Answer:
Carbonothioyl dibromide, also known as CBr2S, has a bond angle of approximately 109.5 degrees, which is the typical tetrahedral bond angle for molecules with sp3 hybridization.
The molecular shape of CBr2S is also tetrahedral, with the two bromine atoms and the sulfur atom arranged at the corners of a tetrahedron, and the carbon atom at the center.
what happens when zinc chloride reacts with potassium hydroxide and what formed?
Answer:
when the solution of potassium hydroxide and zinc chloride are mixed,the double-displacement reaction occur ,resulting in precipitation and the reaction forms potassium chloride and zinc hydroxide .
Four ATP molecules are made in the second step in glycolysis. However, the net production of ATP is two because Multiple Choice O two molecules of ATP are used to move glucose into the chloroplast o two molecules of ATP are needed to "activate glucose O ATP production cannot exceed NADH production O glycolysis is the final step of aerobic respiration o U glycolysis may occur without oxygen being present
The correct answer is "two molecules of ATP are needed to 'activate' glucose".
In the first step of glycolysis, glucose is converted into glucose-6-phosphate, which requires the input of ATP. This reaction is catalyzed by the enzyme hexokinase. Therefore, two molecules of ATP are used in the early steps of glycolysis to activate glucose and convert it into glucose-6-phosphate. In the later steps of glycolysis, four molecules of ATP are produced by substrate-level phosphorylation, but since two molecules of ATP were used in the beginning, the net production of ATP is only two molecules per glucose molecule.
It is also important to note that glycolysis is the first step of both aerobic and anaerobic respiration and can occur without oxygen being present. However, the subsequent steps of cellular respiration, such as the Krebs cycle and electron transport chain, require oxygen in aerobic respiration to produce more ATP.
What is an ATP?
ATP stands for Adenosine Triphosphate, which is a molecule that carries energy within cells. It is often referred to as the "energy currency" of the cell because it powers many cellular processes by releasing its stored energy when it is hydrolyzed to ADP (Adenosine Diphosphate) and inorganic phosphate.
To know more about ATP, visit:
https://brainly.com/question/174043
#SPJ1
structural change from a myoglobin tertiary structure to the inclusion of quaternary structure for hemoglobin
The quaternary structure of hemoglobin is responsible for the increased oxygen-carrying capacity and stability of the molecule. This structure allows hemoglobin to better transport oxygen throughout the body and is essential to life.
The structural change from myoglobin to hemoglobin includes an additional quaternary structure, which is the arrangement of two or more myoglobin subunits into a single, functional entity. This structural change allows for the cooperative binding of oxygen, meaning that the hemoglobin molecule can carry more oxygen than a single myoglobin molecule can. This is due to the increased surface area of the hemoglobin molecule, which provides more oxygen-binding sites. Additionally, the quaternary structure of hemoglobin increases the stability of the molecule, meaning it can better resist changes in pH or temperature. This is important because it allows hemoglobin to function in the wide range of temperatures and environments that are found within the human body.
To learn more about Hemoglobin :
https://brainly.com/question/11102357
#SPJ11
one chemical formula of this element with oxygen is eo2, write the electronic configuration for the ion formed from e in this compound.
The element in question here is E, and its chemical formula with oxygen is EO2. the electronic configuration of the ion formed from E in EO2 is 1s²2s²2p⁶.
Electronic configuration refers to the distribution of electrons among different energy levels and subshells of an atom. When E forms a compound with oxygen, it loses two electrons to form a cation with a 2+ charge. This cation is written as E2+ and has an electronic configuration of 1s²2s²2p⁶. The electronic configuration of E before it forms a compound with oxygen can be found by considering its position in the periodic table. E is in the third row and fourth column of the periodic table, which means that it has three energy levels and four valence electrons.
Therefore, its electronic configuration is 1s²2s²2p⁶3s²3p². When E forms a compound with oxygen, it loses two valence electrons from its outermost energy level, which is the third energy level in this case. This results in the formation of E2+ ions with an electronic configuration of 1s²2s²2p⁶. Thus, the electronic configuration of the ion formed from E in EO2 is 1s²2s²2p⁶.
Know more about electronic configuration here:
https://brainly.com/question/29564763
#SPJ11
The titration of 45.0 ml of an unknown triprotic acid required 32.71 ml of 0.37 M KOH to
reach the endpoint. What is the molarity of the unknown acid?
The molarity of the unknown triprotic acid is 0.269M.
