What is the average rate of change from x = 0 to x = 18?

Answers

Answer 1

Average rate of change ... of what?

Given some continuous function [tex]f(x)[/tex] and some interval [tex][a,b][/tex], its average rate of change over the interval is

[tex]\dfrac{f(b)-f(a)}{b-a}[/tex]

Without knowing what your function is exactly, I can only give a symbolic answer,

[tex]\dfrac{f(18)-f(0)}{18}[/tex]

Answer 2

Answer: -5/18

Step-by-step explanation: edg


Related Questions

I need help asap!!!​

Answers

There are 360° total in a circle, so AB is half of the circle so it’s 180°. CBA is 180° also. 180°+55°=235°, 360-235= 125° which is AC

X-5y=-15x−5y=−15x, minus, 5, y, equals, minus, 15 Complete the missing value in the solution to the equation. (-5,(−5,left parenthesis, minus, 5, comma ))

Answers

Answer:

The missing value is 2. The coordinate will be (-5, 2)

Step-by-step explanation:

The question is not properly written. Find the correct question below.

If x – 5y = -15 . Complete the missing value in the solution to the equation (-5, ____)

Let the coordinate of the variables be (x, y). Comparing the coordinates (x, y) with the given coordinate (-5, __), we will discover that x = -5. To get the y coordinate, we will substitute x = -5 into the given expression as shown;

If x – 5y = -15

-5 - 5y = -15

Adding 5 both sides

-5-5y+5 = -15+5

-5y = -10

Dividing both sides by -5;

-5y/-5 = -10/-5

y = 2

Hence the missing value in the solution of the equation is 2. The coordinate will be (-5, 2)

Answer:

2

Step-by-step explanation:

I did the khan :)

15 lwholes 5 over 8 % of a number is 555 find the number

Answers

Answer:

The number is 3,552

15⅝% of 3,552 is 555

Step-by-step explanation:

15⅝% of a number is 555.

To determine what number it is, let the number be x.

Thus,

15⅝%*x = 555

[tex] \frac{125}{8}*\frac{1}{100}*x = 555 [/tex]

[tex] \frac{125}{800}*x = 555 [/tex]

[tex] \frac{125*x}{800} = 555 [/tex]

Multiply both sides by 800

[tex] \frac{125*x}{800}*800 = 555*800 [/tex]

[tex] 125*x = 444,000 [/tex]

Divide both sides by 125

[tex] \frac{125*x}{125} = \frac{444,000}{125} [/tex]

[tex] x = 3,552 [/tex]

The number = 3,552

15⅝% of 3,552 is 555

State whether the given measurements determine zero, one, or two triangles. A = 58°, a = 25, b = 28

Answers

Answer:

1

Step-by-step explanation:

I believe it is 1. Just picture or draw a diagram of the constraints. Don't quote me on this though...

Answer:

Step-by-step explanation:

apply sine formula

[tex]\frac{a}{sin ~A} =\frac{b}{sin~B} \\\frac{25}{sin~58} =\frac{28}{sin ~B} \\sin~B=\frac{28}{25} \times sin~58\\B=sin^{-1} (\frac{28}{25} \times sin ~58)=71.77 \approx 72 ^\circ[/tex]

so third angle=180-(58+72)=180-130=50°

∠C=50°

[tex]cos ~C=\frac{a^2+b^2-c^2}{2ab} \\or ~2abcos~C=a^2+b^2-c^2\\2*25*28*cos ~50=25^2+28^2-c^2\\c^2=625+784-1400 *cos~50\\c^2=1409-899.90\\c^2=509.1\\c=\sqrt{509.1} \approx 22.56 \approx 22.6[/tex]

so one triangle is formed.

which choice is the solution set for the inequality below

x < 3

Answers

Answer:

B) x < 9

Step-by-step explanation:

√x < 3

(√x)² > 3²

x < 9

prove tan(theta/2)=sin theta/1+cos theta for theta in quadrant 1 by filling in the calculations and reasons. PLEASE HELP!!!!

