Explanation:
Cumulative frequency analysis is the analysis of the frequency of occurrence of values of a phenomenon less than a reference value. The phenomenon may be time- or space-dependent. Cumulative frequency is also called frequency of non-exceedance.
Cumulative frequency is defined as a running total of frequencies. The frequency of an element in a set refers to how many of that element there are in the set. Cumulative frequency can also defined as the sum of all previous frequencies up to the current point.
A football team tries to move the ball forward as many yards as possible on each play, but sometimes they end up behind where they started. The distances, in yards, that a team moves on its first five plays are 2, 21, 4, 3, and 25. A positive number indicates moving the ball forward, and a negative number indicates moving the ball backward. 1). Which number in the list is the greatest? 2). What is a better question to ask to find out which play went the farthest from where the team started? 3). The coach considers any play that moves the team more than 4 yards from where they started a "big play." Which play(s) are big plays?
Answer:
Given:
The distances, in yards, that a team moves on its first five plays are 2, 21, 4, 3, and 25.
Solved:
1. The greatest number is 25
2. If the moved distances are square, which one is largest?
3. The move which is greater than 4 is considered "big play"
=> 21 and 25 are big play (21 > 4, 25 > 4)
Hope this helps!
:)
what does this expression represent five times the quotient of some number and ten
Answer:
5(n/10)
Step-by-step explanation:
quotient of some number and ten=n/10
five time=*5
put it togther=5(n/10)
Please help, it’s a math question
Answer:
the answer is B
Step-by-step explanation:
hope it help
Sarah, Natasha and Richard share some sweets in the ratio 5:2:3. Sarah gets 75 sweets. How many more sweets does Richard get over Natasha?
Answer:
Richard gets 15 more sweets than Natasha.
Step-by-step explanation:
Given that the ratio of Sarah's sweets is 5 and she has 75 sweets. So firstly, you have to find out how many sweets in a ratio of 1 :
Let ratio be units,
[tex]5 units = 75 sweets[/tex]
[tex]1 unit = 75 \div 5[/tex]
[tex]1 unit = 15 sweets[/tex]
Now we have to find how many sweets does Natasha and Richard has :
Richard (ratio of 3),
[tex]3 units = 15 \times 3[/tex]
[tex]3 units = 45 sweets[/tex]
Natasha (ratio of 2),
[tex]2 units = 15 \times 2[/tex]
[tex]2 units = 30 sweets[/tex]
In order to find how many sweets Richard has more than Natasha, you have to substract :
[tex]45 - 30 = 15 sweets[/tex]
Answer:
15
Step-by-step explanation:
the answer is 15
Mark recently took a road trip across the country. The number of miles he drove each day was normally distributed with a mean of 450. If he drove 431.8 miles on the last day with a z-score of -0.7, what is the standard deviation?
Answer:
The (population) standard deviation is 26 miles or [tex] \\ \sigma = 26[/tex] miles.
Step-by-step explanation:
We can solve this question using the concept of z-score or standardized value, which is given by the formula:
[tex] \\ z = \frac{x - \mu}{\sigma}[/tex] [1]
Where
[tex] \\ z[/tex] is the z-score.
[tex] \\ x[/tex] is the raw score.
[tex] \\ \mu[/tex] is the population's mean.
[tex] \\ \sigma[/tex] is the population standard deviation.
Analyzing the question, we have the following data to solve this question:
The random variable number of miles driven by day is normally distributed.The population's mean is [tex] \\ \mu = 450[/tex] miles.The raw score, that is, the value we want to standardize, is [tex] \\ x = 431.8[/tex] miles.The z-score is [tex] \\ z = -0.7[/tex]. It tells us that the raw value (or raw score) is below the population mean because it is negative. It also tells us that this value is 0.7 standard deviations units (below) from [tex] \\ \mu[/tex].Therefore, using all this information, we can determine the (population) standard deviation using formula [1].
