Answer:
shown below..I can't see..
Answer:
93.5 for area
Step-by-step explanation:
there is no picture so that's a simple guess
Answer two questions about Equations A and B: A.5x=20 \ B.x=4 1) How can we get Equation B from Equation A? Choose 1 answer: (Choice A) Multiply/divide both sides by the same non-zero constant (Choice B,) Multiply/divide both sides by the same variable expression (Choice C) Add/subtract the same quantity to/from both sides (Choice D) Add/subtract a quantity to/from only one side
Answer:
Multiply/divide both sides by the same non-zero constant
Step-by-step explanation:
5x = 20
Divide each side by 5
5x/5 = 20/5
x = 4
To obtain (B) from (A) "Multiply/divide both sides by the same non-zero constant"
Given the equations :
5x = 20 ___ (A)x = 4 _____ (B)To obtain the value ; x = 4 from A
We multiply (A) by the same non-zero constantHere, the constant value which can be used is 5 in other to isolate 'x'
5x/5 = 20/5
x = 4
Therefore, to obtain (B) from (A) "Multiply/divide both sides by the same non-zero constant"
Learn more on equations :https://brainly.com/question/2972832
#SPJ6
If there are 25 students in a class - 11 are guys and 14 are girls what is the probability that one of the students on the class is a guy?
Answer:
0.44
Step-by-step explanation:
11/25 = 0.44 = 44%
Answer:
11/25
Step-by-step explanation:
since there are 25 students, there will be 25 choices, and the 25 will be the denominator
and there are 11 guys so there will be 11 choices of guys and the 11 will go on top
The average value of a function f(x, y, z) over a solid region E is defined to be fave = 1 V(E) E f(x, y, z) dV where V(E) is the volume of E. For instance, if rho is a density function, then rhoave is the average density of E. Find the average value of the function f(x, y, z) = 5x2z + 5y2z over the region enclosed by the paraboloid z = 9 − x2 − y2 and the plane z = 0.
Answer:
An aluminum bar 4 feet long weighs 24 pounds
Step-by-step explanation:
A jar contains 8 pennies, 5 nickels and 7 dimes. A child selects 2 coins at random without replacement from the jar. Let X represent the amount in cents of the selected coins. Be very precise with your answers.
a. Find the probability x = 2 cents.
b. Find the probability x = 6 cents.
c. Find the probability x = 10 cents.
d. Find the probability x = 11 cents.
e. Find the probability x = 15 cents.
f. Find the probability x = 20 cents.
g. Find the expected value of x.
Answer:
a. The probability x = 2 cents = 7/22
b. The probability x = 6 cents = 35/66
c. The probability x = 10 cents = 5/33
d. The probability x = 11 cents= 28/33
e. The probability x = 15 cents = 20/33
f. The probability x = 20 cents = 14/33
g. The expected value of x = 5.9
Step-by-step explanation:
This is a binomial probability distribution. The number of trials is known .
a. The probability x = 2 cents.
Probability ( X=2) P( selecting 2 dimes)= 7C2 / 12c2
= 21 / 66 = 7/22
b. The probability x = 6 cents.
Probability ( X=6) P( selecting a nickel and a dime)= 5C1 * 7C1/ 12c2
= 5*7 / 66 = 35/66
c. The probability x = 10 cents.
Probability ( X=10) P( selecting two nickels )= 5C2 / 12c2)
= 10/ 66 = 5/33
d. The probability x = 11 cents.
Probability ( X=11) P( selecting a penny and a dime)= 8C1 * 7C1/ 12c2)
= 8*7 / 66 = 56/66= 28/33
e. The probability x = 15 cents.
Probability ( X=15) P( selecting a penny and a nickel)= 8C1 * 5C1/ 12c2)
= 8*5 / 66 = 40/66= 20/33
f. The probability x = 20 cents.
Probability ( X=20) P( selecting 2 pennies )= 8C2 / 12c2)
= 28 / 66 = 14/33
g. The expected value of x.