Answers

Answer:

See explanation

Step-by-step explanation:

We have to prove the identity

[tex]tan(\frac{\Theta }{2})=\frac{sin\Theta}{1+cos\Theta }[/tex]

We will take right hand side of the identity

[tex]\frac{sin\Theta}{1+cos\Theta}=\frac{2sin(\frac{\Theta }{2})cos(\frac{\Theta }{2})}{1+[2cos^{2}(\frac{\Theta }{2})-1]}[/tex]

[tex]=\frac{2sin(\frac{\Theta }{2})cos(\frac{\Theta }{2})}{2cos^{2}(\frac{\Theta }{2})}=\frac{sin(\frac{\Theta }{2})}{cos(\frac{\Theta }{2})}[/tex]

[tex]=tan(\frac{\Theta }{2})[/tex] [ Tan θ will be positive since θ lies in 1st quadrant ]

Given that p=x^2-y^2/x^2+xy
I. Express p in the simplest form
ii. Find the value of p, if x=-4 and y=-6

Answers

Answer:

When x = -4 and y = -6, p = 37.75

Step-by-step explanation:

Given that p = x² - y²/x² + x·y, we have;

p = (x² × x² -y² + x·y×x²)/x²

p = (x²⁺² - y² + x¹⁺² × y)/x²

p = (x⁴ - y² + x³·y)/x²

Therefore, p in the simplest form is given as follows;

[tex]p = \dfrac{x^4 - y^2 + x^3 \cdot y }{x^2}[/tex]

To find the value of p when x = -4 and y = -6, we plug in the value of x and y into the above equation to get the following equation;

[tex]p = \dfrac{(-4)^4 - (-6)^2 + (-4)^3 \cdot (-6) }{(-4)^2} = 37.75[/tex]

Therefore, the value of p when x = -4 and y = -6 is equal to 37.75.

What roles did militias play in the American Revolution? Your answer:

Answers

Hey there! I'm happy to help!

A militia is a local army. During the Battle of Lexington and Concord, the local militia (called minutemen), the militia outnumbered the British at Concord and chased them all the way back to Boston. The militia aided in many American victories during the Revolutionary War.

I hope that this helps! Have a wonderful day! :D

Mr. Lee is 32 years older than his son. Five years later, Mr. Lee’s age will be 5 times that of his son. How old is Mr. Lee now?

Answers

Answer: mr lee is 37 year .

Step-by-step explanation:32+5=37

Answer:

Mr. lee is 35 yrs old right now. his son 3

Step-by-step explanation:

after 5 yrs, his son will be 8 and lee 40, 8×5=40

I need help on this :(

Answers

Answer:

26⁹

Step-by-step explanation:

26 * 26⁸

= 26¹ * 26⁸

= 26¹⁺⁸

= 26⁹

Two co-interior angles
formed between the
two parallel lines are in the ratio of 11.7.
Find the measures
of angles

Answers

Answer:

110° and 70°

Step-by-step explanation:

The angles are supplementary, thus sum to 180°

sum the parts of the ratio, 11 + 7 = 18

divide 180° by 18 to find the value of one part of the ratio

180° ÷ 18 = 10° ← value of 1 part of the ratio

Thus

11 parts = 11× 10° = 110°

7 parts = 7 × 10° = 70°

The angles are 110° and 70°

How do u simplify each expression by combining like terms?