How to calculate molarity?Molarity is the concentration of a substance in solution, expressed as the number moles of solute per litre of solution.
The molarity of the unknown acid can be calculated using the following formula:
CaVa = CbVb
Where;
Ca and Va = acid concentration and volume respectivelyCb and Vb = base concentration and volume respectivelyAccording to this question, the titration of 45.0 ml of an unknown triprotic acid required 32.71 ml of 0.37 M KOH to reach the endpoint.
45 × Ca = 32.71 × 0.37
45Ca = 12.1027
Ca = 0.269M
Learn more about molarity at: https://brainly.com/question/8732513
#SPJ1
Write the electronic configuration and draw the orbital diagram for the element: lead (Z=82) State if it is diamagnetic/paramagnetic. Please decide the diamagnetic/paramagnetic property based on the orbital diagram only! (It is okay to use the noble gas in square brackets here)
Answer:
See below.
Explanation:
The atomic number of lead (Pb) is 82, which means it has 82 electrons. The electronic configuration of lead is
1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 5s² 5p⁶ 4f¹⁴ 5d¹⁰ 6s² 6p²
The orbital diagram for the valence electrons of lead (Pb) is
↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓
s s p p p p d d
2 1 6 2 6 2 10 10
|||||||||
1 2 3 4 5 6 7 8
The notation ↑↓ represents a pair of electrons with opposite spins.
To determine if lead (Pb) is diamagnetic or paramagnetic, we need to look at whether there are any unpaired electrons. Based on the orbital diagram, we can see that all the electrons in the valence shell are paired, meaning that lead (Pb) is diamagnetic.
Which statement below correctly describes their relative atomic radii and first ionization energy when comparing Se and Br? The atomic radius for Se is larger than Br, and the first ionization energy for Se is greater than Br. The atomic radius for Br is larger than Se, and the first ionization energy for Bris greater than Se. The atomic radius for Se is larger than Br, and the first ionization energy for Br is greater than Se. The atomic radius for Br is larger than Se, and the first ionization energy for Se is greater than Br.
At has a higher initial ionisation energy than Br, while Br has a bigger atomic radius. Se has a bigger atomic radius than Br, and Br has a higher initial ionisation energy than Se.
How do atomic radii and ionisation energy relate to one another (i.e., what happens to ionisation energy as atomic radii grow)?The most loosely bound electron is further from the nucleus and thus easier to remove in bigger atoms. Hence, the ionisation energy should decrease as size (atomic radius) increases.
Why does ionisation energy rise across a period while decreasing down a group?This is because the outer electrons aren't bound as strongly because they are farther from the nucleus.
To know more about ionisation energy visit:-
brainly.com/question/27356170
#SPJ1
For Mn3+, write an equation that shows how the cation acts as an acid. express your answer as a chemical equation including phases.
Mn3+, an ion of manganese(III), can function as an acid by giving a proton (H+) to a base. Here's an illustration: Mn3+ (aq) + 3OH- (aq) Mn(OH)3 (s)
What colour are Mn2+ and MnO4?There is no need to add an indicator because MnO4's vivid purple colour serves as one enough. In the conical flask, there is Fe2+. The Fe2+ solution is added, and the Fe2+ lowers the MnO4- to Mn2+. As Mn2+ is a colourless solution, the purple colour disappears.
What is the ion Mn2name? +'sThe divalent metal cation manganese(2+) contains manganese as the metal. It plays the part of a cofactor. It consists of a monoatomic dication, a manganese cation, and a divalent metal cation.
To know more about cation visit:-
https://brainly.com/question/28710898
#SPJ1
Part 1. A lightly inflated balloon is placed in a freezer. Explain the change to the size of the balloon based on the kinetic molecular theory.
Part 2. What would most likely happen to the balloon if it was instead kept outside in the sun for some time? Explain your answer based on the kinetic molecular theory.
In both cases, assume the balloon is tied tight enough so that air does not escape.
Part 1: When a lightly inflated balloon is placed in a freezer, the temperature of the air molecules inside the balloon decreases. According to the kinetic molecular theory, the volume of a gas is directly proportional to its temperature. As the temperature of the air molecules inside the balloon decreases, the average kinetic energy of the air molecules also decreases, causing the gas to contract. This contraction leads to a decrease in the volume of the gas inside the balloon, which causes the balloon to shrink in size.