E(X) = np
E(X) = 2 * (8C2+ 5C2+ 7C2)/(8+5+7) = 2( 28+10+21)/20
=2(59)/20= 5.9
Was is a macroeconomics
Answer:
Macroeconomics is a study that deals with the whole economy and everything pertaining to it.
Step-by-step explanation:
when we talk about Macroeconomics, we mean the whole economy. It can be related to a country's import or export, governance, how resources are accurately allocated to people in the country and the like.
An urn contains 9 red marbles, 6 white marbles, and 8 blue marbles marbles. A child randomly selects three (without replacement) from the urn. Find the probability all three marbles are the same color
Answer:
P(identical colours) = 160/1771 (0.0903 to four decimals)
Step-by-step explanation:
Given 9R, 6W and 8B marbles (total = 9+6+8 = 23)
Choose three without replacement.
Need probability three identical colours.
Use the multiplication rule.
P(RRR) = 9/23 * 8*22 * 7*21 = 12 / 253
P(WWW) = 6/23 * 5/22 * 4/21 = 20/1771
P(BBB) = 8/23 * 7/22 * 6/21 = 8/153
Probability of getting identical colours
= P(RRR)+P(WWW)+P(BBB)
= 160/1771 (0.0903 to four decimals)
Using the probability concept, it is found that there is a 0.0903 = 9.03% probability all three marbles are the same color.
-----------------
A probability is the number of desired outcomes divided by the number of total outcomes.The order in which the marbles are chosen is not important, and they are also chosen without replacement, which means that the combination formula is used to find the number of outcomes.-----------------
Combination formula:
[tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
-----------------
The desired outcomes can be:
3 from a set of 9(all red).3 from a set of 6(all white).3 from a set of 8(all blue).Thus:
[tex]D = C_{9,3} + C_{6,3} + C_{8,3} = \frac{9!}{3!6!} + \frac{6!}{3!3!} + \frac{8!}{3!5!} = 160[/tex]
-----------------
The total outcomes are 3 from a set of 9 + 6 + 8 = 23. Thus:
[tex]T = C_{23,3} = \frac{23!}{3!20!} = 1771[/tex]
The probability is:
[tex]p = \frac{D}{T} = \frac{160}{1771} = 0.0903[/tex]
0.0903 = 9.03% probability all three marbles are the same color.
A similar problem is given at https://brainly.com/question/10896842
What is the minimum sample size required to estimate a population mean with 90% confidence when the desired margin of error is 1.25
Complete Question
What is the minimum sample size required to estimate a population mean with 90% confidence when the desired margin of error is 1.25? The standard deviation in a pre-selected sample is 7.5
Answer:
The minimum sample size is [tex]n =97[/tex]
Step-by-step explanation:
From the question we are told that
The margin of error is [tex]E = 1.25[/tex]
The standard deviation is [tex]s = 7.5[/tex]
Given that the confidence level is 90% then the level of significance is mathematically represented as
[tex]\alpha = 100 - 90[/tex]
[tex]\alpha =10\%[/tex]
[tex]\alpha =0.10[/tex]
Next we obtain the critical value of [tex]\frac{\alpha }{2}[/tex] from the normal distribution table
The value is [tex]Z_{\frac{ \alpha }{2} } = 1.645[/tex]
The minimum sample size is mathematically evaluated as
[tex]n = \frac{Z_{\frac{\alpha }{2} * s^2 }}{E^2 }[/tex]
=> [tex]n = \frac{1.645^2 * 7.5^2 }{1.25^2 }[/tex]
=> [tex]n =97[/tex]
Given a population with a mean of µ = 100 and a variance of σ2 = 1600, the central limit theorem applies when the sample size is n ≥ 25. A random sample of size n = 50 is obtained. • What are the mean and variance of the sampling distribution for the sample means? • What is the probability that ¯X > 110?
Answer:
The probability that the sample mean is more than 110 is 0.0384.
