What is the domain of h?

What Is The Domain Of H?

Answers

Answer 1

Answer:

{-2, -1, 1, 5, 6}

Step-by-step explanation:

The domain includes the five x-values (inputs):  {-2, -1, 1, 5, 6}

Answer 2

Answer:

The x-values -2, -1,1,5 and 6

Step-by-step explanation:


Related Questions

PLS HELP ASAP:Find all the missing elements:

Answers

Answer:

B = 34.2°

C = 105.8°

c = 12.0 units

Step-by-step Explanation:

Given:

A = 40°

a = 8

b = 7

Required:

Find B, C, and c.

SOLUTION:

Using the Law of Sines, find <B:

[tex] \frac{sin(A)}{a} = \frac{sin(B)}{b} [/tex]

[tex] \frac{sin(40)}{8} = \frac{sin(B)}{7} [/tex]

Multiply both sides by 7

[tex] \frac{sin(40)}{8}*7 = \frac{sin(B)}{7}*7 [/tex]

[tex] \frac{sin(40)*7}{8} = sin(B) [/tex]

[tex] 0.5624 = sin(B) [/tex]

[tex] B = sin^{-1}(0.5624) [/tex]

[tex] B = 34.2 [/tex] (to nearest tenth).

Find <C:

C = 180 - (34.2+40°) (sum of angles in a triangle)

C = 180 - 74.2 = 105.8°

Using the Law of Sines, find c.

[tex] \frac{c}{sin(C)} = \frac{b}{sin(B)} [/tex]

[tex]\frac{c}{sin(105.8)} = \frac{7}{sin(34.2)}[/tex]

Multiply both sides by sin(105.8)

[tex]\frac{c}{sin(105.8)}*sin(105.8) = \frac{7}{sin(34.2)}*sin(105.8)[/tex]

[tex] c = \frac{7*sin(105.8)}{sin(34.2)} [/tex]

[tex] c = 12.0 [/tex]

The revenue, cost, and profit functions for a line of cell phone cases is shown. Identify the location on the profit function where the profit from sales of the phone cases is a maximum.

Answers

Answer:

approximately x = 38

Step-by-step explanation:

The maximum profit is the vertex of the profit graph parabola. The maximum occurs at approximately x = 38.

The solution is x = 38

The location on the profit function parabola where the profit from sales of the phone cases is a maximum is given by x = 38

What is a Parabola?

A Parabola, open curve, a conic section produced by the intersection of a right circular cone and a plane parallel to an element of the cone. A parabola is a plane curve generated by a point moving so that its distance from a fixed point is equal to its distance from a fixed line

The equation of the parabola is given by

( x - h )² = 4p ( y - k )

where ( h , k ) is the vertex and ( h , k + p ) is the focus

y is the directrix and y = k – p

The equation of the parabola is also given by the equation

y = ax² + bx + c

where a , b , and c are the three coefficients and the parabola is uniquely identified

Given data ,

Let the revenue, cost, and profit functions for a line of cell phone cases be given as two parabolic functions R ( x ) and P ( x )

The maximum profit is given by the parabolic function R ( x )

The profit is represented by = y

The price per phone is represented by = x

Now , when y is maximum ,

The value of y = $ 2,250,000

The value of x when y = $ 2,250,000 is x = 38

So , the value of x from the parabola where profit is maximum is x = 38

Therefore,  the value of x = 38

Hence , the value of x from the function is x = 38

To learn more about parabola click :

https://brainly.com/question/24042022

#SPJ2

A survey of 500 randomly selected adults found that 57% say that they would take a ride in a fully self-driving car. The 95% confidence interval for the true proportion of all adults who would take a ride in a full self-driving car is found to be (0.5266, 0.6134). Can we conclude that the majority of all adults would take a ride in a fully self-driving car?

Yes; Since the confidence interval limits are both greater than 50%, we can reasonably conclude that more than half of all adults would take a ride in a fully self-driving car.

No; The data does not include all adults, so we cannot make a conclusion about the population.

No; The confidence interval limits are not large enough to determine that a majority rely only on cellular phones. The proportion would need to be much greater than 50%, and the one above is only slightly larger.

Yes; Since the proportion of adults who said yes is 57%, and this is higher than 50%, we can conclude that a majority would take a ride in a fully self-driving car.

Answers

Answer:

Yes; Since the confidence interval limits are both greater than 50%, we can reasonably conclude that more than half of all adults would take a ride in a fully self-driving car.

Step-by-step explanation:

From the question we are told that

     The sample size is  n =  500

     The sample proportion is  [tex]\r p = 0.57[/tex]

     The  95% confidence interval is (0.5266, 0.6134)

Looking at the 95% confidence level interval we see that the sample proportion is within the interval and given that the confidence interval limits are both greater than 50%, we can reasonably conclude that more than half of all adults would take a ride in a fully self-driving car.

23. f(x) is vertically shrank by a factor of 1/3. How will you represent f(x) after transformation?