Answers

Answer:

1. 8y - 9y = -1y

( 8 - 9 = -1)

3. 8a - 6 +a - 1

( i have showed the like terms here)

8a - 1a= 7a

-6 - 1 = -7

7a - 7

5. -x - 2 + 15x

( i have showed the like terms here)

-x + 15x = 14x

(x = 1)

14x + 2

7.  8d - 4 - d - 2

( i have showed the like terms here)

8d - d = 7d

-4 -2 = -6

7d - 6

8. 9a + 8 - 2a - 3 - 5a

( i have showed the like terms here)

9a - 2a - 5a = 2a

8 - 3= 5

2a + 5

PLEaSE HELP!!!!!! will give brainliest to first answer

Answers

Answer:

The coordinates of A'C'S'T' are;

A'(-7, 2)

C'(-9, -1)

S'(-7, -4)

T'(-5, -1)

The correct option is;

B

Step-by-step explanation:

The coordinates of the given quadrilateral are;

A(-3, 1)

C(-5, -2)

S(-3, -5)

T(-1, -2)

The required transformation is T₍₋₄, ₁₎ which is equivalent to a movement of 4 units in the leftward direction and 1 unit upward

Therefore, we have;

A(-3, 1) + T₍₋₄, ₁₎ = A'(-7, 2)

C(-5, -2) + T₍₋₄, ₁₎ = C'(-9, -1)

S(-3, -5) + T₍₋₄, ₁₎ = S'(-7, -4)

T(-1, -2) + T₍₋₄, ₁₎ = T'(-5, -1)

Therefore, the correct option is B

AB =
Round your answer to the nearest hundredth.
B
?
2
25°
С
A

Answers

Answer:

? = 4.73

Step-by-step explanation:

Since this is a right triangle we can use trig functions

sin theta = opp / hyp

sin 25 = 2 / ?

? sin 25 = 2

? = 2 / sin 25

? =4.732403166

To the nearest hundredth

? = 4.73

PLEASE HELP
Find the area and the perimeter of the shaded regions below. Give your answer as a completely simplified exact value in terms of π (no approximations). The figures below are based on semicircles or quarter circles and problems b), c), and d) are involving portions of a square.

Answers

Answer:

perimeter is  4 sqrt(29) + 4pi  cm

area is 40 + 8pi cm^2

Step-by-step explanation:

We have a semicircle and a triangle

First the semicircle with diameter 8

A = 1/2 pi r^2 for a semicircle

r = d/2 = 8/2 =4

A = 1/2 pi ( 4)^2

  =1/2 pi *16

  = 8pi

Now the triangle with base 8 and height 10

A = 1/2 bh

  =1/2 8*10

  = 40

Add the areas together

A = 40 + 8pi cm^2

Now the perimeter

We have 1/2 of the circumference

1/2 C =1/2 pi *d

         = 1/2 pi 8

        = 4pi

Now we need to find the length of the hypotenuse of the right triangles

using the pythagorean theorem

a^2+b^2 = c^2

The base is 4 ( 1/2 of the diameter) and the height is 10

4^2 + 10 ^2 = c^2

16 + 100 = c^2

116 = c^2

sqrt(116) = c

2 sqrt(29) = c

Each hypotenuse is the same so we have

hypotenuse + hypotenuse + 1/2 circumference

2 sqrt(29) + 2 sqrt(29) + 4 pi

4 sqrt(29) + 4pi  cm

Step-by-step explanation:

First we need to deal with the half circle. The radius of this circle is 4, because the diameter is 8. The formula for the circumference of a circle is 2piR.

2pi4 so the perimeter for the half circle would be 8pi/2.

The area of that half circle would be piR^2 so 16pi/2.

Now moving on the triangle part, we need to find the hypotenuse side of AC. We will use the pythagoram theorem. 4^2+10^2=C^2

16+100=C^2

116=C^2

C=sqrt(116)

making the perimeter of this triangle 2×sqrt(116)

The area of this triangle is 8×10=80, than divided by 2 which is equal to 40.

We than just need to add up the perimeters and areas for both the half circle and triangle.

The area would be equal to 8pi+40

The perimeter would be equal to 4pi+4(sqrt(29))

Consider the following system of equations: y=2x−2 6x+3y=2 The graph of these equations consists of two lines that: 1. intersect at more than one point. 2. intersect in an infinite number of points. 3. intersect at exactly one point. 4. do not intersect.