Step-by-step explanation:
According to the Central Limit Theorem if we have an unknown population with mean μ and standard deviation σ and appropriately huge random samples (n > 30) are selected from the population with replacement, then the sampling distribution of the sample mean will be approximately normally distributed.
Then, the mean of the sampling distribution of sample mean is given by:
[tex]\mu_{\bar x}=\mu[/tex]
And the variance of the sampling distribution of sample mean is given by:
[tex]\sigma^{2}_{\bar x}=\frac{\sigma^{2}}{n}[/tex]
The information provided is:
[tex]n=50\\\\\mu=100\\\\\sigma^{2}=1600[/tex]
Since n = 50 > 30, the central limit theorem can be applied to approximate the sampling distribution of sample mean by the normal distribution.
The mean variance of the sampling distribution for the sample mean are:
[tex]\mu_{\bar x}=\mu=100\\\\\sigma^{2}_{\bar x}=\frac{\sigma^{2}}{n}=\frac{1600}{50}=32[/tex]
That is, [tex]\bar X\sim N(100, 32)[/tex].
Compute the probability that the sample mean is more than 110 as follows:
[tex]P(\bar X>110)=P(\frac{\bar X-\mu_{\bar x}}{\sigma_{\bar x}}>\frac{110-100}{\sqrt{32}})[/tex]
[tex]=P(Z>1.77)\\=1-P(Z<1.77)\\=1-0.96164\\=0.03836\\\approx 0.0384[/tex]
*Use a z-table.
Thus, the probability that the sample mean is more than 110 is 0.0384.
2. Imagine you are one of the people who left the luncheon with a contagious disease and interacted with an average of 9 different people each day. How many people could potentially be infected in 7 days
Answer:
63 people.
Step-by-step explanation:
If you have a contagious disease and met with 9 different people each day for 7 days, that'll be 63 people that have gotten infected. 9 x 7 = 63. Hope this helps you!
qaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Answer:
32.8 miles
Step-by-step explanation:
Amy is driving to Seattle. Suppose that the remaining distance to drive (in miles) is a linear function of her driving time (in minutes). When graphed, the function gives a line with a slope of -0.95. See the figure below. Amy has 48 miles remaining after 31 minutes of driving. How many miles will be remaining after 47 minutes of driving?
Answer: The general equation of a line is given as y = mx + c, where m is the slope of the line and c is the intercept on the y axis. Given that the slope is -0.95, substituting in the general equation :
y = -0.95x + c
Amy has 48 miles remaining after 31 minutes of driving, to find c, we substitute y = 48 and x = 31. Therefore:
48 = -0.95(31) + c
c = 48 + 0.95(31)
c = 48 + 29.45
c = 77.45
The equation of the line is
y = -0.95x + 77.45
After 47 minutes of driving, the miles remaining can be gotten by substituting x = 47 and finding y.
y = -0.95(47) + 77.45
y = -44.65 + 77.45
y = 32.8 miles
the point p(-3,4) is reflected in the line x +2=0. find the coordinate of the image x
Answer:
(- 1, 4 )
Step-by-step explanation:
The line x + 2 = 0 can be expressed as
x + 2 = 0 ( subtract 2 from both sides )
x = - 2
This is the equation of a vertical line parallel to the y- axis and passing through all points with an x- coordinate of - 2
Thus (- 3, 4 ) is 1 unit to the left of - 2
Under a reflection in the line x = - 2
The x- coordinate will be the same distance from x = - 2 but on the other side while the y- coordinate remains unchanged.
Thus
(- 3, 4 ) → (- 1, 4 )
(II) Time intervals measured with a stopwatch typically have an uncertainty of about 0.2 s, due to human reaction time at the start and stop moments.What is the percent uncertainty of a hand-timed measurement of (a) 5.5 s, (b) 55 s, (c) 5.5 min?