Part 2: If the balloon is instead kept outside in the sun for some time, the temperature of the air molecules inside the balloon will increase. According to the kinetic molecular theory, an increase in temperature leads to an increase in the average kinetic energy of the gas molecules, causing them to move faster and collide more frequently. This increased collision frequency leads to an increase in pressure, which causes the balloon to expand in size. Therefore, the balloon will most likely get bigger when it is exposed to the heat of the sun.
Answer:
simple answer
Explanation:
part 1: if the balloon's temperature decreases so does the air molecules within it. The gas contracts because it's in a seal place, causing the balloon to shrink.
part 2: the balloon is exposed to heat, so the temperature is obviously going to increase as well as the air molecules. Gas molecules are moving rapidly causing the balloon to expand.
Given that 4 NH3 + 5 O2 → 4 NO + 6 H2O, if 3.00 mol NH3 were made to react with excess of oxygen gas, the amount of H2O formed would be
identify which of the following atoms would have the lowest first ionization energy. a) ca b) c c) ge d) p e) cl
The atom with the lowest first ionization energy is C (carbon). The order from highest to lowest is: e) Cl (chlorine) > d) P (phosphorus) > c) Ge (germanium) > b) C (carbon) > a) Ca (calcium).
The atom that would have the lowest first ionization energy is Ca (Calcium). The amount of energy that is required to remove the most loosely held electron from an isolated neutral gaseous atom to form a cation is called the first ionization energy. It is a measure of the stability of an atom. The ionization energy of an element is determined by the amount of energy required to remove an electron from its ground state. The ionization energy is a physical property of an element that varies across the periodic table. The element that has the lowest ionization energy is the most reactive and will most likely form cations.
Identify which of the following atoms would have the lowest first ionization energy. The given atoms are Ca, C, Ge, P, and Cl. Out of these atoms, Ca would have the lowest first ionization energy. The electronic configuration of Ca is 2, 8, 8, 2. Calcium belongs to group 2 and period 4 of the periodic table. It has 20 protons, 20 electrons, and 2 valence electrons. Because of its 2 valence electrons, it has a low ionization energy. The electronic configuration of Ca is most stable because of the presence of the 8 valence electrons in the outermost shell.
The electronic configurations of the other given atoms are:
C: 2, 4Ge: 2, 8, 18, 4P: 2, 8, 5Cl: 2, 8, 7
All of these elements have electrons that are either in the process of filling the valence shell or have already filled it. They have higher ionization energies because of this. Therefore, Ca would have the lowest first ionization energy.
For more such questions on ionization energy , Visit:
https://brainly.com/question/20658080
#SPJ11
The enthalpy of vaporization for dimethyl ether is 27.5 kJ/mol. Dimethyl ether has a vapor pressure of 760 torr at 34.6 oC. Using the Clausius-Clapeyron equation, what is the vapor pressure for methanol at 4.2 oC? Give your answer in torr, to the first decimal point.
The vapor pressure of methanol at 4.2 oC is approximately 1.6 torr.
What is the vapor pressure of methanol?The Clausius-Clapeyron equation relates the vapor pressure of a substance at two different temperatures and its enthalpy of vaporization. The equation is:
ln(P2/P1) = (-ΔHvap/R)(1/T2 - 1/T1)
where;
P1 and T1 are the vapor pressure and temperature at the first state, P2 and T2 are the vapor pressure and temperature at the second state, ΔHvap is the enthalpy of vaporization, R is the gas constant, and ln is the natural logarithm.We are given the enthalpy of vaporization for dimethyl ether, which is 27.5 kJ/mol. We are also given the vapor pressure of dimethyl ether at 34.6 ⁰C, which is 760 torr.
We want to find the vapor pressure of methanol at 4.2 ⁰C.
Let's choose the vapor pressure of dimethyl ether at 34.6 ⁰C as the first state, and the vapor pressure of methanol at 4.2 ⁰C as the second state. We can convert the temperatures to kelvin by adding 273.15:
T1 = 34.6 + 273.15 = 307.75 K
T2 = 4.2 + 273.15 = 277.35 K
We can plug in the values into the Clausius-Clapeyron equation:
ln(P2/760) = (-27.5×10^3 J/mol)/(8.314 J/(mol·K)) × (1/277.35 K - 1/307.75 K)
Simplifying:
ln(P2/760) = -5.721
Taking the exponential of both sides:
P2/760 = e^-5.721
Multiplying both sides by 760:
P2 = 1.65 torr (to the nearest tenth)
Learn more about vapor pressure here: https://brainly.com/question/4463307
#SPJ1
There are 7.68 × 1025 atoms of phosphorous in how many moles of diphosphorous pentoxide?