A. f(3x)
B. 3f(x)
C. 13f(x)
D. f(13x)

Answers

Answer:

Step-by-step explanation:

vertical stretching / shrinking has the following transformation.

f(x) -> a * f(x)

when a >  1, it is stretching

when 0< a < 1, it is shrinking.

when  -1 < a < 0, it is shringking + reflection about the x-axis

when a < -1, it is stretching + reflection about the x axis.

Here it is simple shrinking, so 0 < a < 1.

I expect the answer choice to show (1/3) f(x).

However, if the question plays with the words

"shrink by a factor of 1/3" to actually mean a "stretching by a factor of three", then B is the answer (stretch by a factor of three).

IQ tests are scaled so that the mean score in a largepopulation should be μ =100. We suspect that the very-low-birth-weight population has mean score less than100. Infants weiging less than 1500 grams at birth are classed as "very low birth weight". Low birth weight carriesmany risks. One study followed 113 male infants with very low birth weight to adulthood. At age 20, the mean IQ score for these men was (x bar=87.6.) Iq scores vary Normally with standard deviation σ=15. Give a 95% confidence interval for the mean IQ score at age 20 for allvery-low-birth-weight males. Use the four-step process for confidence interval.

Answers

Answer:

The 95% confidence interval is  [tex]84.83< \mu < 90.37[/tex]

Step-by-step explanation:

From the question we are told that

    The  sample size is  [tex]n = 113[/tex]

     The sample mean is  [tex]\= x = 87.6[/tex]  

      The standard deviation is  [tex]\sigma = 15[/tex]

     

Given that the confidence level is  95% then the level of significance is mathematically represented as

            [tex]\alpha = 100 - 95[/tex]

             [tex]\alpha = 5\%[/tex]

             [tex]\alpha = 0.05[/tex]

Next we obtain the critical value of  [tex]\frac{\alpha }{2}[/tex] from the normal distribution table, the value  is  

              [tex]Z_{\frac{ \alpha }{2} } = 1.96[/tex]

Generally the margin of error is mathematically evaluated as

              [tex]E = Z_{\frac{\alpha }{2} } * \frac{ \sigma}{ \sqrt{n} }[/tex]

=>          [tex]E = 1.96 * \frac{ 15}{ \sqrt{113} }[/tex]

=>          [tex]E = 2.77[/tex]

The  95% confidence interval is mathematically represented as

          [tex]\= x - E < \mu < \= x + E[/tex]

substituting values

        [tex]87.6 - 2.77< \mu < 87.6 + 2.77[/tex]

        [tex]84.83< \mu < 90.37[/tex]

What are the approximate solutions of the graphed function?

Answers

Answer:

x = -2.6, x = 2.6

Step-by-step explanation:

The graph crosses the x-axis at approximately 2.6 and -2.6.

The required approximate solution of the function graphed is x = -2.6 and 2.6.

Given that,
A graph of a function is plotted, and the solution of the function is to be determined.

What are functions?

Functions are the relationship between sets of values. e g y=f(x), for every value of x there is its exists in a set of y. x is the independent variable while Y is the dependent variable.

What is a graph?

The graph is a demonstration of curves that gives the relationship between the x and y-axis.

Here, the solution of the function is that value of x where the function terminates to zero, So the given curve terminates to zero at two places at x = -2.6 and x = 2.6 from the observation of the graph.

Thus, the required approximate solution of the function graphed is x = -2.6 and 2.6.

Learn more about function here:

brainly.com/question/21145944

#SPJ2

The solutions to the equation $(x+1)(x+2) = x+3$ can be written in the form $m+\sqrt n$ and $m-\sqrt n$, where $m$ and $n$ are integers. What is $m+n$?

Answers

Answer:

1

Step-by-step explanation:

Hello, please consider the following.

First, we develop and move everything to the left side, then we solve the equation, using the discriminant.

Finally, we get the expression of the two solutions and we can conclude.

[tex](x+1)(x+2)=(x+3)\\\\<=> x^2+3x+2-x-3=0\\\\<=>x^2+2x-1=0\\\\\Delta=b^2-4ac=4+4=8\\\\x_1=\dfrac{-2-\sqrt{8}}{2}=\dfrac{-2-2\sqrt{2}}{2}=-1-\sqrt{2}\\\\x_2=\dfrac{-2+\sqrt{8}}{2}=-1+\sqrt{2}[/tex]

So, m=-1 and n = 2

m+n = -1 + 2 = 1

Thank you

The value of m + n is 1.

What is an equation?

An equation is a mathematical statement that is made up of two expressions connected by an equal sign.

Example:

2x + 4 - 9 is an equation.

We have,

(x + 1)(x + 2) = x + 3

x² + 2x + x + 2 = x + 3

x² + 3x + 2 - x - 3 = 0

x² + 2x - 1 = 0

This is in the form of ax² + bx + c = 0

a = 1, b = 2, and c = -1

Now,

Using the determinant.

x = -b ± √(b² - 4ac) / 2a

x = -2 ± √(4 + 4) / 2

x = (-2 ± 2√2) / 2

x = (-1 ± √2)

x = -1 + √2

x = -1 - √2

Now,

The solutions can be written in the form of (m + √n) and (m - √n).