Answer:
(a) 36.36%
(b) 0.36%
(c) 0.06%
Step-by-step explanation:
Given that the time intervals measured with a stopwatch have an uncertainty of about 0.2 s.
We want to know what is the percent uncertainty of a hand-timed measurement of:
(a) 5.5 s
Percentage = (0.2/5.5) × 100
≈ 36.36%
(b) 55 s
Percentage = (0.2/55)×100
≈ 0.36%
(c) 5.5 min
5.5 min = 5.5 × 60 s
= 330 s
Percentage = (0.2/330)×100
≈ 0.06%
How many solutions does the following equation have ?
−3x+9−2x=−12−5x
[tex]\text{Solve for x:}\\\\-3x+9-2x=-12-5x\\\\\text{Combine like terms}\\\\-5x+9=-12-5x\\\\\text{Add 5x to both sides}\\\\9=-12\\\\\text{Since that's not valid, there would be no solutions}\\\\\boxed{\text{No solutions}}[/tex]
In order to study the mean blood pressure of people in his town, Richard samples the population by dividing the residents by age and randomly selecting a proportionate number of residents from each age group. Which type of sampling is used?
a. Convenience sampling
b. Cluster sampling
c. Stratified sampling
d. Systematic sampling
Answer:
C Stratified sampling
Step-by-step explanation:
Stratified sampling : Stratified sampling is a type of sampling technique in which the total population is divided into smaller groups or strata to complete the sampling process. The strata is formed based on some common characteristics in the data of the population.
One of the advantage of stratified random sampling is that it covers important population characteristics in the sample.
Take thus quote, and embed (introduce) it into a complete sentence: "TV plots
and characters tended to be simple" The author is Ostergaard.
Mathematical induction is:
Answer:
The third option.
Step-by-step explanation:
Mathematical induction is a 2 step mathematical technique which is used to prove a statement, a formula or a theorem is true for every natural number.
Step 1 (Base step) - It proves that a statement is true for the initial value.
Step 2 (Inductive step) - It proves that if the statement is true for the nth iteration (or number n), then it is also true for (n + 1)th iteration (or number n + 1)
Hope this helps.
Please mark Brainliest.
Answer:
A method of improving statments
Step-by-step explanation:
"Mathematical Induction is a mathematical technique which is used to prove a statement, a formula or a theorem is true for every natural number."
Find 0.01 more than 9.154
Answer:
Hey!
Your answer is 9.164!!
Step-by-step explanation:
Adding 0.01 means just adding 1 to THE DIGIT IN THE HUNDRETH PLACE...2 SPACES RIGHT OF DECIMAL POINT!
5+1=6
SUB IN:
9.164
Solve the following equation algebraically:
3x^2=12
a.+3
b. +2
C.+3.5
d. +1.5
Answer:
Step-by-step explanation:
answer is c just took test
If SSR is 2592 and SSE is 608, then A. the standard error would be large. B. the coefficient of determination is .23. C. the slope is likely to be insignificant. D. the coefficient of determination is .81.
Answer:
D. the coefficient of determination is .81.
Step-by-step explanation:
SST = SSE + SSR
where
SST is the summation of square total
SSE is the summation of squared error estimate = 608
SSR is the summation of square of residual = 2593
with these in mind we put the values into the formula
= 2592 + 608
=3200
Coefficient of determination = SSR/SST
= 2592/3200
= 0.81
Therefore option D is the correct answer to the question.
In a random sample of 64 people, 48 are classified as 'successful.' Determine the sample proportion of 'successful' people.
Answer:
The sample proportion of 'successful' people is [tex]\frac{3}{4}[/tex].
Step-by-step explanation:
The sample consist of 64 people and 48 of them are 'successful'. Hence, the proportion of 'successful' people is:
[tex]p = \frac{n}{N}[/tex]
Where:
[tex]N[/tex] - People that forms the sample, dimensionless.
[tex]n[/tex] - People classified as 'successful', dimensionless.