Answers

Answer:

3.  Intersect at exactly one point.  ( (2/3), (-2/3) )

Step-by-step explanation:

To make the comparison of these lines easier, let's rewrite the 2nd equation into slope-intercept form, as the 1st equation is in slope-intercept form.

[1] y = 2x - 2

---------------------

[2] 6x + 3y = 2 ==> 3y = 2 - 6x ==> y = -2x + (2/3)

[2] y = -2x + (2/3)

So now that we have both equations in slope-intercept form, we can see that the two equations are both linear, have different slopes, and have different y-intercepts.

Since these equations have both different slopes and different y-intercepts, we know that the lines will cross at least one point.  We can confirm that the lines only cross at a single point using the fact that both equations are linear, meaning there will only be one point of crossing.  To find that point, we can simply set the equations equal to each other.

y = 2x - 2

y = -2x + (2/3)

2x - 2 = -2x + (2/3)

4x = (8/3)

x = (8/12) = (2/3)

And plug this x value back into one of the equations:

y = 2x - 2

y = 2(2/3) - 2

y = (4/3) - (6/3)

y = (-2/3)

Thus these lines only cross at the point ( (2/3), (-2/3) ).

Cheers.

Answer:

I don't understand the question

1. Solve each equation.
a. 5x – 2=8
b. 4x – 3= 2x + 9
C. 6x + 3 = 2x + 8
And show work

Answers

Answer:

a. 5×=8+2

5×=10

b. 4×-2×=9+3

2×=13

c. 6×-2×=8-3

4×=5

20. A pool holds 1440 cubic feet of water, the city charges $1.75 per cubic meter of water used.
How much will it cost to fill the pool?

Answers

Answer:Conversion units

Step-by-step explanation: 1 ft^3= 0.028m^3 .: 1440ft^3=40.776m^3, so $1.75x40.776=$71.358~ $71.36.:

Answer:

$71.36

Step-by-step explanation:

1 foot = 0.3048 metros

1 cubic feet = (0.3048metros)³ = 0.02932 cubic meters   (aprox.)

1440 cubic feet = 1440*0.02932 = 40.7763 m

$1.75 por cubic meter:

1.75*40.7763 = $71.36

Complete the square to transform the expression x2 - 2x - 2 into the form a(x - h)2 + k

Answers

Answer:

A

Step-by-step explanation:

Find the vertex form of the quadratic function below.

y = x^2 - 4x + 3

This quadratic equation is in the form y = a{x^2} + bx + cy=ax  

2

+bx+c. However, I need to rewrite it using some algebraic steps in order to make it look like this…

y = a(x - h)^2 + k

This is the vertex form of the quadratic function where \left( {h,k} \right)(h,k) is the vertex or the “center” of the quadratic function or the parabola.

Before I start, I realize that a = 1a=1. Therefore, I can immediately apply the “completing the square” steps.

STEP 1: Identify the coefficient of the linear term of the quadratic function. That is the number attached to the xx-term.

STEP 2: I will take that number, divide it by 22 and square it (or raise to the power 22).

STEP 3: The output in step #2 will be added and subtracted on the same side of the equation to keep it balanced.

Think About It: If I add 44 on the right side of the equation, then I am technically changing the original meaning of the equation. So to keep it unchanged, I must subtract the same value that I added on the same side of the equation.

STEP 4: Now, express the trinomial inside the parenthesis as a square of a binomial, and simplify the outside constants.

After simplifying, it is now in the vertex form y = a{\left( {x - h} \right)^2} + ky=a(x−h)  

2

+k where the vertex \left( {h,k} \right)(h,k) is \left( {2, - 1} \right)(2,−1).

Visually, the graph of this quadratic function is a parabola with a minimum at the point \left( {2, - 1} \right)(2,−1). Since the value of “aa” is positive, a = 1a=1, then the parabola opens in upward direction.

Example 2: Find the vertex form of the quadratic function below.

The approach to this problem is slightly different because the value of “aa” does not equal to 11, a \ne 1a  

​  

=1. The first step is to factor out the coefficient 22 between the terms with xx-variables only.

