9514 1404 393
Answer:
[tex]\displaystyle\sqrt{x+7}-\log{(x+2)}[/tex]
Step-by-step explanation:
It's pretty straightforward. You want ...
f(x) - g(x)
Substituting the given function definitions gives ...
[tex]\displaystyle\boxed{\sqrt{x+7}-\log{(x+2)}}[/tex]
i would like some help please i am stuck
Answer: -2(d) is the answer.
Step-by-step explanation:
x1 = 3
y1 = -5
x2 = -2
y2 = 5
slope (m) = rise/run = (y2 - y1)/(x2-x1)
=(5-(-5))/(-2-3)
= 10/-5
= -2
solve this set of equation, using elimination or substitution method.
Answer:
X =224
Y= -10
Step-by-step explanation:
To solve this question it's better to convert the fractions to decimals this way it will be easy to solve.
0.25x+0.6y= -4
0.2x+0.25y=-0.9
0.2(0.25x+0.6y=-4)
0.25(0.2x+0.25y=-0.9)
0.05x+0.12y=-0.8
0.05x+0.06y=-0.225
0.0575y/0.0575=-0.575/0.0575
Y=-10
To find x you replace the value of y in any of the equations
0.25x+0.6y=-4
0.25x+0.6(-10)=-4
0.25x=-4+60
0.25x/0.25=56/0.25
X=224
I hope this helps and sorry if it's wrong
A line is perpendicular to the line y = 4x - 3 and has x-intercept (2,0). Which of the following is an equation of the line?
Answer:
y = -1/4x+1/2
Step-by-step explanation:
y = 4x - 3
This is in slope intercept form, y = mx+b where the slope is m
The slope is 4
Perpendicular lines have slopes that are negative reciprocals
-1/4 is the slope of the perpendicular line
y = -1/4x+b
Using the point (2,0)
0 = -1/4(2)+b
0 = -1/2+b
b = 1/2
y = -1/4x+1/2
I'm interval notation please
9514 1404 393
Answer:
(-2, 4]
Step-by-step explanation:
-21 ≤ -6x +3 < 15 . . . . given
-24 ≤ -6x < 12 . . . . . . subtract 3
4 ≥ x > -2 . . . . . . . . . . divide by -6
In interval notation, the solution is (-2, 4].
__
Interval notation uses a square bracket to indicate the "or equal to" case--where the end point is included in the interval. A graph uses a solid dot for the same purpose. When the interval does not include the end point, a round bracket (parenthesis) or an open dot are used.
I will give brainliest if you answer properly.
Answer:
See below
Step-by-step explanation:
a)
[tex]2\sin(x) +\sqrt{3} =0 \implies 2\sin(x)=-\sqrt{3} \implies \boxed{\sin(x)=-\dfrac{\sqrt{3}}{2} }[/tex]
[tex]\therefore x=\dfrac{4\pi }{3}[/tex]
But note, as sine does represent the [tex]y[/tex] value, [tex]\dfrac{5\pi }{3}[/tex] is also solution
Therefore,
[tex]x=\dfrac{4\pi }{3} \text{ and } x=\dfrac{5\pi }{3}[/tex]
This is the solution for [tex]x\in[0, 2\pi ][/tex], recall the unit circle.