Given that [tex]n = 48[/tex] and [tex]N = 64[/tex], the sample proportion of 'successful' people is:
[tex]p = \frac{48}{64}[/tex]
[tex]p = \frac{3}{4}[/tex]
The sample proportion of 'successful' people is [tex]\frac{3}{4}[/tex].
For a given confidence level, t ? df is larger than z ? . Explain how t ∗ df being slightly larger than z ∗ affects the width of the confidence interval.
Answer:
Answer is below
Step-by-step explanation:
The width of the CI is directly proportional to critical value. When t* is greater than z value, the t value would then cause the margin of error to be larger and this will in turn cause the width of the confidence interval to be larger.
Greater t*df than z* gives us a bigger margin of error. This would in turn give bigger width of confidence interval. t distribution has greater width confidence interval compared to z distribution.
The width of confidence interval is a function of the margin of error. If the critical value of t(t*) is slightly larger than the critical value of z(z*), then the width of the confidence interval will be larger.
The margin of error is the product of the critical value and the standard error. Therefore, given the same standard error value, the value of the margin of error will increases based on the value of the critical value.
Since, t* is slightly larger than z*, then the confidence interval, t will be wider.
Learn more : https://brainly.com/question/18405415
Determine whether the sequence converges or diverges. If it converges, find the limit. (If an answer does not exist, enter DNE.)
an = (−3^n)/(4n!)
Answer:
[tex]a_{i} = \frac{(-3)^{i}}{4\cdot i!}[/tex] converges.
Step-by-step explanation:
The convergence analysis of this sequence is done by Ratio Test. That is to say:
[tex]r = \frac{a_{n+1}}{a_{n}}[/tex], where sequence converges if and only if [tex]|r| < 1[/tex].
Let be [tex]a_{i} = \frac{(-3)^{i}}{4\cdot i!}[/tex], the ratio for the expression is:
[tex]r =-\frac{3}{n+1}[/tex]
[tex]|r| = \frac{3}{n+1}[/tex]
Inasmuch [tex]n[/tex] becomes bigger, then [tex]r \longrightarrow 0[/tex]. Hence, [tex]a_{i} = \frac{(-3)^{i}}{4\cdot i!}[/tex] converges.
Bob cycles 5.4 km every morning.how many feet are in 5.4 km, given that 1 mile=1.609 km and 1 mile=5,280 feet?
Answer:
17,720 ft
Step-by-step explanation:
5.4 km * (1 mile)/(1.609 km) * (5280 ft)/(1 mile) = 17,720 ft
Pablo rented a truck for one day. There was a base fee of $19.99, and there was an additional charge of 80 cents for each mile driven. Pablo had to pay
$221.59 when he returned the truck. For how many miles did he drive the truck?
Answer:
252 miles
Step-by-step explanation:
19.99 + .80x = 221.59
,80x = 201.60
x = 252
What is the volume of a sphere, to the nearest cubic inch, if the radius is 16 inches? Use π = 3.14.
Answer:
vol = 17,148 cu. in.
Step-by-step explanation:
vol = 4 / 3 * pi * r³
vol = 4 / 3 *3.14 * 16³
vol = 17,148 cu. in.