STEP 1: Factor out 22 only to the terms with variable xx.

STEP 2: Identify the coefficient of the xx-term or linear term.

STEP 3: Take that number, divide it by 22, and square.

STEP 4: Now, I will take the output {9 \over 4}  

4

9

​  

 and add it inside the parenthesis.

By adding {9 \over 4}  

4

9

​  

 inside the parenthesis, I am actually adding 2\left( {{9 \over 4}} \right) = {9 \over 2}2(  

4

9

​  

)=  

2

9

​  

 to the entire equation.

Why multiply by 22 to get the “true” value added to the entire equation? Remember, I factored out 22 in the beginning. So for us to find the real value added to the entire equation, we need to multiply the number added inside the parenthesis by the number that was factored out.

STEP 5: Since I added {9 \over 2}  

2

9

​  

 to the equation, then I should subtract the entire equation by {9 \over 2}  

2

9

​  

 also to compensate for it.

STEP 6: Finally, express the trinomial inside the parenthesis as the square of binomial and then simplify the outside constants. Be careful combining the fractions.

It is now in the vertex form y = a{\left( {x - h} \right)^2} + ky=a(x−h)  

2

+k where the vertex \left( {h,k} \right)(h,k) is \left( {{{ - \,3} \over 2},{{ - 11} \over 2}} \right)(  

2

−3

​  

,  

2

−11

​  

).

Example 3: Find the vertex form of the quadratic function below.

Solution:

Factor out - \,3−3 among the xx-terms.

The coefficient of the linear term inside the parenthesis is - \,1−1. Divide it by 22 and square it. Add that value inside the parenthesis. Now, figure out how to make the original equation the same. Since we added {1 \over 4}  

4

1

​  

 inside the parenthesis and we factored out - \,3−3 in the beginning, that means - \,3\left( {{1 \over 4}} \right) = {{ - \,3} \over 4}−3(  

4

1

​  

)=  

4

−3

​  

 is the value that we subtracted from the entire equation. To compensate, we must add {3 \over 4}  

4

3

​  

 outside the parenthesis.

Therefore, the vertex \left( {h,k} \right)(h,k) is \left( {{1 \over 2},{{11} \over 4}} \right)(  

2

1

​  

,  

4

11

​  

).

Example 4: Find the vertex form of the quadratic function below.

y = 5x^2 + 15x - 5  

Solution:

Factor out 55 among the xx-terms. Identify the coefficient of the linear term inside the parenthesis which is 33. Divide it by 22 and square to get {9 \over 4}  

4

9

​  

.

Add {9 \over 4}  

4

9

​  

 inside the parenthesis. Since we factored out 55 in the first step, that means 5\left( {{9 \over 4}} \right) = {{45} \over 4}5(  

4

9

​  

)=  

4

45

​  

 is the number that we need to subtract to keep the equation unchanged.

Express the trinomial as a square of binomial, and combine the constants to get the final answer.

Therefore, the vertex \left( {h,k} \right)(h,k) is {{ - \,3} \over 2},{{ - \,65} \over 4}  

2

−3

​  

,  

4

−65

​  

.

Answer:

(x - 1 )^2 - 3

Step-by-step explanation:

( x - 1 )^2 + ( -3)

