, will give a certain range of value within the sample statistic. This is sample statistic and margin is used to estimate the parameter albeit a certain percentage or proportion within the sample statistic. This provides the accuracy level at which the statistic will estimate the parameter.
Margin of Error :
Margin of Error = Zcritical * σ/√n ; OR
Margin of Error = Tcritical * s/√n
Where ;
σ = population standard deviation
s = sample standard deviation
A trucking company buys 25,275 gallons of gasoline. The federal excise tax is $0.195 per gallon. Find the amount of excise tax due. (Round your answer to the nearest cent if necessary)
Answer: 5,055
Step-by-step explanation
multiply the amount of gallons purchased by tax and round up
$4928.625 is the answer.
An Excise tax is an indirect tax, usually paid by the manufacturer or retailer of the product. then passes along in the price of the product to the consumer.
Amount of gasoline = 25,375 gallons.
The Excise tax = $0-195/gallon.
The amount of Excise tax dece = 25.875 X $0.195
= $4928.625
Se the amount of Excise tax due for 25975 gallons of gasoline is $ 4928.625
what is Excise tax?Excise tax is generally a tax levied on the sale of a particular good or service or for a particular purpose. State excise taxes are usually levied on the sale of gasoline, air tickets, heavy trucks, road tractors, tanning beds, tires, cigarettes, and other goods and services.
Excise can be used to charge prices for externalities or to discourage the consumption of goods by others. They can also be used as royalties to generate income from people who use certain government services. Income should be used to maintain those government services.
Learn more about excise tax here:https://brainly.com/question/2871942
#SPJ2
Help plz I just need the awnser to this question
Answer:
A seems to be correct
Step-by-step explanation:
I need help with this question
9514 1404 393
Answer:
x = 22, y = 123
Step-by-step explanation:
The sum of angles in a triangle is 180°.
(2x +13)° +57° +3x° = 180°
5x +70 = 180 . . . . . . . . . . . . . collect terms, divde by °
5x = 110 . . . . . . . . . . . subtract 70
x = 22 . . . . . . . . divide by 5
__
Angles in a linear pair are supplementary.
y° + 57° = 180°
y = 123 . . . . . . . . divide by °, subtract 57
Find the values of X and Y that makes these triangles congruent by the HL theorem
Answer:
C. x = 3, y = 2
Step-by-step explanation:
If both triangles are congruent by the HL Theorem, then their hypotenuse and a corresponding leg would be equal to each other.
Thus:
x + 3 = 3y (eqn. 1) => equal hypotenuse
Also,
x = y + 1 (eqn. 2) => equal legs
✔️Substitute x = y + 1 into eqn. 1 to find y.
x + 3 = 3y (eqn. 1)
(y + 1) + 3 = 3y
y + 1 + 3 = 3y
y + 4 = 3y
y + 4 - y = 3y - y
4 = 2y
Divide both sides by 2
4/2 = 2y/2
2 = y
y = 2
✔️ Substitute y = 2 into eqn. 2 to find x.
x = y + 1 (eqn. 2)
x = 2 + 1
x = 3
Find a power series representation for the function. (Assume a>0. Give your power series representation centered at x=0 .)
f(x)=x2a7−x7
Answer:
Step-by-step explanation:
Given that:
[tex]f_x = \dfrac{x^2}{a^7-x^7}[/tex]
[tex]= \dfrac{x^2}{a^7(1-\dfrac{x^7}{a^7})}[/tex]
[tex]= \dfrac{x^2}{a^7}\Big(1-\dfrac{x^7}{a^7} \Big)^{-1}[/tex]
since [tex]\Big((1-x)^{-1}= 1+x+x^2+x^3+...=\sum \limits ^{\infty}_{n=0}x^n\Big)[/tex]
Then, it implies that:
[tex]\implies \dfrac{x^2}{a^7} \sum \limits ^{\infty}_{n=0} \Big(\Big(\dfrac{x}{a} \Big)^{^7} \Big)^n[/tex]
[tex]= \dfrac{x^2}{a^7} \sum \limits ^{\infty}_{n=0} \Big(\dfrac{x}{a} \Big)^{^{7n}}[/tex]
[tex]= \dfrac{x^2}{a^7} \sum \limits ^{\infty}_{n=0} \Big(\dfrac{x^{7n}}{a^{7n}} \Big)}[/tex]
[tex]\mathbf{= \sum \limits ^{\infty}_{n=0} \dfrac{x^{7n+2}}{a^{7n+7}} }}[/tex]
the cost of 7 shirts is $63. find the cost of 5 shirts
1. $35
2. $45
3. $52
4. $70
If p = 7, q = 2, r = 4; find the value of q (5p - r).
Answer: 62
Step-by-step explanation:
Given
p = 7, q = 2, r = 4
Solve
q ( 5p - r )
Substitute
(2) (5(7) - (4))
Simplify
(2) (35 - 4)
(2) (31)
62
Hope this helps!! :)
Please let me know if you have any questions
A researcher believes that 9% of males smoke cigarettes. If the researcher is correct, what is the probability that the proportion of smokers in a sample of 664 males would differ from the population proportion by greater than 3%
Answer:
0.0070 = 0.70% probability that the proportion of smokers in a sample of 664 males would differ from the population proportion by greater than 3%
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
A researcher believes that 9% of males smoke cigarettes.
This means that [tex]p = 0.09[/tex]
Sample of 664
This means that [tex]n = 664[/tex]
Mean and standard deviation:
[tex]\mu = p = 0.09[/tex]
[tex]s = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.09*0.91}{664}} = 0.011[/tex]
What is the probability that the proportion of smokers in a sample of 664 males would differ from the population proportion by greater than 3%?