This means,

m + √n = -1 + √2

m - √n = -1 - √2

m = -1 and n = 2

Now,

m + n

= -1 + 2

= 1

Thus,

m + n is 1.

Learn more about equations here:

https://brainly.com/question/17194269

#SPJ2

Malia measures the longer side of a dollar bill using a ruler at school. Which of the following is most likely the quantity she measured?

Answers

Answer:

6.14 inches

Step-by-step explanation:

The one side of the dollar bill is 6.14 inch. The 6.14 inches of the dollar approximates the 156.1 mm. When Malia measures the longer side of a dollar bill from her rule it will be approximately 6.14 inches in length. The ruler normally has inches and cm sides. Very few rulers have mm scales. The most probable scale that malia would have measure is in inches.

Triangle+ Triangle + Triangle = 30 Triangle + circle + circle = 20 Circle + Square + Square = 13 Triangle + circle x half square = ?

Answers

Answer:

Below

Step-by-step explanation:

Let T be triangle, C the circle and S the square.

● T + T + T = 30

● 3T = 30

Divide both sides by 3

● 3T/3 = 30/3

● T = 10

So the triangle has a value of 10.

●30 T + C + C = 20C + S + S = 13T +C ×S/2

Add like terms together

●30 T + 2C = 20C +2S= 13T + C×S/2

Replace T by its value (T=10)

● 300 + 2C = 20C + 2S = 130 + C×S/2

Take only this part 20C + 2S = 130 + C × S/2

● 20C + 2S = 130 + C×S/2 (1)

Take this part (300+2C = 20C+2S) and express S in function of C

● 20C + 2S = 300 + 2C

Divide everything by 2 to make easier

● 10 C + S = 150+ C

● S = 150+C-10C

● S = 150-9C

Replace S by (5-9C) in (1)

● 20C + 2S = 130 + C×S/2

● 20C + 2(150-9C) = 130 +C× (150-9C)/2

● 20C + 300-18C= 130 + C×(75-4.5C)

● 2C + 300 = 130 + 75 -4.5C^2

● 2C +300-130 = 75C - 4.5C^2

● 2C -75C + 170 = -4.5C^2

● -73C + 170 = -4.5C^2

Multiply all the expression by -1

● -4.5C^2 +73C+ 170= 0

This is a quadratic equation, so we will use the discriminant method.

Let Y be the discriminant

● Y = b^2-4ac

● b = 73

● a = -4.5

● c = 170

● Y = 73^2 - 4×(-4.5)×170= 8389

So the equation has two solutions:

● C = (-b +/- √Y) /2a

√Y is approximatively 92

● C = (-73 + / - 92 )/ -9

● C = 18.34 or C = -2.11

Approximatively

● C = 18 or C = -2

■■■■■■■■■■■■■■■■■■■■■■■■■

● if C = 18

30T + 2C = 300 + 36 = 336

● if C = -2

30T + 2C = 300-4 = 296


What is the expression

Answers

Answer:

3

Step-by-step explanation:

z - 2x

--------

y

Let x = 3  y = -4 and z  =-6

-6 - 2(3)

--------

-4

-6 -6

---------

-4

-12

-----

-4

3

Answer:

3

Step-by-step explanation:

To solve this, we need to plug in each of the numbers to the equation.

x = 3, y = - 4, z = - 6

[tex]\frac{z-2x}{y} = \frac{-6-2(3)}{-4}[/tex]

Let's solve the parenthesis first. - 2 * 3 = - 6.

[tex]\frac{-6-6}{-4}[/tex]

We then subtract -6 - 6.

[tex]\frac{-12}{-4}[/tex]

Then, we divide (cancel out the negatives).

[tex]-12 / -4 =3[/tex]

Our final answer is 3. Hope this helps!

A scientist needs 120mL of a 20% acid solution for an experiment. The lab has available a 10% solution and a 25% solution. How many milliliters of the 10% solution and how many milliliters of the 25% solution should the scientist mix to make the 20% solution?

Answers

Answer:

40 mL of 10% acid

80 mL of 25% acid

Step-by-step explanation:

x = volume of 10% acid solution

y = volume of 25% acid solution

Total volume is:

x + y = 120

Total amount of acid is:

0.10 x + 0.25 y = 0.20 (120)

Solve by substitution.

0.10 x + 0.25 (120 − x) = 0.20 (120)

0.10 x + 30 − 0.25 x = 24

0.15 x = 6

x = 40

y = 80

Help Please. Whoever answers it right with an explanation will get brainliest

Answers

Answer:

The answer is

ab( 11 + 9b)( a - 3b)

Step-by-step explanation:

11a³b - 24a²b² - 27ab³

To factor the expression

First factor ab out

That's

ab ( 11a² - 24ab - 27b²)

Factor the terms in the bracket

Write - 24ab as a difference

That's

ab ( 11a² + 9ab - 33ab - 27b²)

Factor out a from the expression

ab [ a( 11a + 9b) - 33ab - 27b²) ]

Factor -3b from the expression

That's

ab [ a( 11a + 9b) - 3b( 11a + 9b) ]

Factor out 11a + 9b from the expression

We have the final answer as

ab( 11 + 9b)( a - 3b)

Hope this helps you

What is the answer and how is this solved?