x^2 - 2x + 1 - 3

x^2 - 2x - 2

The graph below shows Roy's distance from his office (y), in miles, after a certain amount of time (x), in minutes: Graph titled Roys Distance Vs Time shows 0 to 10 on x and y axes at increments of 1.The label on x axis is time in minutes and that on y axis is Distance from Office in miles. Lines are joined at the ordered pairs 0, 0 and 1, 1 and 2, 2 and 3, 3 and 4, 4 and 5, 4 and 6, 4 and 7, 4.5 and 7.5, 5 and 8, 6. Four students described Roy's motion, as shown in the table below: Student Description Peter He drives a car at a constant speed for 4 minutes, then stops at a crossing for 6 minutes, and finally drives at a variable speed for the next 2 minutes. Shane He drives a car at a constant speed for 4 minutes, then stops at a crossing for 2 minutes, and finally drives at a variable speed for the next 8 minutes. Jamie He drives a car at a constant speed for 4 minutes, then stops at a crossing for 6 minutes, and finally drives at a variable speed for the next 8 minutes. Felix He drives a car at a constant speed for 4 minutes, then stops at a crossing for 2 minutes, and finally drives at a variable speed for the next 2 minutes. Which student most accurately described Roy's motion? Peter Shane Jamie Felix

Answers

Answer:

Felix

Step-by-step explanation:

The graph contains 3 segments,

first one is for the first 4minutes,

second one is for the next 2 minutes (standing still)

third one is for the last 2 minutes.

Only Felix has it right, the other students use absolute time in their statements, in stead of the difference between start and end. (e.g., from 4 to 6 is 2 minutes).

The student that most accurately described Roy's motion is Felix.

How to find the function which was used to make graph?

There are many tools we can use to find the information of the relation which was used to form the graph.

A graph contains data of which input maps to which output.

Analysis of this leads to the relations which were used to make it.

We need to find the student that most accurately described Roy's motion.

Here we can see that the graph contains 3 segments, first one is for the first 4 minutes, Second one is for the next 2 minutes (standing still) and the third one is for the last 2 minutes.

Now, Only Felix has it right, the other students use absolute time in their statements, in stead of the difference between start and end.

Therefore, the student that most accurately described Roy's motion is Felix.

Learn more about finding the graphed function here:

https://brainly.com/question/27330212

#SPJ5

SAVINGS ACCOUNT Demetrius deposits $120 into his account. One week later, he withdraws $36. Write an addition expression to represent this situation. How much higher or lower is the amount in his account after these two transactions?

Answers

Answer:

+$120 - $36

Higher by $84

Step-by-step explanation:

Addition expression is an equation without the equals to sign

$120 - $36

When the first expression was made, the account was higher by $120

After the second transaction, the account would be higher by $120 - $36 = $84

Cam’s tent (shown below) is a triangular prism.
Find the surface are, including the floor of his tent
PLEASE HELP

Answers

Answer:

21.4 m²

Step-by-step explanation:

To find the surface area of this whole triangular prism, we have to look at the bases (the triangles), find their surface area, then look at the sides (the rectangles) and find theirs.

Let's start with the triangles. The area of any triangle is [tex]\frac{bh}{2}[/tex]. The base of this triangle is 2m (because there are 2 one meters) and the height is 1.7m.

[tex]\frac{2\cdot1.7}{2} = \frac{3.4}{2} = 1.7[/tex]

So the area of one of these triangles is 1.7m. Multiplying this by two, because there are two triangles in this prism:

[tex]1.7\cdot2=3.4[/tex]

Now let's find the area of the sides.

The side lengths are 2 and 3, so

[tex]2\cdot3=6[/tex], and there are 3 sides (including the bottom/floor) so [tex]6\cdot3=18[/tex].

Now we add.

[tex]18+3.4=21.4[/tex] m².

Hope this helped!

Answer: 21.4 square meters^2

Step-by-step explanation:

type in symbols to make 3,7,12,2 equal 45

Answers

Answer:

The answer is (3×7) + (12×2) .

