Answer:
18.84
Step-by-step explanation:
Answer:
18.84
Step-by-step explanation:
Find the value of x.
A. 99
B. 9
C. 90
D. 11
ILL GIVE BRAINLIEST
Answer:
B) 9
Step-by-step explanation:
Because there's a square between the 2 angles, that means these angles are complementary (angles that add up to 90°). So:
5x - 9 + 6x = 90
11x - 9 = 90
11x = 90 + 9
11x = 99
x = 9
Answer:
B.9
Step-by-step explanation:
The way to solve this is by noticing that these angles are complementary(they add up to 90 degrees). So you add the equations together and equal them to 90. 5x-9+6x=90.Then you solve to find that x=9.
help please like PLEASE ASAP
Answer:
1/5^5
Step-by-step explanation:
Flip the equation into a fraction.
:>
Help me please please help me please
Answer:
the first one...
the cost of renting the ally for 14 hours
Step-by-step explanation:
Answer:
the first one
the number of dollars it costs to rent the bowling lane for14 hours
i’m having trouble with this question. if anyone can answer it would mean a lot
Answer:
Step-by-step explanation:
x = - 48/-8 = 6
c = c^2/c^1 = c^(2-1) = c^1
d = d^4 / d^1 = d^(4 - 1) = d ^3
x = 6
e = 1
f = 3
Which pair shows equivalent expressions?
O 2x+10=-2(x-5)
O-2(x+5)=2x-10
0 -2x-10=-2(x+5)
O -2(x-5)=-2x-10
Answer:
O-2(x+5)=2x-10
Explanation
O-2(x+5)=2x-10
SOLUTION
-2x(x)= -2x
-2x+5 = -10
WILL GIVE BRAINLIEST, HELP QUICK!!
Answer:
the answer is 5 units
Step-by-step explanation:
You can look at the location of B and C and see that the line goes from 2 to -2 which is 5 units apart. -2, -1, 0, 1, 2
Find the line’s slope and a point on the line
Y-4=-3/4(x+5)
Answer:
The slope is -3/4 and a point on the line is (-5,4)
Step-by-step explanation:
This equation is in point slope form
y -y1 = m(x-x1)
where m is the slope and (x1,y1) is a point on the line
Y-4=-3/4(x+5)
Y-4=-3/4(x - -5)
The slope is -3/4 and a point on the line is (-5,4)
15 points f (x) = 1/x+5 -1. Find the inverse of (x) and its domain.
Answer:
D
Step-by-step explanation:
[tex]f(x)=\frac{1}{x+5} -1\\let~f(x)=y\\y=\frac{1}{x+5} -1\\flip~x~and~y\\x=\frac{1}{y+5} -1\\x+1=\frac{1}{y+5} \\y+5=\frac{1}{x+1} \\y=\frac{1}{x+1} -5\\f^{-1}(x)=\frac{1}{x+1} -5\\x+1\neq 0\\x\neq -1[/tex]
In the diagram below, lines AB and CD are...
Answer:
Perpendicular
Step-by-step explanation:
Perpendicular lines intersect and create 4 90 degree angles
Line AB and CD intersect and create 4 90 degree angles therefore line AB and CD are perpendicular
Find the discernment and the numbers of the number of real roots for this equation.
x^2+3x+8=0
Answer: 2 distinct complex solutions (ie non real solutions).
Work Shown:
The given equation is in the form ax^2+bx+c = 0, so
a = 1, b = 3, c = 8
Plug those into the formula below to find the discriminant
D = b^2 - 4ac
D = 3^2 - 4(1)(8)
D = -23
The discriminant is negative, so we get two nonreal solutions. The two solutions are complex numbers in the form a+bi, where a & b are real numbers and [tex]i = \sqrt{-1}[/tex]. The two solutions are different from one another.
Answer:
Discriminant: -23
Number of real roots: 0
Step-by-step explanation:
For a quadratic in standard form [tex]ax^2+bx+c[/tex], the discriminant is given by [tex]b^2-4ac[/tex].