Answer:
7.68 x 1025 atoms of phosphorous correspond to 1.06 mole of diphosphorous pentoxide. This can also be written as 1.06 mol of P2O5.
1) what is the empirical formula of a molecule containing 65.5% carbon, 5.5% hydrogen, and 29% oxygen? worksheet
The empirical formula of a molecule containing 65.5% carbon, 5.5% hydrogen, and 29% oxygen is CH2O.
To calculate this, you need to first convert the percentage composition into mass composition. This is done by multiplying the percentages by the molecular weight of each element.
Carbon: 65.5% x 12 g/mol = 0.786 g/mol
Hydrogen: 5.5% x 1 g/mol = 0.055 g/mol
Oxygen: 29% x 16 g/mol = 0.464 g/mol
Now that you have the mass composition, you can calculate the moles of each element by dividing the mass of each element by its molar mass.
Carbon: 0.786 g/mol / 12 g/mol = 0.065 mol
Hydrogen: 0.055 g/mol / 1 g/mol = 0.055 mol
Oxygen: 0.464 g/mol / 16 g/mol = 0.029 mol
Finally, divide each element's moles by the smallest moles to get the empirical formula.
Carbon: 0.065 mol / 0.029 mol = 2.24 = 2 mol
Hydrogen: 0.055 mol / 0.029 mol = 1.90 = 1 mol
Oxygen: 0.029 mol / 0.029 mol = 1.00 = 1 mol
Therefore, the empirical formula of the molecule is CH2O.
For more such questions on empirical formula , Visit:
https://brainly.com/question/1603500
#SPJ11
write a balanced equation for the redox reaction between calcium metal and oxygen gas
a balanced equation for the redox reaction: 2 Ca(s) + O2(g) → 2 CaO(s)
What is a redox reaction?A redox reaction is a type of chemical reaction that involves the transfer of electrons between species. One species undergoes oxidation (loses electrons) while another species undergoes reduction (gains electrons).
Which species is being oxidized and which species is being reduced in the reaction between calcium metal and oxygen gas?In the reaction between calcium metal and oxygen gas, the calcium metal is being oxidized (loses electrons) and the oxygen gas is being reduced (gains electrons). This can be seen in the balanced equation where the calcium atoms go from having an oxidation state of 0 to +2, while the oxygen atoms go from having an oxidation state of 0 to -2.
Learn more about redox reaction here:
https://brainly.com/question/13293425
#SPJ1
What is the amount of pi?
However, it is commonly approximated as 3.14159.
What is an irrational number ?An irrational number is a number that cannot be expressed as a simple fraction or ratio of two integers. It is a non-repeating, non-terminating decimal. Examples of irrational numbers include pi (π), the square root of 2 (√2), and the golden ratio (∅).
What is a termination ?In mathematics, a terminating decimal is a decimal number that has a finite number of digits after the decimal point, i.e., the decimal representation ends in a finite number of zeroes. For example, 0.75, 2.0, and 0.0625 are terminating decimals.
To know more about irrational visit :
https://brainly.com/question/15837135
#SPJ1
which the following optically active alcohol is treated with hbr, a racemic mixture of alkyl bromides is obtained
(S)-2-butanol will undergo an SN2 reaction with HBr to produce a racemic mixture of alkyl bromides. Here option B is the correct answer.
When optically active alcohol is treated with HBr, the reaction follows an SN1 or SN2 mechanism. In the case of SN1, a carbocation intermediate is formed, and in SN2, a backside attack by the nucleophile occurs. The stereochemistry of the product depends on the configuration of the intermediate and the direction of attack.
In the case of (S)-2-butanol, the hydroxyl group is attached to the second carbon atom, which makes it a primary alcohol. When treated with HBr, it undergoes an SN2 reaction, where the hydroxyl group is replaced by the bromine atom. The nucleophile attacks from the backside of the molecule, leading to an inversion of configuration.
This results in the formation of a racemic mixture of alkyl bromides, as both enantiomers have an equal chance of being attacked from either side. On the other hand, (R)-2-butanol, being the enantiomer of (S)-2-butanol, will also undergo the same reaction and produce the same racemic mixture of alkyl bromides.
In the case of (R)-1-phenyl ethanol and (S)-1-phenyl ethanol, they are secondary alcohols and can undergo either SN1 or SN2 reactions depending on the reaction conditions. However, the reaction mechanism will lead to the formation of a mixture of diastereomers, rather than a racemic mixture of enantiomers.