Then, substituting each value in this formula:
[tex] \\ z = \frac{x - \mu}{\sigma}[/tex]
Solving it for [tex] \\ \sigma[/tex]
Multiplying each side of the formula by [tex] \\ \sigma[/tex]
[tex] \\ \sigma*z = (x - \mu) * \frac{\sigma}{\sigma}[/tex]
[tex] \\ \sigma*z = (x - \mu) * 1[/tex]
[tex] \\ \sigma*z = x - \mu[/tex]
Multiplying each side of the formula by [tex] \\ \frac{1}{z}[/tex]
[tex] \\ \frac{1}{z}*\sigma*z = \frac{1}{z}*(x - \mu)[/tex]
[tex] \\ \frac{z}{z}*\sigma = \frac{x - \mu}{z}[/tex]
[tex] \\ 1*\sigma = \frac{x - \mu}{z}[/tex]
[tex] \\ \sigma = \frac{x - \mu}{z}[/tex]
Then, this formula, solved for [tex] \\ \sigma[/tex], will permit us to find the value for the population standard deviation asked in the question.
[tex] \\ \sigma = \frac{431.8 - 450}{-0.7}[/tex]
[tex] \\ \sigma = \frac{-18.2}{-0.7}[/tex]
[tex] \\ \sigma = 26[/tex]
Thus, the (population) standard deviation is 26 miles or [tex] \\ \sigma = 26[/tex] miles.
You roll a fair 6-sided die. what is the probability rolling greater than 4
Answer:
1/3
Step-by-step explanation:
There are 6 possible outcomes when you roll this die: 1,2,3,4,5 and 6. Of these, only 5 and 6 are greater than 4, which is 2 successful outcomes. Probability is successful outcomes/total outcomes = 2/6 = 1/3. Hope this helps!
Farmer Bob's daughter wanted to put carpet in her goats pen. The pen is 12 feet wide and 12 feet long. How many square feet of carpet does she need for the pen
Answer:
She would need 144 square feet of carpet.
Step-by-step explanation:
Since the pen is 12 feet by 12 feet you would multiply 12 by 12 for your answer of 144 square feet.
A standard deck of playing cards has 13 cards in each of four suits: hearts, clubs, diamonds, and spades. Two cards are chosen from the deck at random. What is the probability of choosing one club and one spade, without replacement?
A. 25/102
B.13/102
C.13/204
D.1/2
There are 52 cards in the deck.
Picking a spade would be 13/52 which reduces to 1/4
After the first card is picked there are 51 cards left, picking a club would be 13/51
Picking both would be 1/4 x 13/51 = 13/204
The answer is C.
what is the slope of the line 7x+2y=5
Answer:
slope = -7/2x
Step-by-step explanation:
you can solve the equation in order to make it slope-intercept form.
7x + 2y = 5
2y = -7x + 5
divide everything by 2
it becomes y = -7/2x + 5/2
The required slope of the line is m = -7 / 2.
A line can be defined by the shortest distance between two points is called a line.
Method 1
7x + 2y = 5
Rearranging the equation in the standard form of the equation of a line
y = mx + c
where m is the slope of the line and c is the intercept of the line.
7x + 2y = 5
2y = -7x + 5
y = -7x/2 + 5 - - - - - -(1)
Comparing equation 1 with the standard form of the equation
m = -7/2 and c = 5
Method 2
Differentiate the given equation, with respect to x
d/dx (7x + 2 y) = d/dx (5)
7 + 2dy/dx = 0
dy/dx = -7/2
Slope = dy/dx = -7/2
Thus, the required slope of the equation is m = -7/2
Learn more about lines here:
brainly.com/question/2696693
#SPJ2
The mk family orchard has 120 apple trees and 90 pear trees. If each fruit tree produces an average of 590 pounds of fruit per year, about how many pounds of fruit can the orchard produce in one year
Answer & Step-by-step explanation:
If each fruit tree produces an average of 590 pounds of fruit, then that means we are going to multiply. For the apples, we are going to multiply 120 by 590. For the pears, we are going to multiply 90 by 590. After we multiply these numbers, we are going to add the products so we can find the total amount of pounds of fruit.