Answers

Answer:

Sum : 65

Step-by-step explanation:

In this notation, n is our starting value, and hence we start at 3 and go to 7. Given the set of values : { 3, 4, 5, 6, 7 }, we can substitute in our expression " 4n - 7 " for n and solve. The sum of these values is our solution.

4( 3 ) - 7 = 12 - 7 = 5,

4( 4 ) - 7 = 16 - 7 = 9,

4( 5 ) - 7 = 20 - 7 = 13,

Our remaining values for n = 6 and n = 7 must then be 17 and 21. This is predictable as we have an arithmetic series here, the common difference being 4. As you can see 9 - 5 = 4, 13 - 9 = 4, 17 - 13 = 4, 21 - 17 = 4.

Therefore we have the series { 5, 9, 13, 17, 21 }. This adds to an answer of 65.

-7y=-91 show your work

Answers

Answer:

[tex] \boxed{ \bold{\sf{y = 13}}}[/tex]

Step-by-step explanation:

[tex] \sf{ - 7y = - 91}[/tex]

Divide both sides of the equation by -7

⇒[tex] \sf{ \frac{ - 7y}{ - 7} = \frac{ - 91}{ - 7} }[/tex]

Calculate

⇒[tex] \sf{y = 13}[/tex]

Hope I helped!

Best regards!!

Answer:

[tex] \boxed{\sf y = 13} [/tex]

Step-by-step explanation:

Solve for y:

[tex] \sf \implies - 7y = - 91[/tex]

Divide both sides of -7y = -91 by -7:

[tex] \sf \implies \frac{ - 7y}{ - 7} = \frac{ - 91}{ - 7} [/tex]

[tex] \sf \frac{ - 7}{ - 7} = 1 : [/tex]

[tex] \sf \implies y = \frac{ - 91}{ - 7} [/tex]

[tex] \sf \implies y = \frac{ \cancel{ - 7} \times 13}{ \cancel{ - 7}} [/tex]

[tex] \sf \implies y = 13[/tex]

Rania graphs the relationship between temperature (in °C) and elevation (in m) in 9 different cities
shown below)

Answers

Answer: 7

Step-by-step explanation:

Answer :

It Is 7 On Khan Academy

◊ YusuCr ◊

:)

Listed below are numbers of Internet users per 100 people and numbers of scientific award winners per 10 million people for different countries. Construct a​ scatterplot, find the value of the linear correlation coefficient​ r, and find the​ P-value of r. Determine whether there is sufficient evidence to support a claim of linear correlation between the two variables. Use a significance level of α= 0.01.


Internet Users 80.3 78.2 56.4 67.6 77.7 38.6

Award Winners 5.6 9.3 3.2 1.6 10.9 0.1


Required:

a. Construct a scatterplot.

b. Determine the null and alternative hypotheses.

c. The test statistic is:_________

d. The P-value is:_________

Answers

Answer:

There is not sufficient evidence to support a claim of linear correlation between the two variables.

Step-by-step explanation:

(a)

The scatter plot for the provided data is attached below.

(b)

The hypothesis to test significance of linear correlation between the two variables is:

H₀: There is no linear correlation between the two variables, i.e. ρ = 0.

Hₐ: There is a significant linear correlation between the two variables, i.e. ρ ≠ 0.

(c)

Use the Excel function: =CORREL(array1, array2) to compute the correlation coefficient, r.

The correlation coefficient between the number of internet users and the award winners is,

r = 0.786.

The test statistic value is:

[tex]t=r\sqrt{\frac{n-2}{1-r^{2}}}[/tex]

  [tex]=0.786\times\sqrt{\frac{6-2}{1-(0.786)^{2}}}\\\\=2.5427\\\\\approx 2.54[/tex]

Thus, the test statistic is 2.54.

(d)

The degrees of freedom is,

df = n - 2  

  = 6 - 2

  = 4

Compute the p-value as follows:

[tex]p-value=2\cdot P(t_{n-2}<2.54)=2\times 0.032=0.064[/tex]

*Use a t-table.

p-value = 0.064 > α = 0.05

The null hypothesis will not be rejected.

Thus, it can be concluded that there is not sufficient evidence to support a claim of linear correlation between the two variables.

Which statements about the dilation are true? Check all that apply. Triangle X prime Y prime Z prime. Point X prime is 2 units from the center of dilation C and point Z prime is 3 units from the center of dilation. Triangle X Y Z. Point X is 5 units from point C and point Z is 7.5 units from point C. The center of dilation is point C. It is a reduction. It is an enlargement. The scale factor is 2.5. The scale factor is Two-fifths.