Answer:
The answer is
17149 cubic inchesStep-by-step explanation:
Volume of a sphere is given by
[tex]V = \frac{4}{3} \pi {r}^{3} [/tex]
where r is the radius of the sphere
π = 3.14
From the question
r = 16 inches
Volume of the sphere is
[tex]V = \frac{4}{3} (3.14) {16}^{3} [/tex]
V = 17148.586
We have the final answer as
V = 17149 cubic inches to the nearest cubic inch
Hope this helps you
In this diagram, bac~edf. if the area of bac= 6 in.², what is the area of edf? PLZ HELP PLZ PLZ PLZ PLZ
Answer:
Area of ΔEDF = 2.7 in²
Step-by-step explanation:
It's given in the question,
ΔBAC ~ ΔEDF
In these similar triangles,
Scale factor of the sides = [tex]\frac{\text{Measure of one side of triangle BAC}}{\text{Measure of one side of triangle EDF}}[/tex]
[tex]=\frac{\text{BC}}{\text{EF}}[/tex]
[tex]=\frac{3}{2}[/tex]
Area scale factor = (Scale factor of the sides)²
[tex]\frac{\text{Area of triangle BAC}}{\text{Area of triangle EDF}}=(\frac{3}{2})^2[/tex]
[tex]\frac{6}{\text{Area of triangle EDF}}=(\frac{9}{4})[/tex]
Area of ΔEDF = [tex]\frac{6\times 4}{9}[/tex]
= 2.67
≈ 2.7 in²
Therefore, area of the ΔEDF is 2.7 in²
The image of (-4,6) reflected along the y-axis is
a. (4, -6)
b. (-4,-6)
c. (4, 6)
d. (-4, 6)
Answer:
C(4,6)
Step-by-step explanation:
the x turns into its opposite when reflected across y same thing for y when reflected across x
Answer:
c. (4, 6)
Step-by-step explanation:
The rule of an reflection about the y-axis is: [tex]A(x,y)\rightarrow A'(-x,y)[/tex]
Apply the rule to point (-4, 6):
[tex]\frac{(-4,6)\rightarrow\boxed{(4,6)}}{(x,y)\rightarrow(-x,y)}[/tex]
Option C should be the correct answer.
A particular country has total states. If the areas states are added and the sum is divided by , the result is square kilometers. Determine whether this result is a statistic or a parameter.
Answer:
Some texts are missing from the question, I found a possible match, and here it is:
A particular country has total of 45 states. If the areas of 35 states are added and the sum is divided by 35, the result is 135,600 square kilometres. Determine whether this result is a statistic or a parameter.
Answer:
The result is a statistic because the data involved are samples.
Step-by-step explanation:
A Parameter is a numerical representation of an entire population. That is they are numbers summarizing data for an entire population. In this case, if all the 45 states were measured, the result would have been a parameter.
On the other hand, statistics are numbers that are subsets (representative portions) of an entire population. Since 35 states were chosen out of 45 states, the average area of the 35 states is a statistic and not a parameter.
Question
Consider these functions.
f(x) = -9x + 14
g(x)=-3x2
Select the correct answer from each drop-down menu.i
If x = 6, then f(6)
If g(x) -48, then x =
and x =
Submit
Answer:
[tex]\large \boxed{-40, \ 4, \ -4}[/tex]
Step-by-step explanation:
[tex]f(x)=-9x+14[/tex]
[tex]\sf Put \ x \ as \ 6.[/tex]
[tex]f(6)=-9(6)+14[/tex]
[tex]f(6)=-54+14[/tex]
[tex]f(6)=-40[/tex]
[tex]g(x)=-3x^2[/tex]
[tex]\sf Put \ g(x) \ as \ -48.[/tex]
[tex]-48=-3x^2[/tex]
[tex]\displaystyle \frac{-48}{-3} =\frac{-3x^2 }{-3}[/tex]
[tex]16=x^2[/tex]
[tex]\sqrt{16} =\sqrt{x^2 }[/tex]
[tex]x= \pm 4[/tex]
Answer:
F(6) = -9(6) + 14 = -54 + 14. f(6) = -40
G(x) = -48 / g(x) = -3(16) / g(4) = -48
Step-by-step explanation:
For the first one the drop answer is -40
For the second one its 4 then 16
I think because that whats im seeing but these are the right answers :)
Rational equation of 3/x+1=2/x-3
Answer:
x = 11
Step-by-step explanation:
3/x+1=2/x-3
Solve by using cross products
2 (x+1) = 3 (x-3)
Distribute
2x+2 = 3x-9
Subtract 2x
2x+2-2x = 3x-2x-9
2 = x-9
Add 9 to each side
2+9 =x-9+9
11 =c