Apples:
120 × 590 = 70800
Pears:
90 × 590 = 53100
Now, we add 70800 to 53100.
70800 + 53100 = 123900
So, the orchard produces 123900 pounds of fruit in one year.
Simplify the expression:
6V + 10 - V
Answer:
5V + 10
Step-by-step explanation:
Add the like terms.
-5v - 4
If you add the like terms this is what you get
Students voted on a school trip. 56 voted for the museum, 86 for the nature center, 172 for the state capital, and 116 for other venues.
A circle graph titled School trip location. 40 percent is a, 20 percent is b, 13 percent is c, 27 percent is d.
The circle graph shows the data from the table, but the labels are missing.
Choose the correct labels.
a =
b =
c =
d =
Answer:
a = state capital
b = nature center
c = museum
d = other
Step-by-step explanation:
Answer:
other person is correct
Step-by-step explanation:
Translate the difference of a number and 7 is -8 into an equation.
Answer:
-1
Step-by-step explanation:
7 - 8 = -1
hope its helpful
Answer:
n - 7 = -8
Step-by-step explanation:
Simplify the slope of AC.
Answer:
1
Step-by-step explanation:
The slope of a line can be found by dividing the rise over the run, or how much the line rises over a certain amount of sideways movement. In this case, the line AC moves from (0,0) to (a,a), meaning that it rises and moves sideways the same amount. Since a/a=1, the slope of this line is 1. Hope this helps!
Answer:
1
Step-by-step explanation:
Point A is (0, 0) and Point C is (a, a).
The "rise" from A to C is a and the "run from A to C" is also 1.
Thus, the slope of line A is m = rise / run = 1 / 1 = 1.
The number y of raccoons in an area after x years can be modeled by the function y= 0.4x^2+2x+2. When were there about 45 raccoons in the area? Round your answer to the nearest year
Answer:
A timeframe of 8 years is when there were 45 raccoons in the area.
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
BracketsParenthesisExponentsMultiplicationDivisionAdditionSubtractionLeft to RightAlgebra I
Equality Properties
Multiplication Property of EqualityDivision Property of EqualityAddition Property of EqualitySubtraction Property of EqualityStandard Form:
[tex]\displaystyle ax^2 + bx + c = 0[/tex]
Quadratic Formula:
[tex]\displaystyle x=\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}[/tex]
Step-by-step explanation:
Step 1: Define
Identify given.
[tex]\displaystyle \begin{aligned}y & = 0.4x^2 + 2x + 2 \\y & = 45 \ \text{raccoons} \\\end{aligned}[/tex]
Step 2: Find Specific Year
We are trying to find the year when there were 45 raccoons present in the area. From first glance, we see we probably can't factor the quadratic expression, so let's set up to use the Quadratic Formula:
[Model Equation] Substitute in y:Now that we have our variables from Standard Form, we can use the Quadratic Formula to find which years when there were 45 raccoons present in the area:
[Quadratic Formula] Substitute in variables:Since time cannot be negative, we can isolate the other root to obtain our final answer:
[tex]\displaystyle\begin{aligned}x & = 8.16536 \ \text{years} \\& \approx \boxed{ 8 \ \text{years} } \\\end{aligned}[/tex]
∴ we have found the approximate amount of years to be 8 years when there were 45 raccoons in the area.
___
Learn more about Algebra I: https://brainly.com/question/16442214
___
Topic: Algebra I
Find the area. The figure is not drawn to scale.
1.
36 in.
40 in.
33 in.
-
Answer: 47,520
Step-by-step explanation: 36 times 40 times 33
hey can anyone pls help me out in dis!!!!!!!!!
Answer:
Look at the attachment
The local theater sold 260 tickets to their most recent performance. Admission was $9 for adults and $5 for children. If they made $2,140, how many adult tickets did they sell?
Answer:
210 adult tickets were sold
Step-by-step explanation:
let x be the number of adult tickets sold
let y be the number of children tickets sold
x+y=260 equation 1
9x+5y=2140 equation 2
multiply equation 1 by 5
multiply equation 2 by 1
5x+5y=1300
9x+5y=2140
subtract equation 1 from 2
4x=840
x=840/4 =210 tickets
substitute for x in equation 1
210+y=260
y=260-210=50
On a coordinate plane, a circle has a center at (4, 5) and a radius of 3 units.