Note: [tex]\sin(x)=-\dfrac{\sqrt{3}}{2} \implies \sin(x)=\sin \left(\pi +\dfrac{\pi }{3} \right)[/tex]
b)
[tex]\sqrt{3} \tan(x) + 1 =0 \implies \tan(x) = -\dfrac{1}{\sqrt{3} } \implies \boxed{ \tan(x) = -\dfrac{\sqrt{3} }{3} }[/tex]
Once
[tex]\tan(x) = -\dfrac{\sqrt{3} }{3} \implies \sin(x) = -\dfrac{1}{2} \text{ and } \cos(x) = \dfrac{\sqrt{3} }{2}[/tex]
As [tex]\tan(x) = \dfrac{\sin(x)}{\cos(x)}[/tex]
[tex]\therefore x=-\dfrac{\pi }{6}[/tex]
c)
[tex]4\sin^2(x) - 1 = 0 \implies \sin^2(x) = \dfrac{1}{4} \implies \boxed{\sin(x) = \pm \dfrac{\sqrt{1} }{\sqrt{4} } = \pm \dfrac{1}{2}}[/tex]
Therefore,
[tex]\sin(x)=\dfrac{1}{2} \implies x=\dfrac{\pi }{6} \text{ and } x=\dfrac{5\pi }{6}[/tex]
[tex]\sin(x)=-\dfrac{1}{2} \implies x=\dfrac{7\pi }{6} \text{ and } x=\dfrac{11\pi }{6}[/tex]
The solutions are
[tex]x=\dfrac{\pi }{6} \text{ and } x=\dfrac{5\pi }{6} \text{ and }x=\dfrac{7\pi }{6} \text{ and } x=\dfrac{11\pi }{6}[/tex]
If 1100 square centimeters of material is available to make a box with a square base and an open top, find the largest possible volume of the box. Round to two decimal places if necessary.
volume= a^2 * h
area= a^2+4ah
take the second equation, solve for h
4ah=1100-a^2
h=1100/4a -1/4 a now put that expression in volume equation for h.
YOu now have a volume expression as function of a.
take the derivative, set to zero, solve for a. Then put that value back into the volume equation, solve for Volume.
Cited from jiskha
The distribution of SAT scores is approximately normal with a mean of 1500.
If 1628 is the 90th percentile, what is the standard deviation?
Answer:
Hello,
Answer
[tex]\sigma=457,95...[/tex]
Step-by-step explanation:
p(z<a)=0.9
p(z<1.29)=0.9015
p(z<1.28)=0.8997
using linear interpolation: with 4 decimals
p(z<1.282)<0.9
[tex]\dfrac{1628-1500}{\sigma} =1.282\\\\\sigma =\dfrac{1628-1500}{1.282}\\\\\sigma=457,95...\\[/tex]
find the quotient 1/5 / (-5/7) =
Answer:
-7/25
Step-by-step explanation:
1/5 ÷ (-5/7)
Copy dot flip
1/5 * -7/5
-7/25
(2+1/2) (2^2-1+1/4) find the expression in the form of cubes and differences of two terms.
Answer:
Consider the following identity:
a³ - b³ = (a + b)(a² - ab + b²)Let a = 2, b = 1/2
(2 + 1/2)(2² - 2*1/2 + 1/2²) = 2³ - (1/2)³ =8 - 1/8Use the algebraic identity given below
[tex]\boxed{\sf a^3-b^3=(a+b)(a^2-ab+b^2)}[/tex]
[tex]\\ \sf\longmapsto (2+\dfrac{1}{2})(2^2-1+\dfrac{1}{4})[/tex]
[tex]\\ \sf\longmapsto (2+\dfrac{1}{2})(2^2-2\times \dfrac{1}{2}+\dfrac{1}{2}^2)[/tex]
Here a =2 and b=1/2[tex]\\ \sf\longmapsto 2^3-\dfrac{1}{2}^3[/tex]
[tex]\\ \sf\longmapsto 8-\dfrac{1}{8}[/tex]
3(8a - 5b) – 2(a + b); use a = 3 and b = 2
Answer:
32
Step-by-step explanation:
3(8(3)-5(2))-2((3)+(2))
3(24-10) -2(5)
3(14) -10
42-10
32
[tex]\huge\text{Hey there!}[/tex]
[tex]\huge\textsf{3(8a - 5b) - 2(a + b)}\\\\\huge\textsf{= 3(8(3) - 5(2)) - 2(3 + 2)}\\\\\huge\textsf{= 3(24 - 10) - 2(3 + 2)}\\\\\huge\textsf{= (3)(14) - 2(3 + 2)}\\\\\huge\textsf{= 42 - 2(3 + 2)}\\\\\huge\textsf{= 42 - 2(5)}\\\\\huge\textsf{= 42 - 10}\\\\\huge\textsf{= 32}}[/tex]
[tex]\huge\boxed{\textsf{Answer: 32}}\huge\checkmark[/tex]
[tex]\huge\text{Good luck on your assignment \& enjoy your day!}[/tex]
~[tex]\huge\boxed{\frak{Amphitrite1040:)}}[/tex]
In an experiment, you choose to have two randomly assigned groups. In one, you take measurements both pretest and posttest; with the second, a posttest-only measure. This describes which task of conducting an experiment
Answer:
The answer is "Specific treatment levels".
