According to the Census Bureau, 3.34 people reside in the typical American household. A sample of 26 households in Arizona retirement communities showed the mean number of residents per household was 2.70 residents. The standard deviation of this sample was 1.17 residents. At the .10 significance level, is it reasonable to conclude the mean number of residents in the retirement community household is less than 3.34 persons?
(a) State the null hypothesis and the alternate hypothesis. (Round your answer to 2 decimal places.)
H0: ? ?
H1: ? <
(b)
State the decision rule for .10 significance level. (Negative amount should be indicated by a minus sign. Round your answer to 3 decimal places.)
Reject H0 if t <
(c)
Compute the value of the test statistic. (Negative amount should be indicated by a minus sign. Round your answer to 3 decimal places.)
Value of the test statistic
(d)
Is it reasonable to conclude the mean number of residents in the retirement community household is less than 3.34 persons?
H0. Mean number of residents less than 3.34 persons.
Answer:
Step-by-step explanation:
Given that:
Mean = 3.34
sample size = 26
sample mean = 2.7
standard deviation = 1.17
level of significance = 0.10
The null hypothesis and the alternative hypothesis can be computed as follows:
[tex]\mathtt{H_o: \mu \geq 3.34} \\ \\ \mathtt{H_1: \mu < 3.34}[/tex]
degree of freedom = n - 1
degree of freedom = 26 -1
degree of freedom = 25
level of significance = 0.10
Since the alternative hypothesis contains <, then the test is left tailed
[tex]\mathtt{t_{\alpha, df} = t_{0.10, 25}}[/tex]
[tex]\mathtt{t_{0.10, 25}}[/tex] = - 1.316
The rejection region therefore consist of all values smaller than - 1.316, therefore ; reject [tex]H_o[/tex] if t < -1.316
The test statistics can be computed as follows:
[tex]t = \dfrac{X - \mu}{\dfrac{\sigma}{\sqrt{n}}}[/tex]
[tex]t = \dfrac{2.7 - 3.34}{\dfrac{1.17}{\sqrt{26}}}[/tex]
[tex]t = \dfrac{-0.64}{\dfrac{1.17}{5.099}}[/tex]
t = - 2.789
Decision Rule: To reject the null hypothesis if the t test lies in the rejection region or less than the rejection region.
Conclusion: We reject the null hypothesis since t = (- 2.789) < -1.316. Then we conclude that the mean number of residents in the retirement community household is less than 3.34 persons.
Can somebody explain how trigonometric form polar equations are divided/multiplied?
Answer:
Attachment 1 : Option C
Attachment 2 : Option A
Step-by-step explanation:
( 1 ) Expressing the product of z1 and z2 would be as follows,
[tex]14\left[\cos \left(\frac{\pi \:}{5}\right)+i\sin \left(\frac{\pi \:\:}{5}\right)\right]\cdot \:2\sqrt{2}\left[\cos \left(\frac{3\pi \:}{2}\right)+i\sin \left(\frac{3\pi \:\:}{2}\right)\right][/tex]
Now to solve such problems, you will need to know what cos(π / 5) is, sin(π / 5) etc. If you don't know their exact value, I would recommend you use a calculator,
cos(π / 5) = [tex]\frac{\sqrt{5}+1}{4}[/tex],
sin(π / 5) = [tex]\frac{\sqrt{2}\sqrt{5-\sqrt{5}}}{4}[/tex]
cos(3π / 2) = 0,
sin(3π / 2) = - 1
Let's substitute those values in our expression,
[tex]14\left[\frac{\sqrt{5}+1}{4}+i\frac{\sqrt{2}\sqrt{5-\sqrt{5}}}{4}\right]\cdot \:2\sqrt{2}\left[0-i\right][/tex]
And now simplify the expression,
[tex]14\sqrt{5-\sqrt{5}}+i\left(-7\sqrt{10}-7\sqrt{2}\right)[/tex]
The exact value of [tex]14\sqrt{5-\sqrt{5}}[/tex] = [tex]23.27510\dots[/tex] and [tex](-7\sqrt{10}-7\sqrt{2}\right))[/tex] = [tex]-32.03543\dots[/tex] Therefore we have the expression [tex]23.27510 - 32.03543i[/tex], which is close to option c. As you can see they approximated the solution.