Which equation represents a circle with the same center as the circle shown but with a radius of 2 units?
(x – 4)2 + (y – 5)2 = 2
(x – 4)2 + (y – 5)2 = 4
(x – 5)2 + (y – 4)2 = 2
(x – 5)2 + (y – 4)2 = 4
Answer:
(x - 4)² + (y - 5)² = 4
Step-by-step explanation:
The equation of a circle in standard form is
(x - h)² + (y - k)² = r²
where (h, k) are the coordinates of the centre and r is the radius
Here (h, k) = (4, 5) and r = 2, thus
(x - 4)² + (y - 5)² = 2², that is
(x - 4)² + (y - 5)² = 4 ← second option on list
The required equation represents a circle with the same center as the circle shown but with a radius of 2 units is (x-4)^2 + (y-5)^2 = 4
Equation of a circleThe standard equation of a circle is expressed as:
(x-a)^2 + (y-b)^2 = r^2
where:
(a, b) is the centre = (4, 5)
r is the radius = 3 units
Substitute to have;
(x-4)^2 + (y-5)^2 = 2^2
(x-4)^2 + (y-5)^2 = 4
Hence the required equation represents a circle with the same center as the circle shown but with a radius of 2 units is (x-4)^2 + (y-5)^2 = 4
Learn more on equation of circle here: https://brainly.com/question/14150470
A concrete planter is formed from a square-based pyramid that was inverted and placed inside a cube.
This question is incomplete and it lacks the attached diagram of the square based pyramid. Find attached to this answer, the square based pyramid.
Correct Question
A concrete planter is formed from a square-based pyramid that was inverted and placed inside a cube.
A. What is the slant height of the pyramid?
B. What is the surface area of the composite figure?
HINT: The surface area consists of lateral faces of the inside of the inverted pyramid and the remaining 5 faces of the cube.
C. How many cubic yards of concrete are needed to make the planter?
Answer:
A. The slant height of the pyramid = 2.24 yards.
B. The surface area of the composite figure = 12.94 square yards.
C. The cubic yards of concrete are needed to make the planter = 2.67 cubic yards.
Step-by-step explanation:
A. What is the slant height of the pyramid?
To calculate the Slant height of a pyramid we make use of the Pythagoras Theorem which is given as:
a² + b² = c²
Where a = Height of the square pyramid represent by h
b = radius of the square pyramid represented by r
c = Slant height of the square pyramid represented by s
Therefore, we have
h² + r² = s²
Looking at the attached diagram, we are given the side length = 2 yards.
The radius of the square based pyramid = side length ÷ 2
= 2÷ 2 = 1 yard.
The height of a square based pyramid = 2 yards
Since , h² + r² = s²
The slant height of the square pyramid is calculated as :
√h² + r² = s
√(2² + 1²) = s
√5 = s
s = 2.24 yards
B. What is the surface area of the composite figure?
We were given hints in the question that the the surface area consists of lateral faces of the inside of the inverted pyramid and the remaining 5 faces of the cube.
Step 1
We find the Lateral area of the faces of the insides of the inverted pyramid
We have 4 faces, Hence,
The formula is given as
a × √( a² + 4h²
a = 2 yards
h = 2 yards
So, = 2 × √( 2² + 4 ×2²
The Lateral area of the faces = 8.94 square yards.
Step 2
Area of the 5 faces of the cube
= a²
Where a = side length = 2 yards
= 2²
= 4 square yards.
Step 3
Therefore, surface area of the composite figure = 8.94 square yards + 4 square yards
= 12.94 square yards.
C. How many cubic yards of concrete are needed to make the planter?
This is calculated by find the Volume of the Square based pyramid.