Answers

Pls give brainliest.

Answer:

I only know two right answers.

A: The center of dilation is point C.

C: It is an enlargement.

E: The scale factor is 2/5.

Step-by-step explanation:

These two answers are correct because When you look in the center you see a C.

You tell if it is a reduction because the pre image is small but the image is big.

The center of dilation is point C.

It is an enlargement.

The scale factor is 2/5

The correct options are D, F, H.

What is dilation?

Resizing an item uses a transformation called dilation. Dilation is used to enlarge or shorten the structures. The result of this transformation is an image with the same shape as the original. However, there is a variation in the shape's size. The initial form should be stretched or contracted during a dilatation.

Given:

The transformation of the figure is dilation.

The figure is given in the attached image.

From the diagram:

The center of dilation is point C.

It is an enlargement.

The scale factor is 2/5

Therefore, all the correct statements are given above.

To learn more about the dilation in geometry;

https://brainly.com/question/10713409

#SPJ6

Consider the functions
JIGO
For the x-values given in the table below, determine the corresponding values of six) and plot each point on the graph...
Х
-1
0
1
2
G(x)

Answers

Answer:

  g(x) = 4, 6, 9, 13.5 for the x-values given

Step-by-step explanation:

The table and graph are attached.

A manager from a certain well known department store found out the money their customers carry into the store is normally distributed with a mean of $258 dollars and a standard deviation of $35. In a sample of 76 Americans who walked into that store find the probability that a random customer will have more than $260 in his or her wallet

Answers

Answer:

0.30924

Approximately ≈ 0.3092

Step-by-step explanation:

To solve for this question, we use the formula:

z = (x - μ)/σ

where x is the raw score

μ is the sample mean

σ is the sample standard deviation.

From the question,

x is the raw score = 260

μ is the sample mean = population standard deviation = 258

σ is the sample standard deviation

= σ/√N

N = 76 samples

σ = Population standard deviation

= 35/√76

= 4.0146919966

Hence,

z = (x - μ)/σ

= 260 - 258/ 4.0146919966

= 0.4981702212

Approximately = 0.498

We find the Probability using z score table for normal distribution

P(x = z) = P( x = 260)

= P( z = 0.498)

= 0.69076

The probability that a random customer will have more than $260 in his or her wallet is calculated as:

P(x>Z) = 1 - P( z = 0.498)

P(x>Z) = 1 - 0.69076

P(x>Z) = 0.30924

Approximately ≈ 0.3092

A population of values has a normal distribution with μ= 106.9 and σ=14.5
You intend to draw a random sample of size n=20

What is the probability that a single randomly selected value is less than 109.8?
P(X < 109.8)
How do you the probability that a sample of size n= 20 is randomly selected with a mean less than 109.8?
P(M < 109.8)

Also, I have to round the answer to the 4th decimal place. How do I do that?

Answers

Step-by-step explanation:

Find the z-score.

z = (x − μ) / σ

z = (109.8 − 106.9) / 14.5

z = 0.2

Use a chart or calculator to find the probability.

P(Z < 0.2) = 0.5793

Find the mean and standard deviation of the sampling distribution.

μ = 106.9

σ = 14.5 / √20 = 3.242

Find the z-score.

z = (x − μ) / σ

z = (109.8 − 106.9) / 3.242

z = 0.894

Use a calculator to find the probability.

P(Z < 0.894) = 0.8145

A plot of land has vertices as follows, where each coordinate is a measurement in feet. Find the perimeter of the plot of land. (1,7),(7,7),(7,1),(1,1) please help and explain how to do this type of thing because i am lost

Answers

Answer:

Perimeter of ABCD = 36 ft

Step-by-step explanation:

Given:

A (1,7)

B (7,7)

C (7,1)

D (1,1)

Find:

Perimeter of ABCD

Computation:

Distance between two point = √(x1-x2)² + (y1-y2)²

So,

AB = √(1-7)²+(7-7)²

AB = 6 ft

BC = √(7-7)²+(7-1)²

BC = 6 ft

CD = √(7-1)²+(1-1)²

CD = 6 ft

DA = √(1-1)²+(1-7)²

DA = 6 ft

Perimeter of ABCD = AB + BC + CD + DA

Perimeter of ABCD = 6 + 6 + 6 +6

Perimeter of ABCD = 36 ft

The perimeter of the plot is the sum of side length of the plot of land.

The perimeter of the plot is 24 feet.

Represent the vertices as follows:

[tex]W = (1,7)[/tex]

[tex]X = (7,7)[/tex]

[tex]Y = (7,1)[/tex]

[tex]Z = (1,1)[/tex]

First, we calculate the side length using the following distance formula:

[tex]d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}[/tex]

So, we have:

[tex]WX = \sqrt{(1- 7)^2 + (7- 7)^2} = \sqrt{36} = 6[/tex]

[tex]XY = \sqrt{(7- 7)^2 + (7- 1)^2} = \sqrt{36} = 6[/tex]

[tex]YZ = \sqrt{(7- 1)^2 + (1- 1)^2} = \sqrt{36} = 6[/tex]

[tex]ZW = \sqrt{(1- 1)^2 + (1- 7)^2} = \sqrt{36} = 6[/tex]

The perimeter (P) is then calculated as follows:

[tex]P = WX + XY + YZ + ZW[/tex]

So, we have:

[tex]P = 6 + 6 + 6 + 6[/tex]

[tex]P = 24[/tex]

Hence, the perimeter of the plot of land is 24 feet.