( 2 ) Here we will apply the following trivial identities,
cos(π / 3) = [tex]\frac{1}{2}[/tex],
sin(π / 3) = [tex]\frac{\sqrt{3}}{2}[/tex],
cos(- π / 6) = [tex]\frac{\sqrt{3}}{2}[/tex],
sin(- π / 6) = [tex]-\frac{1}{2}[/tex]
Substitute into the following expression, representing the quotient of the given values of z1 and z2,
[tex]15\left[cos\left(\frac{\pi \:}{3}\right)+isin\left(\frac{\pi \:\:}{3}\right)\right] \div \:3\sqrt{2}\left[cos\left(\frac{-\pi \:}{6}\right)+isin\left(\frac{-\pi \:\:}{6}\right)\right][/tex] ⇒
[tex]15\left[\frac{1}{2}+\frac{\sqrt{3}}{2}\right]\div \:3\sqrt{2}\left[\frac{\sqrt{3}}{2}+-\frac{1}{2}\right][/tex]
The simplified expression will be the following,
[tex]i\frac{5\sqrt{2}}{2}[/tex] or in other words [tex]\frac{5\sqrt{2}}{2}i[/tex] or [tex]\frac{5i\sqrt{2}}{2}[/tex]
The solution will be option a, as you can see.
Question 36 of 40
The distance of a line bound by two points is defined as
L?
O A. a line segment
B. a ray
O
c. a plane
O D. a vertex
SUBMI
Answer:
A. a line segment
Step-by-step explanation:
a ray is directing in one dxn, and has no end pointa plane is a closed, so more than 2 points a vertex is a single point itselfthe length of a mathematical text book the is approximately 18.34cm and its width is 11.75 calculate ?
the approximate perimeter of the front cover?
the approximate area of the front cover of the book?
Answer:
Perimeter=60.18cm
Area=215.495cm^2
Step-by-step explanation:
Given:
Length of book=18.34cm
Breadth=11.75cm
Solution:
Perimeter=2(l +b)
P=2(18.34+11.75)
P=2 x 30.09
P=60.18cm
Area=l x b
A=18.34 x 11.75
A=215.495 cm^2
Thank you!
What is the error in this problem?
Answer:
wrong position of tan 64
) A random sample of size 36 is selected from a normally distributed population with a mean of 16 and a standard deviation of 3. What is the probability that the sample mean is somewhere between 15.8 and 16.2
Answer:
The probability is 0.31084
Step-by-step explanation:
We can calculate this probability using the z-score route.
Mathematically;
z = (x-mean)/SD/√n
Where the mean = 16, SD = 3 and n = 36
For 15.8, we have;
z = (15.8-16)/3/√36 = -0.2/3/6 = -0.2/0.5 = -0.4
For 16.2, we have
z = (16.2-16)/3/√36 = 0.2/3/6 = 0.2/0.5 = 0.4
So the probability we want to calculate is;
P(-0.4<z<0.4)
We can get this using the standard normal distribution table;
So we have;
P(-0.4 <z<0.4) = P(z<-0.4) - P(z<0.4)
= 0.31084
Find the area of the shape shown below.
2
2
4
Hurry and answer plz!!!!
1
Answer:
7 square units
Step-by-step explanation:
We can break down this complex shape into smaller shapes.
I've broken it down into a rectangle, a square, and a triangle (See attached picture)
Let's first find the area of the triangle. To do this we use the formula [tex]\frac{bh}{2}[/tex]. The base is 1 (because the top is 2, and 1 is already used on the triangle - 2-1 = 1.) and the height is 2 (because 4 is already used on the left, and 2 was used on the right so 4-2=2).
[tex]\frac{2\cdot1}{2} = \frac{2}{2} = 1[/tex].
Now let's find the area of the top square - we can just square 2 which is 4.
To find the area of the bottom rectangle, we can multiply it's two side lengths of 2 and 1 = 2.
Adding these all together gets us 4+2+1 = 7.
Hope this helped!
find the circle through (-4,sqrt(5) with center (0,0)
Answer:
Circle Equation : x² + y² = 21
Step-by-step explanation:
So we know that this circle goes through the point ( - 4, √5 ), with a center being the origin. Therefore, this makes the circle equation a bit simpler.