To learn more about alkyl bromides
https://brainly.com/question/29031148
#SPJ4
Complete question:
Which of the following optically active alcohols, when treated with HBr, results in a racemic mixture of alkyl bromides?
a) (R)-2-butanol
b) (S)-2-butanol
c) (R)-1-phenyl ethanol
d) (S)-1-phenyl ethanol
FILL IN THE BLANK. Use the Gizmo to find the freezing, melting, and boiling points of water at 5,000 meters (16,404 feet). Write these values below. Freezing point: _______ Melting point: _______ Boiling point: _______
If we use the Gizmo to find the freezing, melting, and boiling points of water at 5,000 meters (16,404 feet) then,
Freezing point: 32 ºF (0ºC)
Melting point: 32 ºF (0ºC)
Boiling point: 203°F (95°C)
The freezing point is defined as the temperature at which a liquid becomes a solid. Increased pressure usually raises the freezing point with the melting point of the solid. The boiling point of a pure substance is defined as the temperature at which the substance transitions from a liquid to the gaseous phase. At the boiling point the vapor pressure of the liquid is equal to the applied pressure on the liquid. The melting point of a substance is defined as the temperature at which the substance changes from a solid to a liquid.
Melting occurs at a single temperature for the pure substances. The normal and average melting point and boiling point of water at 1 atmospheric pressure are 0°C and 100°C respectively. Decreasing the pressure under 1 atm. will lower the boiling point since the external pressure will be lower so it will become equal with the vapor pressure at a lower temperature.
To learn more about Freezing point
https://brainly.com/question/40140
#SPJ4
Which equation is a correctly written thermochemical equation?
OC3H8 (g) +502 (g) → 3CO2 (g) + 4H₂O (1), AH= -2,220 kJ/mol
OFe (s) + O2 (g) → Fe₂O3 (s), AH= -3,926 kJ
ONH₂Cl → NH₂ + + Cl
O2C8H18 + 250216CO2 + 18H₂O, AH=-5,471 kJ/mol
Answer:
The correctly written thermochemical equation is:
C3H8 (g) + 5O2 (g) → 3CO2 (g) + 4H2O (l), ΔH = -2,220 kJ/mol
This equation represents the combustion of propane (C3H8) in the presence of oxygen (O2) to produce carbon dioxide (CO2) and water (H2O), with a heat release of -2,220 kJ/mol. The state symbols (g) for gases and (l) for liquids indicate the physical state of each substance at standard conditions.
Explanation:
ABOVE
AsH3, HBr, KH, H2Se arrange in increasing order of acid strength
Answer:
Transcribed Image Text: Rank the following substances in order of increasing acid strength. (1 as least and 4 as most in acid strength) ✓ H₂Se ✓ HBr HI ✓ AsH3 Expert Solution
Explanation:
HOPE IT HELPS!!
Predict the principal organic product of the following reaction. Specify stereochemistry where appropriate.
The major organic product of an SN2 substitution reaction is an alkene, which may be either in retention or inversion of configuration relative to the original substrate.
The reaction you are asking about is an SN2 substitution reaction, in which a nucleophile (Nu) displaces a leaving group (LG) from a molecule with an alkyl halide substrate. The major organic product of this reaction will be an alkene, which has the same carbon chain as the alkyl halide substrate. Depending on the relative configuration of the substrate, the alkene product may be the same as the original substrate (retention) or have its configuration inverted (inversion). If stereochemistry is relevant to the question, then it should be specified in the answer.
To learn more about SN2 substitution :
https://brainly.com/question/29849583
#SPJ11
A 0.036 M aqueous nitrous acid (HNO2) solution has an osmotic pressure of 0.93 atm at 25°C. Calculate the percent ionization of the acid.
The percent ionization of the nitrous acid in the 0.036 M aqueous solution is 2.1%.
How to calculate the percent ionization of the acid ?
The osmotic pressure (π) of a solution can be related to the molar concentration (M) of the solute and the temperature (T) of the solution by the following equation:
π = MRT
Where R is the gas constant.
We can use this equation to calculate the molar concentration of the nitrous acid solution:
M = π / RT
M = (0.93 atm) / (0.0821 L·atm/(mol·K) x 298 K)
M = 0.036 M
This is the molar concentration of the undissociated nitrous acid in the solution. To calculate the percent ionization of the acid, we need to know the concentration of the H+ and NO2- ions in the solution.