[tex](3 \times 7) + (12 \times 2)[/tex]

[tex] = 21 + 24[/tex]

[tex] = 45[/tex]

I need hellp please its my last chance to become a senior please someone

Answers

Answer:

d= 6

r= 6/2

r=3

V= π. r². h

V= π . 3². 14

V= π. 9 . 14

V= π 126 cm³

V= 126 π cm³ (π not in number)

hope it helps^°^

Answer:if you use the formula it is 126 pi cm cubed

The answer is c

Step-by-step explanation:

Represents the solution to the inequality -9=2/3x-7<5

Answers

Answer:

-3=x <13

Step-by-step explanation:

[tex] - 9 = \frac{2x}{3} - 7 < 5[/tex]

Multiply through by 3

[tex] - 27 = 2x - 21 < 15[/tex]

Add 21 to all sides

[tex] - 6 = 2x < 36[/tex]

Divide through by 2

[tex] - 3 = x < 18[/tex]

The solutin set is

[tex]{- 3 = x < 18}[/tex]

1. Suzette ran and biked for a total of 80 miles in 9 hours. Her average running speed was 5 miles per hour (mph) and her average biking speed was 12 mph. Let x = total hours Suzette ran. Let y = total hours Suzette biked. Use substitution to solve for x and y. Show your work. Check your solution. (a) How many hours did Suzette run? (b) How many hours did she bike?

Answers

Answer:

a) Suzette ran for 4 hours

b) Suzette biked for 5 hours

Step-by-step explanation:

Speed is rate of distance traveled, it is the ratio of distance traveled to time taken. It is given by:

Speed = distance / time

The total distance ran and biked by Suzette (d) = 80 miles, while the total time ran and biked by Suzette (t) = 9 hours.

For running:

Her speed was 5 miles per hour, let the total hours Suzette ran be x and the total distance she ran be p, hence since Speed = distance / time, therefore:

5 = p / x

p = 5x

For biking:

Her speed was 12 miles per hour, let the total hours Suzette ran be y and the total distance she ran be q, hence since Speed = distance / time, therefore:

12 = q / y

q = 12y

The total distance ran and biked by Suzette (d) = Distance biked + distance ran

d = p + q

80 = p + q

80 = 5x + 12y                 (1)

The total time taken to run and bike by Suzette (t) = time spent to bike + time spent to run

t = x + y

9 = x + y                         (2)

Solving equation 1 and equation 2, multiply equation 2 by 5 and subtract from equation 1:

7y = 35

y = 35/7

y = 5 hours

Put y = 5 in equation 2:

9 = x + 5

x = 9 -5

x = 4 hours

a) Suzette ran for 4 hours

b) Suzette biked for 5 hours

how do you solve 2m-10=44+8m

Answers

Answer:

m = -9

Step-by-step explanation:

2m-10=44+8m

Subtract 2m from each side

2m-2m-10=44+8m-2m

-10 = 44+6m

Subtract 44 from each side

-10-44 = 44-44+6m

-54 = 6m

Divide by 6

-54/6 = 6m/6

-9 = m

Answer:

solve by solving the salvation for equation don't be a slave get educated from what's gave

given a right-angled triangle with area 30 square centimeters and one of the legs of the right-angled triangle has 5cm, of the sum of the altitudes of the triangle can be expressed as a/b where gcd(a,b)=1. find a+b.geometry

Answers

Answer:

See explanation

Step-by-step explanation:

If A = 30 = 1/2ab = 1/2(5)(b)

60 = 5b

b = 12

a/b = 5/12

a + b = 5 + 12 = 17

Answer:

See explanation

Step-by-step explanation:

If A = 30 = 1/2ab = 1/2(5)(b)

60 = 5b

b = 12

a/b = 5/12

a + b = 5 + 12 = 17

PLEASE help me with this question! No nonsense answers please. This is really urgent.

Answers

Answer:

last option

Step-by-step explanation:

Let's call the original angle x° and the radius of the circle y. The area of the original sector would be x / 360 * πy². The new angle, which is a 40% increase from x, can be represented as 1.4x so the area of the new sector is 1.4x / 360 * πy². Now, to find the corresponding change, we can calculate 1.4x / 360 * πy² ÷  x / 360 * πy² = (1.4x / 360 * πy²) * (360 * πy² / x). 360 * πy² cancels out so we're left with 1.4x / x which becomes 1.4, signifying that the area of the sector increases by 40%.

What is [tex]3^2*3^5[/tex]?