The first step in determining the circle equation is the length of the radius. Applying the distance formula, the radius would be the length between the given points. Another approach would be creating a right triangle such that the radius is the hypotenuse. Knowing the length of the legs as √5 and 4, we can calculate the radius,
( √5 )² + ( 4 )² = r²,
5 + 16 = r²,
r = √21
In general, a circle equation is represented by the formula ( x - a )² + ( y - b )² = r², with radius r centered at point ( a, b ). Therefore our circle equation will be represented by the following -
( x - 0 )² + ( y - 0 )² = (√21 )²
Circle Equation : x² + y² = 21
John painted his most famous work, in his country, in 1930 on composition board with perimeter 101.14 in. If the rectangular painting is 5.43 in. taller than it is wide, find the dimensions of the painting.
Answer:
22.57 x 28
Step-by-step explanation:
10.86 + 4x = 101.14
-10.86 -10.86
4x = 90.28
/4 /4
x = 22.57
5.43 + 22.57 = 28
22.57
The perpendicular bisectors of ΔKLM intersect at point A. If AK = 25 and AM = 3n - 2, then what is the value of n?
Answer:
n = 9 is the answer.
Step-by-step explanation:
Given a Triangle [tex]\triangle KLM[/tex] with its perpendicular bisectors intersecting at a point A.
AK = 25 units and
AM = 3n -2
To find:
Value of n = ?
Solution:
First of all, let us learn about perpendicular bisectors and their intersection points.
Perpendicular bisector of a line PQ is the line which divides the line PQ into two equal halves and is makes an angle of [tex]\bold{90^\circ}[/tex] with the line PQ.
And in a triangle, the perpendicular bisectors of 3 sides meet at one point and that point is called Circumcenter of the triangle.
We can draw a circle from circumcenter so that the circle passes from the three vertices of the triangle.
i.e.
Circumcenter of a triangle is equidistant from all the three vertices of the triangle.
In the given statement, we are given that A is the circumcenter of the [tex]\triangle KLM[/tex].
Please refer to the attached image for the given triangle and sides.
The distance of A from all the three vertices will be same.
i.e. AK = AM
[tex]\Rightarrow 25 = 3n-2\\\Rightarrow 3n =25+2\\\Rightarrow 3n =27\\\Rightarrow \bold{n = 9}[/tex]
Therefore, n = 9 is the answer.
The domain of the following relation has how many elements?
[(1/2, 3.14/6), (1/2, 3.14/4), (1/2, 3.14/3), (1/2,3.14/2)]
a. 0
b. 1
c. 4
Answer:
b. 1
Step-by-step explanation:
All first coordinates are 1/2.
Answer: b. 1
if b<0 and |b| = 4b+15 what is the value of b
Answer:
|b|= 4b+15
-b=4b+15
-b-4b= 15
-5b= 15
b= 15/-5
b= -3
the ans -3
If [tex]a<0[/tex] the [tex]|a|=-a[/tex]
So
[tex]|b|=4b+15\\-b=4b+15\\5b=-15\\b=-3[/tex]
Solve the equation for x by graphing.-4x-1 5x=4
Answer: Undefined
Step-by-step explanation:
slope is undefined
no y intercept
This line is vertical
3 ratios that are equivalent to 6:12
Answer:
1:3
2:4
3:6
Step-by-step explanation:
we can divide both sides by 6 and get 1:2
we can divide both sides by 3 and get 2:4
we can divide both sides by 2 and get 3:6
Answer:
12:24, 3:6, 2:4
Step-by-step explanation:
What we are looking for here is a ratio that, when you divide/multiply the same constant on both parts of the ratio, you get 6:12.
6:12 is the same thing as 1:2, so we can find ratios equivalent to 1:2 (the first value will be half the second).
Hope this helped!
Evaluate
1+5.3
2
please answer quickly
Answer:
1+5.3=6.3
Step-by-step explanation:
not sure what your asking for with the 2
explain what your looking for with the 2 and maybe we can help you further
(I have to do it the way I did it because the 2 in the question is confusing)
Answer:
For expression 1 + 5.32: 6.32
For expression 1 + 5.3 × 2: 11.6
Step-by-step explanation:
If the expression is 1 + 5.32:
Add 1 to 5.32: 1 + 5.32 = 6.32If the expression is 1 + 5.3 × 2:
5.3 × 2 = 10.6Plug in 10.6: 1 + 10.61 + 10.6 = 11.6
write the equation of a horizontal ellipse with a major axis of 30, a minor axis of 14, and a center at (-9,-7).