In [tex]x^2+3x+8[/tex], assign:
[tex]a\implies 1[/tex] [tex]b\implies 3[/tex] [tex]c\implies 8[/tex]The discriminant is therefore:
[tex]3^2-4(1)(8)=9-32=\boxed{-23}[/tex]
For any quadratic:
If the discriminant is greater than 0, the quadratic has two real rootsIf the discriminant is equal to 0, the quadratic has one real rootIf the discriminant is less than 0, the quadratic as no real rootsSince the quadratic in the question has a discriminant less than 0, there are no real solutions to this quadratic.
Find the area to the left of z = 0.25.
A. 0.6012 B. 0.5987 C. 0.4013 D.0.3988
Answer:
.5987
Step-by-step explanation:
Use a ztable and find .25 (pic below)
A bus has less than 42 seats. If 36 seats are already occupied, write an
inequality representing the possible number of passengers that can be
added to the bus.
A.) x - 36 < 42
B.) x + 36 < 42
C.) x - 36 > 42
D.) x + 36 > 57
Answer:
B
Step-by-step explanation:
A x - 36 <42 is wrong because its saying how many can be added
B x +36 < 42 this one is most likely correct because its displays x as how many can be added
C x - 36 > 42 this is wrong because the bus has less than 42 seats
D x + 36 >57 like i said cant be over 42
The inequality representing the possible number of passengers that can be added to the bus is Option(B) x + 36 < 42.
What is inequality ?An inequality is a relation which makes a non-equal comparison between two numbers or other mathematical expressions. Inequality is used most often to compare two numbers on the number line by their size. There is always a definite equation to represent it.
How to form the given inequality equation ?Let x be the number of passengers that can be added to the bus.
It is given that the bus has less than 42 seats and 36 seats are already occupied.
The sum of the remaining seats which are to be filled by the passenger and the 36 seats which are filled, must be less than the total seats that is 42.
Therefore the inequality equation becomes,
x + 36 < 42.
Thus, the inequality representing the possible number of passengers that can be added to the bus is Option(B) x + 36 < 42.
To learn more about inequality equation, refer -
https://brainly.com/question/17448505
#SPJ2
What is “8 - 4(-x + 5)” equivalent too?
Answer:
4x -12
Step-by-step explanation:
8 - 4(-x + 5)
Distribute
8 -4(-x) -4(5)
8 +4x -20
4x -12
answer 4( - 3 + x)
factor expression 4(2 - ( - x + 5)4(2 + x - 5)answer
[tex]4( - 3 + x)[/tex]
simplify the expression[tex]8 - 4( - x + 5)[/tex]
answer
[tex] - 12 + 4x[/tex]
Please help me Find PA.
A research historian is interested in finding sunken treasure in the Atlantic Ocean. She knows that her equipment is only good enough to recover items that are at a depth of 5 000 m or less. The speed of sound through the water is 1 530 m/s. While working, the sonar equipment detects a reflection that is of interest. The echo from the item takes 6.2 s to return to the sonar detector. Will she be able to retrieve this item?
Answer:
Yes, she will be able to retrieve the item
Step-by-step explanation:
The information with regards to the research historian interest in finding a sunken treasure are;
The depth from which the equipment can recover items = 5,000 m
The speed of sound through water, v = 1,530 m/s
The time it takes the echo from the item to return to the sonar detector, t = 6.2 s
Let d, represent the depth at which the item is located
Given that an echo travels from the sonar detector to the item and back to the sonar detector, the distance traveled by the sound wave which is received as an echo by the sonar detector = 2 × d
Velocity, v = Distance/time
∴ Distance = Velocity × Time
The distance traveled by the echo = 2 × d = v × t
2 × d = v × t
∴ 2 × d = 1,530 m/s × 6.2 s
d = (1,530 m/s × 6.2 s)/2 = 4,743 m
The depth at which the item is located, d = 4,743 m is less than the maximum depth the equipment can recover items, therefore, she will be able to retrieve the item.