The balanced chemical equation for the dissociation of nitrous acid is:
HNO2(aq) ⇌ H+(aq) + NO2-(aq)
Let x be the extent of ionization of the nitrous acid. Then the concentration of H+ and NO2- ions can be expressed in terms of x as follows:
[H+] = x M
[NO2-] = x M
The concentration of the undissociated nitrous acid is (1-x)M.
The expression for the equilibrium constant (Ka) of the reaction can be written as:
Ka = [H+] [NO2-] / [HNO2]
Substituting the concentrations in terms of x, we get:
Ka = x^2M / (1-x)M
Simplifying the above equation, we get:
Ka = x^2 / (1-x)
The percent ionization of the acid is the fraction of the original HNO2 molecules that dissociate into H+ and NO2- ions. It can be calculated as follows:
% ionization = (concentration of H+ ions) / (initial concentration of HNO2) x 100
% ionization = (x M) / (M) x 100
% ionization = x x 100
Substituting the value of x from the above equation for Ka, we get:
Ka = x^2 / (1-x)
x = sqrt(Ka / (1+Ka))
We can calculate the value of Ka using the standard reference value of the acid dissociation constant (Ka) for nitrous acid at 25°C, which is 4.5 x 10^-4.
x = sqrt(4.5 x 10^-4 / (1+4.5 x 10^-4))
x = 0.021
% ionization = 0.021 x 100
% ionization = 2.1%
Therefore, the percent ionization of the nitrous acid in the 0.036 M aqueous solution is 2.1%.
Learn more about osmotic pressure here : brainly.com/question/25413362
#SPJ1
2. Hydrogen bromide reacts with propene to form either 1-bromopropane or 2-bromopropane. Explain why
2-bromopropane is the major product.
3. Explain how the reaction with bromine can be used to test for an alkene. Include the mechanism for the reaction between hex-1-ene and bromine in your answer.
a) Describe the process of addition polymerisation.
b) Show the repeating unit of the polymer that is formed from the addition polymerisation of chloroethene monomers. Name and give at least one use for this polymer.
Answer:
Explanation:
2-bromopropane is the major product because the reaction mechanism involves the formation of the most stable carbocation intermediate. When hydrogen bromide reacts with propene, the hydrogen atom from HBr adds to the carbon atom of the double bond that has fewer hydrogen atoms attached, resulting in the formation of a carbocation intermediate. The intermediate can either form 1-bromopropane or 2-bromopropane depending on the position of the carbocation. The 2-bromopropane is the major product because the secondary carbocation formed in this case is more stable than the primary carbocation formed in the case of 1-bromopropane.
To test for an alkene, bromine water can be used. When an alkene reacts with bromine water, the bromine molecule adds across the double bond, forming a colorless dibromoalkane product. The mechanism for the reaction between hex-1-ene and bromine involves the formation of a cyclic bromonium ion intermediate, followed by the attack of water on the intermediate, resulting in the formation of the dibromoalkane product.
a) Addition polymerization is a process in which unsaturated monomers are joined together to form a polymer. The process involves breaking the double bond of the monomer and joining the monomers together to form a long-chain polymer. The process requires a catalyst to initiate the reaction.
b) The repeating unit of the polymer formed from the addition polymerization of chloroethene monomers is -CH2-CHCl-. This polymer is called polyvinyl chloride (PVC), and it has a wide range of uses, including pipes, electrical cables, and vinyl flooring.
Which transition metal can form both a high and low spin complex? Zn2+, Cu2+, Mn3+, Ti2+
Answer: Manganese
Explanation:
With titanium, it only has two d electrons, so it can't form different high and low spin complexes. It doesn't matter because it will never fill the higher-energy orbitals. The total spin state turns out to be +1 (two unpaired d electrons, no matter what). Therefore, manganese will form both a high and low spin complex.
Chemistry Help Please! It's worth a lot of points
1.Write the equilibrium expression for the following reactions
a. H2SO4(aq) + H2O(L) ⇆ HSO4-(aq) + H3O+(aq)
b. 4NH3(g) + 5O2(g) ⇆ 4NO(g) + 6H2O(g)
c. NH4Cl(s) ⇆ NH3(g) + HCl(g)
d. N2O4(g) ⇆ 2NO2(g)
2. The following reaction has a K value of 0.050. What does that mean about the concentrations of the reactants as compared to the products? Be specific in your answer.
N2(g) + 3H2(g) ⇆ 2NH3(g)
3. The following reaction has a K value of 6.8 x 103. What does that mean about the concentrations of the reactants as compared to the products? Be specific in your answer.