Read more about perimeters at:

https://brainly.com/question/394193

A plan for a dog park has a grassy section and a sitting section as shown in the figure. Which equation can be used to find the area of the grassy section?

Answers

Answer:

[tex]Area=\frac{1}{2} (B\,+\,b)\,h[/tex]

Step-by-step explanation:

The grassy area is that of a trapezoid, so recall the formula for the area of a trapezoid:

[tex]Area=\frac{1}{2} (Base\,+\,base)\,height[/tex]

where:

Base stands for the larger base (in our case the dimension "B" in the attached image)

base stands for the shorter base parallel to the largest Base (in our case the dimension "b" in the attached image)

and

height stands for the distance between bases (in our case the dimension "h" in the attached image.

Therefore the formula for the area of the grassy section becomes:

[tex]Area=\frac{1}{2} (Base\,+\,base)\,height\\Area=\frac{1}{2} (B\,+\,b)\,h[/tex]

Answer:

1/2 (b+b) h

here is the actual picture

A research center claims that ​% of adults in a certain country would travel into space on a commercial flight if they could afford it. In a random sample of adults in that​ country, ​% say that they would travel into space on a commercial flight if they could afford it. At ​, is there enough evidence to reject the research

Answers

Complete Question

A research center claims that ​30% of adults in a certain country would travel into space on a commercial flight if they could afford it. In a random sample of 700 adults in that​ country, ​34% say that they would travel into space on a commercial flight if they could afford it. At ​, is there enough evidence to reject the research center's claim

Answer:

Yes there is  sufficient evidence to reject the research center's claim.

Step-by-step explanation:

From the question we are told that

     The population proportion is  p = 0.30

      The sample proportion is  [tex]\r p = 0.34[/tex]

       The  sample size is  n = 700

The null hypothesis is  [tex]H_o : p = 0.30[/tex]

 The  alternative hypothesis is  [tex]H_a : p \ne 0.30[/tex]

Here we are going to be making use of  level of significance  =  0.05 to carry out this test

Now we will obtain the critical value of  [tex]Z_{\alpha }[/tex] from the normal distribution table , the value is  [tex]Z_{\alpha } = 1.645[/tex]

 Generally the test statistics is mathematically represented as

            [tex]t = \frac{ \r p - p }{ \sqrt{ \frac{ p (1-p)}{n} } }[/tex]

substituting values

              [tex]t = \frac{ 0.34 - 0.30 }{ \sqrt{ \frac{ 0.30 (1-0.30 )}{ 700} } }[/tex]

              [tex]t = 2.31[/tex]

Looking at the values of t  and  [tex]Z_{\alpha }[/tex] we see that [tex]t > Z_{\alpha }[/tex] hence the null hypothesis is rejected

 Thus we can conclude that there is  sufficient evidence to reject the research center's claim.

Use Green’s theorem to evaluate line integral along curve C ∮_c〖( 3ydx+2xdy )〗, C : The boundary of 0≤x≤π,0≤y≤sin x

Answers

Answer:

[tex]\displaystyle \oint_C {3y \, dx + 2x \, dy} = \boxed{\bold{2}}[/tex]

General Formulas and Concepts:
Calculus

Differentiation

DerivativesDerivative Notation

Derivative Property [Multiplied Constant]:
[tex]\displaystyle (cu)' = cu'[/tex]
Derivative Rule [Basic Power Rule]:

f(x) = cxⁿf’(x) = c·nxⁿ⁻¹

Integration

Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:
[tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]

Integration Property [Multiplied Constant]:
[tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]

Multivariable Calculus

Partial Derivatives

Vector Calculus

Circulation Density:
[tex]\displaystyle F = M \hat{\i} + N \hat{\j} \rightarrow \text{curl} \ \bold{F} \cdot \bold{k} = \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}[/tex]

Green's Theorem [Circulation Curl/Tangential Form]:
[tex]\displaystyle \oint_C {F \cdot T} \, ds = \oint_C {M \, dx + N \, dy} = \iint_R {\bigg( \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \bigg)} \, dx \, dy[/tex]

Step-by-step explanation:

Step 1: Define

Identify given.