The formula is given as :
V = (1/3)a²h
Where a = side length = 2 yards
h = height of the square based pyramid = 2 yards
V = 1/3 × 2² × 2
V = 2.67 cubic yards
x + 18 greater than or equals 26
Answer:
x + 18 ≥ 26
Step-by-step explanation:
"greater than or equals": ≥
x + 18 ≥ 26 is your answer.
If you are trying to solve it so you isolate x, subtract 18 from both sides:
x + 18 (-18) ≥ 26 (-18)
x ≥ 26 - 18
x ≥ 8
x ≥ 8 is your answer.
~
Answer:
x+18 ≥ 26
Step-by-step explanation:
≤ is the less than or equals sign
≥ is the greater than or equals sign
x+18 ≥ 26
(This also means x must be ≥ 8)
Given a triangle with b = 7, C = 3, and A = 37° what is the length of a? Round to the nearest tenth.
a. 4.9
b.5.9
c.5.5 d. 4.3
Answer: 4.9
Step-by-step explanation:
Unit 5. 9) Please help. A soda can holds approximately 25.5 cubic inches of soda and is 4.8 inches tall. What is the approximate area of its base?
Answer:
5.3125 in^2
Step-by-step explanation:
The volume of a cylinder is given by
V = pi r^2 h
V = Bh
Where B is the area of the base
25.5 = 4.8 B
Divide each side by 4.8
25.5/4.8 = B
5.3125 = B
(x-3)(x+5) the product
Answer:
x^2 +2x -15
Step-by-step explanation:
FOIL
(x-3)(x+5)
first x*x = x^2
outer 5x
inner -3x
last -3*5 = -15
Add them together
x^2 +5x-3x-15
Combine like terms
x^2 +2x -15
Use Heron’s Formula, that is, the area of a triangle is , where the triangle contains sides a, b and c and to find the area of the triangle with side lengths: .a=7/2 b=4/3 c=9/4
Answer:
Area: T = 0.649
Step-by-step explanation:
Sides: a = 3.5 b = 1.333 c = 2.25
A football team has P points.
P = 3W + D
W is the number of wins
D is the number of draws
If a team has 53 points from 33 games, with 11 draws, how many games did the team lose
Answer:
They must have lost 19 games.
Step-by-step explanation:
If you plug in 53 into the equation, you get 53 = 3w + 11. You subtract 11 from both sides, resulting in 42 = 3w. You divide 3 from both sides this time, resulting in 14 = w. Since W is the number of wins, and you're trying to figure out games lost, you subtract 14 from the number of games played, so 33-14 is equal to 19.
xion orders 5 loves of bread from the website bakery the total shipping weight is 9 pounds as model of the bread what is in pounds each of the lovaes
Mrs. Rodriguez bought 3 tickets for a concert. She also paid for a poster at the concert. Mrs. Rodriguez paid a total of $102 for the tickets and the poster. The equation 3t + p = 102 can be used to find p, the amount Mrs. Rodriguez paid for the poster. If Mrs. Rodriguez paid $29 for each ticket, t, then how much did she pay for the poster
Answer:
15
Step-by-step explanation:
102-(29 x 3)
Answer:
p=15
Step-byexplanation:
3t+p/102
3(29)+p=102
87+p=102
p=15
ok, im failing math rn so plz help
Answer:
-3/4
Step-by-step explanation:
Point A is at (-4,3) and Point B is at (4,-3)
The slope is at
m = (y2-y1)/(x2-x1)
= (-3 -3)/(4 - -4)
= (-3-3)/(4+4)
= -6/8
= -3/4
A pilot is flying a plane 20000 ft above the ground.The pilot begins a 2 descent to an airport runway.How far is the airplane from the start of the runway(in ground distance)
Answer:
381623 ft
Step-by-step explanation:
Since the airport altitude is 20000 ft and the pilot needs a 2° descent, to calculate the distance of the airplane at the start of this approach, first this is represented in the diagram attached. The distance from the runway at the start is x.
[tex]tan(3) = \frac{20000}{x} \\x=\frac{20000}{tan(3)} \\x=381623ft[/tex]
The airplane is at a distance of 381623 ft away from the airplane runaway at the start of the descent.