2SO3(g) ⇆ 2SO2(g) + O2(g)
4. When dissolving substances in water, the degree of solubility of a substance is often represented as the solubility product constant (Ksp). The solubility product constant is the same thing as the equilibrium constant for the dissolving reaction. Two substances that dissociate in water are shown below alone with the Ksp.
NaCl(s) ⇆ Na+(aq) + Cl-(aq) Ksp = 36
BaSO4(s) ⇆ Ba2+(aq) + SO42-(aq) Ksp = 1.1 x 10-16
5. Identify and label the Brønsted-Lowry acid, its conjugate base, the Brønsted-Lowry base, and its conjugate acid in each of the following equations:
a. HNO3 + H2O ⟶ H3O+ + NO3−
b. CN− + H2O ⟶ HCN + OH−
c. H2SO4 + Cl− ⟶ HCl + HSO4−
d. HSO4− + OH− ⟶ SO42− + H2O
e. O2− + H2O ⟶2OH−
6. What is the conjugate acid of each of the following? What is the conjugate base of each of the following?
a. OH-
b. H2O
c. HCO3-
d. NH3
e. HSO4-
7. The following acids are shown with their equilibrium constants (also known as the acid dissociation constant). Rank these acids from strongest to weakest. Explain your ranking.
HCN(aq) + H2O(L) ⇆ H3O+(aq) + CN-(aq) K = 6.2 x 10-10
HC2H3O2(aq) + H2O(L) ⇆ H3O+(aq) + C2H3O-(aq) K = 1.75 x 10-5
H2CO3(aq) + H2O(L) ⇆ H3O+(aq) + HCO3-(aq) K = 4.5 x 10-7
HIO4(aq) + H2O(L) ⇆ H3O+(aq) + IO4-(aq) K = 2.3 x 10-2
8. Calculate the pH and the pOH of each of the following solutions.
a. 0.200 M HCl
b. 0.0143 M NaOH
c. 3.0 M HNO3
d. 0.0031 M Ca(OH)2
9. Wine has a pH of 3.6. What are the hydronium and hydroxide ion concentrations?
10. The hydroxide ion concentration in household ammonia is 3.2 x 10-3 M. What is the concentration of hydronium ions?
Answer:
1. Equilibrium expressions:
a. K = [HSO4-][H3O+]/[H2SO4][H2O]
b. K = [NO]^4[H2O]^6/[NH3]^4[O2]^5
c. K = [NH3][HCl]/[NH4Cl]
d. K = [NO2]^2/[N2O4]
2. Since K = 0.050, the concentrations of the reactants (N2 and H2) are larger than the concentrations of the products (NH3).
3. Since K = 6.8 x 10^3, the concentrations of the products (SO2 and O2) are larger than the concentrations of the reactant (SO3).
4. The Ksp expression for each of the reactions is:
a. Ksp = [Na+][Cl-]
b. Ksp = [Ba2+][SO42-]
5. Brønsted-Lowry acids and bases:
a. Acid: HNO3; Conjugate base: NO3-; Base: H2O; Conjugate acid: H3O+
b. Acid: HCN; Conjugate base: CN-; Base: H2O; Conjugate acid: HCN
c. Acid: H2SO4; Conjugate base: HSO4-; Base: Cl-; Conjugate acid: HCl
d. Acid: NH3; Conjugate base: NH2-; Base: H2O; Conjugate acid: NH4+
e. Acid: H2O; Conjugate base: OH-; Base: O2-; Conjugate acid: OH-
6. Conjugate acids and bases:
a. Acid: H2O; Conjugate base: OH-
b. Acid: H3O+; Conjugate base: H2O
c. Acid: H2CO3; Conjugate base: HCO3-
d. Acid: NH4+; Conjugate base: NH3
e. Acid: HSO4-; Conjugate base: SO42-
7. The strongest acid is HIO4 (highest K value), followed by HCN, HC2H3O2, and H2CO3 (lowest K value). The K values represent the degree to which the acids dissociate in solution. HIO4 is a strong acid, meaning it dissociates almost completely in solution, while H2CO3 is a weak acid, meaning it only dissociates partially.