[tex]\displaystyle \oint_C {3y \, dx + 2x \, dy}[/tex]

[tex]\displaystyle \text{Region:} \ \left \{ {{0 \leq x \leq \pi} \atop {0 \leq y \leq \sin x}} \right.[/tex]

Step 2: Integrate Pt. 1

Define vector functions M and N:
[tex]\displaystyle M = 3y , \ N = 2x[/tex][Circulation Density] Differentiate [Derivative Rules and Properties]:
[tex]\displaystyle \frac{\partial M}{\partial y} = 3 , \ \frac{\partial N}{\partial x} = 2[/tex][Green's Theorem] Substitute in Circulation Density:
[tex]\displaystyle \oint_C {3y \, dx + 2x \, dy} = \iint_R {2 - 3} \, dx \, dy[/tex]Simplify:
[tex]\displaystyle \oint_C {3y \, dx + 2x \, dy} = - \iint_R {} \, dx \, dy[/tex][Integrals] Substitute in region R:
[tex]\displaystyle \oint_C {3y \, dx + 2x \, dy} = - \int\limits^{\pi}_0 \int\limits^{\sin x}_0 {} \, dy \, dx[/tex]

Step 3: Integrate Pt. 2

We can evaluate the Green's Theorem double integral we found using basic integration techniques listed above:
[tex]\displaystyle \begin{aligned}\oint_C {3y \, dx + 2x \, dy} & = - \int\limits^{\pi}_0 \int\limits^{\sin x}_0 {} \, dy \, dx \\& = - \int\limits^{\pi}_0 {y \bigg| \limits^{y = \sin x}_{y = 0}} \, dx \\& = - \int\limits^{\pi}_0 {\sin x} \, dx \\& = \cos x \bigg| \limits^{x = \pi}_{x = 0} \\& = \boxed{\bold{2}}\end{aligned}[/tex]

∴ we have evaluated the line integral using Green's Theorem.

---

Learn more about multivariable calculus: https://brainly.com/question/14502499

---

Topic: Multivariable Calculus

Unit: Green's Theorem and Surfaces

Commute times in the U.S. are heavily skewed to the right. We select a random sample of 45 people from the 2000 U.S. Census who reported a non-zero commute time. In this sample the mean commute time is 25.2 minutes with a standard deviation of 19.1 minutes. Required:a. Can we conclude from this data that the mean commute time in the U.S. is less than half an hour?b. Conduct a hypothesis test at the 5% level of significance. c. What is the p-value for this hypothesis test?

Answers

Answer:

The mean commute time in the U.S. is less than half an hour.

Step-by-step explanation:

In this case we need to test whether the mean commute time in the U.S. is less than half an hour.

The information provided is:

 [tex]n=45\\\bar x=25.5\\s=19.1\\\alpha =0.05[/tex]

(a)

The hypothesis for the test can be defined as follows:

H₀: The mean commute time in the U.S. is not less than half an hour, i.e. μ ≥ 30.

Hₐ: The mean commute time in the U.S. is less than half an hour, i.e. μ < 30.

(b)

As the population standard deviation is not known we will use a t-test for single mean.

Compute the test statistic value as follows:

 [tex]t=\frac{\bar x-\mu}{s/\sqrt{n}}=\frac{25.2-30}{19.1/\sqrt{45}}=-1.58[/tex]

Thus, the test statistic value is -1.58.

(c)

Compute the p-value of the test as follows:

[tex]p-value=P(t_{(n-1)}<-1.58)=P(t_{(45-1)}<-1.58)=0.061[/tex]  

*Use a t-table.

The p-value of the test is 0.061.

Decision rule:

If the p-value of the test is less than the significance level then the null hypothesis will be rejected and vice-versa.

p-value = 0.061> α = 0.05

The null hypothesis will not be rejected at 5% level of significance.

Thus, concluding that the mean commute time in the U.S. is less than half an hour.

WILL GIVE BRAINLEST PLEASE!!!!!!!! Jenny has some tiles in a bag. The tiles are of three different colors: purple, pink, and orange. Jenny randomly pulls a tile out of the bag, records the color, and replaces the tile in the bag. She does this 50 times. The results are recorded in the given table: Color of Tile Purple Pink Orange Number of times the tile is drawn 6 18 26 What is the experimental probability that Jenny will pull out a purple tile? fraction 6 over 50 fraction 44 over 50 fraction 6 over 44 fraction 18 over 44

Answers

Answer:

6/50

Step-by-step explanation:

There are 50 tiles

6 purple

18 pink

26 orange

P( purple) = purple/ total

                = 6/50

In a Gallup poll of randomly selected​ adults, 66% said that they worry about identity theft. For a group of 1013​ adults, the mean of those who do not worry about identify theft is closest to​ ________.

Answers

Answer: 669

Step-by-step explanation:

Given, In a Gallup poll of randomly selected​ adults, 66% said that they worry about identity theft.

i.e. The proportion of adults said that they worry about identity theft. (p) = 0.66

Sample size : n= 1013

Then , Mean for the sampling distribution of sample proportion  = np

= (1013) × (0.66)

= 668.58 ≈ 669  [Round to the nearest whole number]

Hence, the mean of those who do not worry about identify theft is closest to​ 669 .

a sequence of transformations is described below horizontal stretch about a vertical line PQ, a translation, another horizontal stretch about PQ, a reflection over PQ.