Step-by-step explanation:
When we experimenting with 'level' which is related to the quantity or magnitude of treatment. For this part of an experiment or study, a group or individual is exposed to a specified set of circumstances. For example: If four categories are exposed to different doses of a given drug, then each dose reflects a level of a treatment factor in the model.
HELP ME OUT ASAPPP PLSSS
Answer:
https://linksharing.samsungcloud.com/ul5cX9oOmhzt
What is the approximate length of arc s on the circle below? Use 3.14 for Pi. Round your answer to the nearest tenth.
-5.8 ft
-6.3 ft
-27.5 ft
-69.1 ft
9514 1404 393
Answer:
69.1 ft
Step-by-step explanation:
The diameter of the circle is 24 ft. The length of the arc is more than twice the diameter, so cannot be less than about 50 ft. The only reasonable choice is ...
69.1 ft
__
The circumference of the circle is ...
C = 2πr = 2(3.14)(12 ft) = 75.36 ft
The arc length of interest is 330° of the 360° circle, so is 330/360 = 11/12 times the circumference.
s = (11/12)(75.36 ft) = 69.08 ft ≈ 69.1 ft
Answer:D
Step-by-step explanation:
Solve 7 ( x + 1 ) + 2 = 5x + 15
Answer:
x = 3
Step-by-step explanation:
7(x + 1) + 2 = 5x + 15
~Simplify left side
7x + 7 + 2 = 5x + 15
~Combine like terms
7x + 9 = 5x + 15
~Subtract 9 to both sides
7x = 5x + 6
~Subtract 5x to both sides
2x = 6
~Divide 2 to both sides
x = 3
Best of Luck!
A 5 ounce bottle of juice cost $1.35 and an 8 ounce bottle of juice cost $2.16 a what is the unit cost per ounce of juice and b what is the better buy
Answers:
First bottle's unit cost = 27 cents per oz
Second bottle's unit cost = 27 cents per oz
Both have the same unit cost.
----------------------------------------
Work Shown:
unit cost = price/(number of ounces)
1st bottle unit cost = (1.35)/(5) = 0.27 dollars per oz = 27 cents per oz
2nd bottle unit cost = (2.16)/(8) = 0.27 dollars per oz = 27 cents per oz
Both lead to the same unit cost. Therefore, you can pick either option and it doesn't matter.
I need help ASAP please please please
Answer:
n=39/5
Step-by-step explanation:
24=5(n-3)
24=5n-15
-5n= -15-24
-5n=39
n= 39/5
If a $6 per unit tax is introduced in this market, then the new equilibrium quantity will be
Answer:
soory i dont know just report me if you angry
Because the P-value is ____ than the significance level 0.05, there ____ sufficient evidence to support the claim that there is a linear correlation between lemon imports and crash fatality rates for a significance level of α= 0.05.
Do the results suggest that imported lemons cause carfatalities?
a. The results suggest that an increase in imported lemons causes car fatality rates to remain the same.
b. The results do not suggest any cause-effect relationship between the two variables.
c. The results suggest that imported lemons cause car fatalities.
d. The results suggest that an increase in imported lemons causes in an increase in car fatality rates.