What is the simplest version of 9/16×4/18
Answer:
1/8
Step-by-step explanation:
9/16 * 4/18
Rewriting
9/18 * 4/16
9/18 = 1/2 and 4/16 = 1/4
1/2 * 1/4
1/8
Answer:
[tex]\frac{1}{8}[/tex]
Step-by-step explanation:
[tex]\frac{9}{16}[/tex] x [tex]\frac{4}{18}[/tex] = [tex]\frac{(9)(4)}{(16)(18)}[/tex]
[tex]\frac{(9)}{(18)}[/tex] = [tex]\frac{1}{2}[/tex]
[tex]\frac{4}{16}[/tex] = [tex]\frac{1}{4}[/tex]
[tex]\frac{(1)(1)}{(2)(4)}[/tex] = [tex]\frac{1}{8}[/tex]
I need to verify this function is symmetric with respect to the y-axis. How would I go about doing that?
h(x)=x^4-5x^2+3
Answer:
Yes, the function is symmetric about y-axis.
Step-by-step explanation:
To check whether the function is symmetric with respect to y-axis, replace each x as -x and simplify.
If h(x) = h(-x) then it is symmetric about y-axis.
Let's find h(-x) now.
h(-x)= [tex](-x)^4} -5(-x)^{2} +3[/tex]
Let's simplify it
h(-x)=[tex]x^{4}-5x^{2} +3[/tex]
Here, h(x) = h(-x). The function is symmetric about y-axis.
which of the following equations have complex roots?
9514 1404 393
Answer:
B. 3x² +2 = 0
Step-by-step explanation:
The equation of A has a couple of real roots. We're pretty sure there are complex numbers that will satisfy this equation, but we don't know how to find them. (We suspect a typo, and that the equation is supposed to be 2x² +1 = 7x, which has only real roots.)
__
The equation of B can be rewritten as ...
x² = -2/3
This will have complex roots.
__
The discriminants of both equations C and D are positive, so those have only real roots.
2x² -5x -1 ⇒ d = (-5)² -4(2)(-1) = 33
3x² -6x -1 ⇒ d = (-6)² -4(3)(-1) = 48
Please help me to solve this question pleaseee
Answer:
Step-by-step explanation:
1) ML // JK , MK is transversal,
∠LMK = ∠MKJ {Alternate interior angles are congruent}
∠LMK = 30°
In ΔMKO,
30 + 115 + ∠ JLM = 180 {Angle sum property of triangle}
145 +∠ JLM = 180
∠ JLM = 180 - 145
∠ JLM = 35°
2) AB // CD , AC is transversal
∠DCA = ∠BAC {Alternate interior angles are congruent}
∠DCA = 23
∠BCD = ∠DCA + ∠BCA
= 23 + 37
= 60
3) EF // HG ; FH is transversal
∠FHG = ∠HFE {Alternate interior angles are congruent}
∠FHG = 77
4) ZY // WX ; WY is transversal
∠ZYW = ∠XWY {Alternate interior angles are congruent}
= 65
ZY // WX ; WY is transversal
∠ZWY = ∠WYX {Alternate interior angles are congruent}
= 36
In ΔWZY
36 + 65 + ∠z = 180
101 +∠Z = 180
∠Z = 180 - 101
∠Z = 79
which of the following are exterior angles?
Answer:
A, B, E
Step-by-step explanation:
Exterior angles are angles that are outside the shape. In this case, angle 4, 3 and 2 are exterior angles.
If XZ = 46 and WR = 21, find WX.
Answer:
[tex]WX=\sqrt{970}[/tex]
Step-by-step explanation:
The diagonals of a kite intersect at a 90-degree angle. In this figure, right triangle [tex]\triangle WRX[/tex] is formed by half of each of the diagonals.
In any right triangle, the Pythagorean Theorem states that [tex]a^2+b^2=c^2[/tex], where [tex]a[/tex] and [tex]b[/tex] are two legs of the triangle and [tex]c[/tex] is the hypotenuse.
Segment WR is one leg of the triangle and is given as 21. XR forms the other leg of the triangle, and is exactly half of diagonal XZ. Therefore, [tex]XR=\frac{1}{2}\cdot 46=23[/tex].
The segment we're being asking to find, WX, marks the hypotenuse of the triangle.