Answers

Answer:

[tex]3^7[/tex]

Step-by-step explanation:

[tex]3^2*3^5[/tex]

[tex]\text {Apply Product Rule: } a^b+a^c=a^{b+c}\\\\3^2*3^5=3^{2+5}=3^7[/tex]

3^7 or 2187. When you have the same number with exponents, you add the exponents together to get your answer
Other Questions
An NFL kicker will get paid based on the average hang time of his kicks. His average hang time is modeled by the following question: h=-16t^2 +97.6t. How many seconds do his kicks remain in the air on average? LEAP Communications Technology has subsidiaries in each country in which it does business. As the parent company, LEAP runs its research and development department from its home country. As a result, each foreign subsidiary remains dependent on it for new products, processes, and ideas. This illustrates the _____ model for global strategy. Lactose (milk sugar) is a carbohydrate that is formed by combining galactose and glucose. Which term best describes this molecule? what was the significance of the papacy of Avignon? What is another name of molecular biology???? A bag contains three red marbles, two green ones, one lavender one, two yellows, and two orange marbles. HINT [See Example 7.] How many sets of seven marbles include at least one yellow one but no green ones any 3 communicable diseases,its symptoms,prevention and source. In the direction perpendicular to the drift velocity, there is a magnetic force on the electrons that must be cancelled out by an electric force. What is the magnitude of the electric field that produces this force Offering 20 points and a thanks with 5 stars for your help please Nan lives 13 miles from the airport. Felipe lives 6 miles from the airport.How many more miles does Nan live from the airport than Felipe? Mai is putting money into a checking account.Let Y represent the total amount of money in the account (dollars)Let X represent the number of weeks Mai has been adding money suppose that x and y are related by the equation 550+40x =y what is the change per week in the amount of money in the account ? Given the following data: Average operating assets $ 504,000 Total liabilities $ 23,520 Sales $ 168,000 Contribution margin $ 85,680 Net operating income $ 45,360 Return on investment (ROI) is: Would someone help me rewriting these sentences correctly. Thank you. generate a continuous and differentiable function f(x) with the following properties: f(x) is decreasing at x=5 f(x) has a local minimum at x=3 f(x) has a local maximum at x=3 Suppose that you have an old car that is a real gas guzzler. It is 10 years old and could be sold to a local dealer for $ cash. The annual maintenance costs will average $ per year into the foreseeable future, and the car averages only miles per gallon. Gasoline costs $ per gallon, and you drive miles per year. You now have an opportunity to replace the old car with a better one that costs $. If you buy it, you will pay cash. Because of a 2-year warranty, the maintenance costs are expected to be negligible. This car averages miles per gallon. Should you keep the old car or replace it? Utilize a 2-year comparison period and assume that the new car can be sold for $ at the end of year 2. Assume that the salvage value of the old car at the end of year 2 will be $0. Ignore the effect of income taxes and let your MARR be %. Escoge la mejor traduccin para la siguiente oracin. They have written a long letter. A. Han escribo una carta larga B. Han escribito una carta larga. C. Han escribido una carta larga. D. Han escrito una carta larga. betty's bakery calculates the total price d in dollars for c cupcakes using the equation d=2c. What does 2 mean in this situation? 8. Define mummifcation? 10. (01.02)Given the function f(x)3x - 45which of the below expressions is correct? (1 point)5x+4f-1(x) =3f-1(x)5x - 43O f-'(x)-344-3x 4543xf-1(x) =5 Jacobs age is two years more than the sum of the ages of his siblings Becky and Micah. Which equation represents Jacobs age? A. z = x + y 2; x represents Micah's age, y represents Becky's age, and z represents Jacob's age B. x = y + z + 2; x represents Jacob's age, y represents Micah's age, and z represents Becky's age C. x = 2 + y + z; x represents Becky's age, y represents Jacob's age, and z represents Micah's age D. y = x + z 2; x represents Jacob's age, y represents Becky's age, and z represents Micah's age