Answer:
H0 : correlation is equal to 0
H1 : correlation is not equal to 0 ;
Pvalue < α ;
There is sufficient evidence
r = 0.945 ;
Pvalue = 0.01524
Step-by-step explanation:
Given the data :
Lemon_Imports_(x) Crash_Fatality_Rate_(y)
230 15.8
264 15.6
359 15.5
482 15.3
531 14.9
Using technology :
The regression equation obtained is :
y = 16.3363-0.002455X
Where, slope = - 0.002455 ; Intercept = 16.3363
The Correlation Coefficient, r = 0.945
H0 : correlation is equal to 0
H1 : correlation is not equal to 0 ;
The test statistic, T:
T = r / √(1 - r²) / (n - 2)
n = 5 ;
T = 0.945 / √(1 - 0.945²) / (5 - 2)
T = 0.945 / 0.1888341
T = 5.00439
The Pvalue = 0.01524
Since Pvalue < α ; Reject the Null and conclude that there is sufficient evidence to support the claim.
If x+y=8 and xy =15 find the value of x³+y³.
Answer:
152Step-by-step explanation:
let x= 5 and y= 3x + y = 85 + 3 = 8xy = 155 × 3 = 15x³ + y³ = ?5³ + 3³ = ?125 + 27 = 152[tex]\tt{ \green{P} \orange{s} \red{y} \blue{x} \pink{c} \purple{h} \green{i} e}[/tex]
To calculate the volume of a chemical produced in a day a chemical manufacturing company uses the following formula below:
[tex]V(x)=[C_1(x)+C_2(x)](H(x))[/tex]
where represents the number of units produced. This means two chemicals are added together to make a new chemical and the resulting chemical is multiplied by the expression for the holding container with respect to the number of units produced. The equations for the two chemicals added together with respect to the number of unit produced are given below:
[tex]C_1(x)=\frac{x}{x+1} , C_2(x)=\frac{2}{x-3}[/tex]
The equation for the holding container with respect to the number of unit produced is given below:
[tex]H(x)=\frac{x^3-9x}{x}[/tex]
a. What rational expression do you get when you combine the two chemicals?
b. What is the simplified equation of ?
c. What would the volume be if 50, 100, or 1000 units are produced in a day?
d. The company needs a volume of 3000 How many units would need to be produced in a day?
Answer:
[tex]V(x) = [\frac{x}{x + 1} + \frac{2}{x-3}] * \frac{x^3 - 9x}{x}[/tex]
[tex]V(x) = [\frac{(x^2-x+2)(x + 3)}{(x + 1)}][/tex]
[tex]V(50) = 2548.17[/tex] [tex]V(100) = 10098.10[/tex] [tex]V(1000) = 999201.78[/tex]
[tex]x = 54.78[/tex]
Step-by-step explanation:
Given
[tex]V(x) = [C_1(x) + C_2(x)](H(x))[/tex]
[tex]C_1(x) = \frac{x}{x+1}[/tex]
[tex]C_1(x) = \frac{2}{x-3}[/tex]
[tex]H(x) = \frac{x^3 - 9x}{x}[/tex]
Solving (a): Expression for V(x)
We have:
[tex]V(x) = [C_1(x) + C_2(x)](H(x))[/tex]
Substitute known values
[tex]V(x) = [\frac{x}{x + 1} + \frac{2}{x-3}] * \frac{x^3 - 9x}{x}[/tex]
Solving (b): Simplify V(x)
We have:
[tex]V(x) = [\frac{x}{x + 1} + \frac{2}{x-3}] * \frac{x^3 - 9x}{x}[/tex]
Solve the expression in bracket
[tex]V(x) = [\frac{x*(x-3) + 2*(x+1)}{(x + 1)(x -3)}] * \frac{x^3 - 9x}{x}[/tex]
[tex]V(x) = [\frac{x^2-3x + 2x+2}{(x + 1)(x -3)}] * \frac{x^3 - 9x}{x}[/tex]
[tex]V(x) = [\frac{x^2-x+2}{(x + 1)(x -3)}] * \frac{x^3 - 9x}{x}[/tex]
Factor out x
[tex]V(x) = [\frac{x^2-x+2}{(x + 1)(x -3)}] * \frac{x(x^2 - 9)}{x}[/tex]
[tex]V(x) = [\frac{x^2-x+2}{(x + 1)(x -3)}] * (x^2 - 9)[/tex]
Express as difference of two squares
[tex]V(x) = [\frac{x^2-x+2}{(x + 1)(x -3)}] * (x- 3)(x + 3)[/tex]
Cancel out x - 3
[tex]V(x) = [\frac{x^2-x+2}{(x + 1)}] *(x + 3)[/tex]
[tex]V(x) = [\frac{(x^2-x+2)(x + 3)}{(x + 1)}][/tex]
Solving (c): V(50), V(100), V(1000)
[tex]V(x) = [\frac{(x^2-x+2)(x + 3)}{(x + 1)}][/tex]
Substitute 50 for x
[tex]V(50) = [\frac{(50^2-50+2)(50 + 3)}{(50 + 1)}][/tex]
[tex]V(50) = \frac{(2452)(53)}{(51)}][/tex]
[tex]V(50) = 2548.17[/tex]
Substitute 100 for x
[tex]V(100) = [\frac{(100^2-100+2)(100 + 3)}{(100 + 1)}][/tex]
[tex]V(100) = \frac{9902)(103)}{(101)}[/tex]
[tex]V(100) = 10098.10[/tex]
Substitute 1000 for x
[tex]V(1000) = [\frac{(1000^2-1000+2)(1000 + 3)}{(1000 + 1)}][/tex]
[tex]V(1000) = [\frac{(999002)(10003)}{(10001)}][/tex]
[tex]V(1000) = 999201.78[/tex]
Solving (d): V(x) = 3000, find x
[tex]V(x) = [\frac{(x^2-x+2)(x + 3)}{(x + 1)}][/tex]
[tex]3000 = [\frac{(x^2-x+2)(x + 3)}{(x + 1)}][/tex]
Cross multiply
[tex]3000(x + 1) = (x^2-x+2)(x + 3)[/tex]
Equate to 0
[tex](x^2-x+2)(x + 3)-3000(x + 1)=0[/tex]
Open brackets
[tex]x^3 - x^2 + 2x + 3x^2 - 3x + 6 - 3000x - 3000 = 0[/tex]
Collect like terms
[tex]x^3 + 3x^2- x^2 + 2x - 3x - 3000x + 6 - 3000 = 0[/tex]
[tex]x^3 + x^2 -3001x -2994 = 0[/tex]
Solve using graphs (see attachment)
[tex]x = -54.783[/tex] or
[tex]x = -0.998[/tex] or
[tex]x = 54.78[/tex]
x can't be negative. So:
[tex]x = 54.78[/tex]
Ilang litro ng tubig ang kailangang isalin sa timba na naglalaman ng 10 000 mililitro
Answer
nghiệmTrảingu từng bước:
Write an explicit formula for the sequence.
-4,7,-10,13,-16
Step-by-step explanation:
Sequence is
4
,
7
,
10
,
13
,
16
,
.
.
.
a
1
=
4
,
a
2
=
7
,
a
3
=
10
,
.
.
.
If it is Arithmetic sequence,
a
2
−
a
1
=
a
3
−
a
2
=
a
4
−
a
3
& so on
In the given sum,
a
2
−
a
1
=
7
−
4
=
3
a
3
−
a
2
=
10
−
7
=
3
a
4
−
a
3
=
13
−
10
=
3
Since the difference between the successive terms is same and
hence
common difference
d
=
3
The whole number 23 is an example of a ____ number.
prime or composite?
The answer is prime! I hope this helps you out!
Answer:
23 is a prime number. Reason: Prime number are those numbers which are divisible by 1 and itself. Example: 5 is divisible by 1 and 5 only.