Proportion below 9 - 3 = 6% or above 9 + 3 = 12%. Since the normal distribution is symmetric, these probabilities are equal, so we find one of them and multiply by 2.
Probability the proportion is below 6%
P-value of Z when X = 0.06. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.06 - 0.09}{0.011}[/tex]
[tex]Z = -2.7[/tex]
[tex]Z = -2.7[/tex] has a p-value of 0.0035
2*0.0035 = 0.0070
0.0070 = 0.70% probability that the proportion of smokers in a sample of 664 males would differ from the population proportion by greater than 3%
write an equation in slope intercept form for the line with slope 1/4 and y-intercept -6.
Answer:
y=¼x-6
Step-by-step explanation:
y=mx+c
y=¼x+-6
y=¼x-6
I litterally don't understand how to do this-
Answer:
Consider points (-1, 0) and (0, 1) :
[tex]{ \tt{slope = \frac{y _{2} - y _{1} }{x _{2} - x _{1} } }} \\ { \tt{slope = \frac{1 - 0}{0 - ( - 1)} }} \\ { \boxed{ \bf{slope = 1}}}[/tex]
Answer:
slope 1
Step-by-step explanation:
above ANS is correct mark it as branliest ANS
the least value of x²-3x+5 is..
11/4
Step-by-step explanation:
to find the minimum value we require to find the vertex and determine if max/min
for a quadratic in standard form ; ax² + bx + c
the coordinate of the vertex is..
xvertex = -b/2a
x² - 3x + 5 is in standard form with a = 1,b = - 3 and c = 5
xvertex = - , -3/2 = 3/2
substitute this value into the equation for y-coordinate
yvertex = ( 3/2 ) ² -3 (3/2) + 5 = 11/4
vertex = ( 3/2, 11/4 )
to determine whether max/min
• if a > 0 then minimum u
• ifa < 0 then maximum n
here a = 1 > 0 hence minimum
minimum value of x² - 3x + 5 is 11/4
hope you understand this :)
Graph 9x + 15y = 15.
Complete the angle addition postulate for the following angle
Answer:
measurement m<GEM+m<MEO=m<GEO
I want my answer please help
Answer:
This is pretty simple
Step-by-step explanation:
So the only thing you need to know about negatives and positives is that if your multiplying or dividing a number with 1 negative in the expreession/equation The answer will always result in a negative. If its 2 negatives its always positive. Thats all you need to know and then just solve it from there.
Answer:
See explanation and picture below.
Step-by-step explanation:
In both multiplication and division of 2 numbers, different signs give you negative and equal signs give you positive.
In other words, positive & positive or negative and negative give you a positive answer.
Negative and positive or positive and negative give you negative answer.
a. 23 = -11 - 4x
b. 23 = -11 + (-4x)
C. 23 + 11 = -11 + (-4x) + 11
d. 23 + 11 = -11 + 11 +(-4x)
e. 34 = - 4x
f. 34/-4 = -4x/ -4
g. -8.5 = x
Which properties of equality justify steps c and f?
A.) addition property of equality; subtraction property of equality B.) addition property of equality; division property of equality C.) subtraction property of equality; multiplication property of equality D.) multiplication property of equality; division property of equality
Answer:
B.) addition property of equality; division property of equality
Side CA of the right triangle CAT is 3cm long. The hypotenuse is 5cm long. How many
square centimeters is the area of CAT?
Answer:
8
Step-by-step explanation:
By taking the number "3" and plus together with the number 5
Find the measure of of RA.
Answer:
RA = 24
Step-by-step explanation:
Since the triangle is isosceles ( 2 equal sides ) , then LU is a perpendicular bisector , so
AU = RU , that is
4r = 18 - 2r ( add 2r to both sides )
6r = 18 ( divide both sides by 6 )
r = 3
Then
RA = 18 - 2r + 4r = 18 + 2r = 18 + 2(3) = 18 + 6 = 24
According to the graph above, College R showed
the greatest change in enrollment between which
two decades?
Given:
The graph that shows the ennoblement for college R between 1950 and 2000.
To find:
The two decades that has the greatest change in enrollment.
Solution:
From the given graph, it is clear that the change in the enrollment is:
From 1950 to 1960 is [tex]4-3.5=0.5[/tex] thousand.
From 1960 to 1970 is [tex]5-4.5=1.5[/tex] thousand.
From 1970 to 1980 is [tex]5.5-5=0.5[/tex] thousand.
From 1980 to 1990 is [tex]6.5-5.5=1[/tex] thousand.
From 1990 to 2000 is [tex]7-6.5=0.5[/tex] thousand.
The two decades 1960-1970 and 1980-1990 have the greatest change in enrollment.
Answer:1980 to 1990
Step-by-step explanation:
What are the domain and range of the function represented by the set of
ordered pairs?
{(-16, 0), (-8, -11), (0, 12), (12,4)}
Answer:
domain:-16,-8,0,12
range:0,-11,12,14
Adult men have heights with a mean of 69.0 inches and a standard deviation of 2.8 inches. Find the z-score of a man 71.2 inches tall. (to 2 decimal places)
Answer:
0.7857
Step-by-step explanation:
Given :
Mean = 69 inches
Standard deviation, = 2.8 inches
The Zscore of a man who is 71.2 inches
The ZSCORE is obtained using the relation :
Zscore = (Score, x - mean) / standard deviation
Zscore = (71.2 - 69) / 2.8
Zscore = 2.2 / 2.8
Zscore = 0.7857