Answer: [tex]\dfrac{(x+9)^2}{225}-\dfrac{(y+7)^2}{49}=1[/tex]
Step-by-step explanation:
The equation for a horizontal ellipse is: [tex]\dfrac{(x-h)^2}{a^2}-\dfrac{(y-k)^2}{b^2}=1[/tex] where
(h, k) is the centera is x-radiusb is the y-radiusGiven: major axis (diameter on x) is 30 --> x-radius (a) = 15 --> a² = 225
minor axis (diameter on y) is 14 --> y-radius (b) = 7 --> b² = 49
center (h, k) is (-9, -7)
Input those values into the equation for a horizontal ellipse and simplify:
[tex]\dfrac{(x-(-9))^2}{15^2}-\dfrac{(y-(-7))^2}{7^2}=1\\\\\\\large\boxed{\dfrac{(x+9)^2}{225}-\dfrac{(y+7)^2}{49}=1}[/tex]
Help me please thank you
Step-by-step explanation:
To solve for x, we set up our equation like this:
7x - 7 = 4x + 14
Next, we subtract 4x from the right side to cancel it out and then subtract 4x from the left side.
7x (-4x) - 7 = 4x (-4x) + 14
3x - 7 = 14
Then, we add 7 on both sides (to cancel the -7 out and place it on the right)
3x - 7 (+7) = 14 + 7
3x = 21
Finally, we divide both sides by 3 to isolate our variable, x.
3x ÷ 3 = x
21 ÷ 3 = 7
Our final answer: x = 7
Write 36 143/1000 as a decimal number.
Answer:
36.143
Step-by-step explanation:
143/1000=0.143
36+0.143=36.143
A hypothesis test is the following:
a. a descriptive technique that allows researchers to describe a population
b. an inferential technique that uses information about a population to make predictions about a sample
c. a descriptive technique that allows researchers to describe a sample
d. an inferential technique that uses the data from a sample to draw inferences about a population
Answer:
c
Step-by-step explanation:
c. a descriptive technique
On a coordinate plane, a line goes through (negative 3, 3) and (negative 2, 1). A point is at (4, 1). What is the equation, in point-slope form, of the line that is parallel to the given line and passes through the point (4, 1)? y − 1 = −2(x − 4) y – 1 = Negative one-half(x – 4) y – 1 = One-half(x – 4) y − 1 = 2(x − 4)
Answer:
y - 1 = -2(x - 4).
Step-by-step explanation:
First, we need to find the slope. Two sets of coordinates are (-3, 3), and (-2, 1).
(3 - 1) / (-3 - -2) = 2 / (-3 + 2) = 2 / (-1) = -2.
The line will be parallel to the given line, so the slope is the same.
Now that we have a point and the slope, we can construct an equation in point-slope form.
y1 = 1, x1 = 4, and m = -2.
y - 1 = -2(x - 4).
Hope this helps!
The slope of the line passing parallel to the given line and passes through the point (4, 1) is y = -2x + 9
The equation of a straight line is given by:
y = mx + b
where y, x are variables, m is the slope of the line and b is the y intercept.
The slope of the line passing through the points (-3,3) and (-2,1) is:
[tex]m=\frac{y_2-y_1}{x_2-x_1} \\\\m=\frac{1-3}{-2-(-3)} \\\\m=-2[/tex]
Since both lines are parallel, hence they have the same slope (-2). The line passes through (4,1). The equation is:
[tex]y-y_1=m(x-x_1)\\\\y-1=-2(x-4)\\\\y=-2x+9[/tex]
Find out more at: https://brainly.com/question/18880408
Use the Pythagorean theorem to find the length of the hypotenuse in the triangle shown below.4,3
Answer:
5
Step-by-step explanation:
a^2 + b^2 = c^2
4^2 + 3^2 = c^2
16 + 9 = c^2
25 = c^2
c = 5
Answer:
5Step-by-step explanation:
[tex]Hypotenuse = ?\\Opposite = 4\\Adjacent = 3\\\\Pythagoras \: Theorem ;\\\\Hypotenuse^2 =Opposite^2+Adjacent ^2\\\\Hypotenuse^2 = 4^2 +3^2\\\\Hypotenuse^2 = 16+9\\\\Hypotenuse^2 = 25\\\\\sqrt{Hypotenuse^2}=\sqrt{25} \\Hypotenuse = 5[/tex]
In how many years will
The Compounds interest
onRs. 14,000 be Rs. 4, 634 at 10%
p.a?