Algebra 2, please help! thank you
The function y = 2 cos 3(x + 2π∕3) +1 has a phase shift (or horizontal shift) of
A) –2π∕3
B) 3
C) 1
D) 2
Answer:
-2pi/3
Step-by-step explanation:
y = 2 cos 3(x + 2π∕3) +1
y = A sin(B(x + C)) + D
amplitude is A
period is 2π/B
phase shift is C (positive is to the left)
vertical shift is D
We have a shift to the left of 2 pi /3
Answer:
A
Step-by-step explanation:
The standard cosine function has the form:
[tex]\displaystyle y = a\cos (b(x-c)) + d[/tex]
Where |a| is the amplitude, 2π / b is the period, c is the phase shift, and d is the vertical shift.
We have the function:
[tex]\displaystyle y = 2 \cos 3\left(x + \frac{2\pi}{3}\right) + 1[/tex]
We can rewrite this as:
[tex]\displaystyle y = \left(2\right)\cos 3\left(x - \left(-\frac{2\pi}{3}\right)\right) + 1[/tex]
Therefore, a = 2, b = 3, c = -2π/3, and d = 1.
Our phase shift is represented by c. Thus, the phase shift is -2π/3.
Our answer is A.
190 of 7
6 7 8 9 10
-3
4
5
6
The slope of the line shown in the graph is
and the intercept of the line is
Answer:slope 2/3
Y-int 6
Step-by-step explanation:
I am struggling and I would be so happy if any of you helped me. Can someone help me with the last two red boxes please? The rest of the question is for reference to help solve the problem. Thank you for your time!
Answer:
I think you can go with:
The margin of error is equal to half the width of the entire confidence interval.
so try .74 ± = [ .724 , .756] as the confidence interval
Step-by-step explanation:
-1/5y+7=7
What is the value of y?
Please help me determine the general equation for the graph above as well as solve for a. Thank you.
Observe that the x coords of the roots of a polynomial are,
[tex]x_{1,2,3,4}=\{-3,0,1,4\}[/tex]
Which can be put into form,
[tex]y=a(x-x_1)(x-x_2)(x-x_3)(x-x_4)[/tex]
with data
[tex]y=a(x-(-3))(x-0)(x-1)(x-4)=ax(x+3)(x-1)(x-4)[/tex]
Now if I take any root point and insert it into the equation I won't be able to solve for y because they will always multiply to zero (ie. when I pick [tex]x=-3[/tex] the right hand side will multiply to zero,
[tex]y=-3a(-3+3)(-3-1)(-3-4)=0[/tex]
and a will be "lost" in the process.
If we observed a non-root point that we could substitute with x and y and result in a non-loss process then you could find a. But since there is no such point (I don't think you can read it of the graph) there is no other viable way to find a.
Hope this helps :)
Yooooo HELPPP
with this question plz
Answer:
Step-by-step explanation:
(x-2)(x+4)=x^2+4x-2x-8=0=> x =2, x=0
Answer:
A
Step-by-step explanation:
please help !!!!
i would really appreciate it
Answer: A
Step-by-step explanation: x=-2, y=3, z=-3
Answer:
A. -2, 3, -3
Step-by-step explanation:
x = 7 - 2y + z
y = 21 + 6x + 2z = 21 + 6×(7 - 2y + z) + 2z =
= 21 + 42 - 12y + 6z + 2z = 63 - 12y + 8z
13y = 63 + 8z
y = (63 + 8z)/13
2x + 2y - 3z = 11
2×(7 - 2y + z) + 2×(63 + 8z)/13 - 3z = 11
2×(7 - 2×(63 + 8z)/13 + z) + 2×(63 + 8z)/13 - 3z = 11
14 - 4×(63 + 8z)/13 + 2z + 2×(63 + 8z)/13 - 3z = 11
-2×(63 + 8z)/13 - z = -3
-2×(63 + 8z) - 13z = -39
-126 - 16z - 13z = -39
-29z = 87
z = -3
y = (63 + 8×-3)/13 = (63 - 24)/13 = 39/13 = 3
x = 7 - 2×3 + -3 = 7 - 6 - 3 = -2