8. pH and pOH calculations:
a. pH = -log[H3O+] = -log(0.200) = 0.699; pOH = -log[OH-] = -log(1.0 x 10^-14/0.200) = 12.301
b. pOH = -log[OH-] = -log(0.0143) = 1.844; pH = 14.000 - pOH = 12.156
c. pH = -log[H3O+] = -log(3.0) = 0.522; pOH = 13.478
d. pOH = -log[OH-] = -log(0.0062) = 2.206; pH = 14.000 - pOH = 11.794
9. Hydronium and hydroxide ion concentrations:
pH = 3.6; hydronium ion concentration = 10^-pH = 3.98 x 10^-4 M; hydro
(Please could you kindly mark my answer as brainliest you could also follow me so that you could easily reach out to me for any other questions)
How many calories are required to raise the temperature of a 35.0 g sample from 35 °C to 85 °C? The sample has a specific heat of 0.108 cal/g °C.
Answer:
First, we need to calculate the change in temperature:
ΔT = final temperature - initial temperature
ΔT = 85 °C - 35 °C
ΔT = 50 °C
Next, we can use the following formula to calculate the heat energy required:
Q = m·C·ΔT
where Q is the heat energy in calories, m is the mass of the sample in grams, C is the specific heat in cal/g °C, and ΔT is the change in temperature in °C.
Plugging in the given values, we get:
Q = 35.0 g · 0.108 cal/g °C · 50 °C
Q = 189.0 calories
Therefore, 189.0 calories are required to raise the temperature of the sample from 35 °C to 85 °C
How many atoms of lithium are in 18.7 g?
The atoms of lithium that are in 18.7 g is 16 × 10²³ atoms . This is taken out by mole concept .
What is mole concept ?The mole is a unit of measurement similar to the pair, dozen, gross, and so on. It provides a precise count of the atoms or molecules in a bulk sample of matter. A mole is the amount of substance that contains the same number of discrete entities (atoms, molecules, ions, etc.)
if 7 grams of lithium contain 6 × 10²³ atoms
then 18.7 will contain 16 × 10²³ atoms
to know more about mole concept , visit ;
brainly.com/question/31123980
#SPJ1
A student sets up a titration with a * 1 point buret filled with 0.5 M NaOH. In the flask below they place the phenolphthalein indicator and 6.2 mL of the unknown acid. The solution in the beaker turns pink after exactly 24.8 mL of NaOH have been added. Find the exact concentration of the unknown acid.
Please help me. Thank you
The standard change in Gibbs energy at 25 degree Celsius is 490.6 °C. for given equilibrium partial pressure .
What is Gibbs energy ?The Gibbs energy is the thermodynamic potential that is minimized when a system reaches chemical equilibrium at constant pressure and temperature when not driven by an applied electrolytic voltage. Its derivative with respect to the reaction coordinate of the system then vanishes at the equilibrium point.
Using the formula
ΔG° = - R × T ln K
WHERE R= 8.3144598 J⋅mol⁻¹⋅K⁻¹.
T = 298 K
K = 0.82
SOLVING ,
The standard change in Gibbs energy at 25 degree Celsius is 490.6 °C.
To know more about Gibbs energy , visit ;
brainly.com/question/20358734
#SPJ1
A 106 mL solution of a dilute acid is added to 157 mL of a base solution in a coffee-cup calorimeter. The temperature of the solution increases from 22.94 oC to 27.29 oC. Assuming the mixture has the same specific heat (4.184J/goC) and density (1.00 g/cm3) as water, calculate the heat (in J) transferred to the surroundings, qsurr.
Answer:
4897 J
Explanation:
The heat transferred to the surroundings, q_surr, can be calculated using the equation:
q_surr = -q_rxn = -CmΔT
where C is the specific heat capacity of the mixture (assumed to be the same as water, 4.184 J/g°C), m is the mass of the mixture (which we can calculate using the density, assuming that the volumes are additive), and ΔT is the change in temperature (in Celsius).
First, let's calculate the mass of the mixture:
density of water = 1.00 g/cm^3
volume of mixture = volume of acid + volume of base = 106 mL + 157 mL = 263 mL = 0.263 L
mass of mixture = density of water x volume of mixture = 1.00 g/cm^3 x 0.263 L = 263 g
Next, let's calculate the change in temperature:
ΔT = final temperature - initial temperature = 27.29°C - 22.94°C = 4.35°C
Now we can calculate the heat transferred to the surroundings:
q_surr = -CmΔT
q_surr = -(4.184 J/g°C) x (263 g) x (4.35°C)
q_surr = -4897 J
Note that the negative sign indicates that heat is lost by the system to the surroundings. Therefore, the heat transferred to the surroundings, q_surr, is 4897 J.