Therefore, substitute our known information into the Pythagorean Theorem:
[tex]21^2+23^2=WX^2,\\WX^2=970,\\WX=\boxed{\sqrt{970}}[/tex]
Answer:
WX= 31.14
Step-by-step explanation:
Use the Pythagorean theorem- [tex]a^{2} +b^{2} =c^{2}[/tex]
XR=23 by taking half of 46
[tex]21^{2} +23^{2} =c^{2} \\441+529=c^{2} \\970=c^{2}[/tex]
sqrt both sides to get your answer of 31.14
3x + ky = 8
X – 2ky = 5
are simultaneous equations where k is a constant.
Show that x = 3.
Answer:
3X +ky=8 eqn 1
X-2ky=5 eqn 2
but we want to eliminate ky to get our X.
So let's multiply eqn 1 by 2.
We will have 6x +2ky=16 now eqn 3
now we add eqn 1 and 2
We will have 7x=21
divide by 7
x=3
A car travelling at v kilometers per hour will need a stopping distance, d, in meters without skidding that can be modelled by the function d=0.0067v2+0.15v. Determine the speed at which a car can be travelling to be able to stop within 37m.
I’m need of serious help!
Answer:
v = 14 km/h
Step-by-step explanation:
d = 0.0067[tex]v^{2}[/tex] + 0.15v
differentiate the function with respect to v to have;
d = 0.0134v - 0.15
given that the distance without skidding = 37 m (0.037 km) , then;
0.037 = 0.0134v - 0.15
0.0134v = 0.037 + 0.15
= 0.187
v = [tex]\frac{0.187}{0.0134}[/tex]
= 13.9552
v = 14 km/h
The speed of the car travelling would be 14 km/h to be able to stop within 37m.
9 is subtracted from 5 times 3 and 10 is added
Given: -1/2 x > 6.
Choose the solution set.
A. {x | x R, x > -12}
B. {x | x R, x > -3}
C. {x | x R, x < -3}
D. {x | x R, x < -12}
Given: -1/2 x > 6
Solving It:--1/2 x > 6
x > -6×2
x > -12
So The Correct Solution Set Will Be
A. {x | x R, x > -12}Hope This Helps YouFind the special product:
(r + 5)^2
Answer:
i am not sure about this answer but i got r^2+10r+25
The square root of 0.25 is 0.5 which is a greater number. Give another number whose square root is larger than the number and explain why.
Answer:
Another example of a number who's square root is greater than the number is [tex]\sqrt{0.49}[/tex] which is 0.7
Step-by-step explanation:
This square root is larger than the number because it is a decimal. When you multiply a decimal by a decimal, the decimal point becomes greater. For example: 0.7 multiplied by 0.7 equals 0.49 which has 2 decimal places, while 0.7 only has one.
40 points Please help!!!
What is the volume of this regular prism?
48.55 cubic inches
55.8 cubic inches
9.7 cubic inches
24.28 cubic inches
Answer:
V = 24.28 in ^3
Step-by-step explanation:
The area of the base is
A =5/2 × s × a where s is the side length and a is the apothem
A = 5/2 ( 2.13) * .87
A = 4.63275
The volume is
V = Bh where B is the area of the base and h is the height
V = 4.63275 ( 5.24)
V =24.27561 in^3
Rounding to the hundredth
V = 24.28 in ^3
Can someone help me with this math homework please!
1. a= 19
2.2 ( second option)
3.C
4D
I will give brainliest if correct!!! Please show work so I know how to do it. :)
12. Let logb(3) = 0.5646, logb(4) = 0.7124, and logb(5) = 0.8271. Using these values, evaluate logb(5/3).
A. 0.1518
B. 1.4649
C. 1.2138
D. 0.2625
E. 0.5341
F. 2.6252
Answer:
.2625
Step-by-step explanation:
logb(3) = 0.5646, logb(4) = 0.7124, and logb(5) = 0.8271
logb(5/3)
We know that logx ( y/z) = logx (y) - logz (z)
logb ( 5) - logb(3)
0.8271 - 0.5646
.2625
Answer:
F. 2.6252
Step-by-step explanation:
0.8271 - 0.5646