Answer:
3 years
Step-by-step explanation:
A = P(1 + r)^t
A = I + P
A = 14,000 + 4,634 = 18,634
18,634 = 14,000(1 + 0.1)^t
18,634/14,000 = 1.1^t
log (18,634/14,000) = log 1.1^t
log (18,634/14,000) = t * log 1.1
t = [log (18,634/14000)]/(log 1.1)
t = 3
What is the quotient of 35,423 ÷ 15?
Answer: 2361.53
Step-by-step explanation:
Use long division and round.
(The 3 is repeated)
find the h.c.f of 186,310,434
186|2
93|3
31|31
1
310|2
155|5
31|31
1
434|2
217|7
31|31
1
[tex]186=2\cdot3\cdot31\\310=2\cdot5\cdot31\\434=2\cdot7\cdot31\\\\\text{hcf}(186,310,434)=2\cdot31=62[/tex]
Find the remainder in the Taylor series centered at the point a for the following function. Then show that limn→[infinity]Rn(x)=0 for all x in the interval of convergence.
f(x)=cos x, a= π/2
Answer:
[tex]|R_n (x)| \leq \dfrac{|x - \dfrac{\pi}{2}|^{n+1}}{(n+1)!}[/tex]
Step-by-step explanation:
From the given question; the objective is to show that :
[tex]\lim_{n \to \infty} R_n (x) = 0[/tex] for all x in the interval of convergence f(x)=cos x, a= π/2
Assuming for the convergence f the taylor's series , f happens to be the derivative on an open interval I with a . Then the Taylor series for the convergence of f , for all x in I , if and only if [tex]\lim_{n \to \infty} R_n (x) = 0[/tex]
where;
[tex]\mathtt{R_n (x) = \dfrac{f^{(n+1)} (c)}{n+1!}(x-a)^{n+1}}[/tex]
is a remainder at x and c happens to be between x and a.
Given that:
a= π/2
Then; the above equation can be written as:
[tex]\mathtt{R_n (x) = \dfrac{f^{(n+1)} (c)}{n+1!}(x-\dfrac{\pi}{2})^{n+1}}[/tex]
so c now happens to be the points between π/2 and x
If we recall; we know that:
[tex]f^{(n+1)}(c) = \pm \ sin \ c \ or \ cos \ c[/tex] (as a result of the value of n)
However, it is true that for all cases that [tex]|f ^{(n+1)} \ (c) | \leq 1[/tex]
Hence, the remainder terms is :
[tex]|R_n (x)| = | \dfrac{f^{(n+1)}(c)}{(n+1!)}(x-\dfrac{\pi}{2})^{n+1}| \leq \dfrac{|x - \dfrac{\pi}{2}|^{n+1}}{(n+1)!}[/tex]
If [tex]\lim_{n \to \infty} R_n (x) = 0[/tex] for all x and x is fixed, Then
[tex]|R_n (x)| \leq \dfrac{|x - \dfrac{\pi}{2}|^{n+1}}{(n+1)!}[/tex]
rational number between 2 and 3 ?
Answer:
2:3
Step-by-step explanation:
It’s easy
Answer:
2.5
Step-by-step explanation:
i think
mortician math word problem
Answer:
wat do u want me to do
Step-by-step explanation:
Gulnaz plans to use less than 26 eggs while baking. She uses 5 eggs for each cake that she bakes, and 3 eggs for each quiche that she bakes.
Write an inequality that represents the number of cakes (C)left parenthesis, C, right parenthesis and quiches (Q)left parenthesis, Q, right parenthesis Gulnaz can bake according to her plan.
Answer:
5(x) +3(y)<26
Step-by-step explanation:
Let x represent the number of cakes she will bake and let you know represent the nymber of quiche she will bake.
She will use less than 26 eggs while baking and 5 eggs for each cake and 3 eggs for each quiche.
The inequality representing the above statement iz given below.
5(x) +3(y)<26
3. A jogger runs 4 miles on Monday, 5 miles on
Tuesday, 3 miles on Wednesday, and 5 miles on
Thursday. He doesn't run on Friday. How many
miles did he run in all?
Answer:
17 miles
Step-by-step explanation:
4+5+5+3=17
Tanθ - cosecθ secθ (1-2 cos²θ) = cotθ
Answer:
I thinksomething is wrong.
I'm getting another proving it's-tan thita.
I hope this is the one you are searching for..