Answer Choices:

Angle measures only

Segment lengths only

Both angle measures and segment lengths

Neither angle measures nor segments lengths

Answers

Answer:

Both angle measures and segment lengths.

Step-by-step explanation:

An angle is a shape formed by two rays that meets at a point. The angle is measured by degrees. The angle is formed by the sides of an angle which shares the common endpoint called the vertex. The line is horizontal stretch with a vertical line PQ. It will measure the angle and segments lengths.

Answer:

neither angle measures nor segment lines

Help!!!!!!! Thank you!!!!!!!

Answers

Answer:

D

Step-by-step explanation:

The ratio of yellow paint to blue paint is 4:3. We can make the largest amount of green paint by using all of the 20 quarts of yellow paint so we have to solve for x in 4:3 = 20:x, since 4 * 5 = 20, 3 * 5 = x so we use 15 qts of blue paint, therefore we will have 20 + 15 = 35 qts of green paint.

Answer:

D

Step-by-step explanation:

Classify the following random variable according as either discrete or continuous. The temperature in degrees Celsius on January 1st in a certain city
A continuous
B discrete

Answers

Answer:

continuous

Step-by-step explanation:

A quantity like temperature is a continuous random variable. A continuous random variable is different from a discrete random variable because it can take on many values infinitely.

From the question, measuring the Temperature in degrees can take on many different values because there are an uncountable number of possible temperatures that could be taken.

Other Questions
HELP I WILL NAME YOU BRAINLIEST!! Given: Circumscribed polygon ACEG B, H, F, D -points of tangency AB=5, CD=4, DE=3, FG=2 Find: Perimeter of ACEG Question: 2. Musah Stands At The Centre Of A Rectangular Field. He First Takes 50 Steps North, Then 25 Steps West And Finally 50 Steps On A Bearing Of 3150 Sketch Musah's Movement Mark 41 Ii. How Far West Is Musah's Final Point From The Centre? [Mark 41 Iv. How Far North Is Musah's Final Point From The Centre? Mark 41 Describe How You Would Guide A JHS Student Type the correct answer in each box the value of x is ____ and the value of y is ____ . HELP ME PLEASE Wo commondities A and B cost 070 and D80 respewith 26 kg of B and the mixture issold at 085 per kg: caloThe weight (in kg) of 50 contenstants at a competition is65 66 67 66 64 66 65 63 65 6864 62 66 64 67 65 64 66 65 6765 67 66 64 65 64 66 65 64 6566 65 64 65 63 63 67 65 63 6466 64 68 65 63 65 64 67 66 64a. construct a frequency table for the discrete datab. calculate, correct to 2 decimal places, themean,ii. standard deviation of the data Select the correct answer. Which verb form best completes this conversation? Paco: Cunto dinero sacaste ayer? Marta: Ayer, yo _________ 8.000 pesos. A. saco B. saca C. saqu D. sacaron A screen is separated from a double-slit source by a distance L. When light of wavelength 563 nm is incident on the double slit, the separation distance between adjacent bright fringes on the screen is 0.0290 mm. When instead, 500 nm light is used, what is the separation distance (in mm) between adjacent bright fringes 11,9,7,5,3,1,B) Common Difference:Recursive Function:D) ExplicitFunction: A bag contains twelve marbles, which includes seven red marbles and five blue marbles. Roja reaches into the bag and pulls out four marbles. a) How many different sets of four marbles can be pulled from this bag? b) How many of these sets contain two red marbles and two blue marbles? c) How many of these sets contain all red marbles? d) How many of these sets contain all red marbles or all blue marbles? Find the sum (x^3+5x^2+3x-7)+(8x-6^2+6) Find the difference (7x-3x^2+2)-(x^3+5x^2+2x-5) Regular6. (01.02 MC)1Read and choose the option that answers the question.haracter StylHola, amigos! Me llamo Julieta. En las noches me bao a las ocho menos cuarto de la noche. Me lavo el pelo y me seco el pelo los domingos, martes y jueves. Despus, busco el pijama y mearreglo antes de salir del bao. Luego, salgo del bao y me acuesto. Me duermo a las nueve y media de la noche.ext ColorBased on the reading, select the "yo-go" verb used in the paragraph. Explain why James Baldwin says any Negro who is born in this country and undergoes the American educational system runs the risk of becoming schizophrenic. Define:(i) parasitism,(iii) photosynthetic nutrition An actacide tablet containing Mg(OH)2 (MM = 58.3g / (mol)) is titrated with a 0.100 M solution of HNO3. The end point is determined by using an indicator. Based on 20.00mL HNO3 being used to reach the endpoint, what was the mass of the Mg * (OH) in the antacid tablet? * 0.0583 g 0.583 5.83 g 58.3 g a. Give Tommy your estimate of 0.27 probability in ratio form. Which statement BEST explains why the sine of an acute angle is equal to the cosine of the angles complement? Number17) Find length of CD. 5000 x 10 x 10 x 50 Find the equivalent expression by drawing a line from the left column to the right x+9=13352643-2x answer get brainliest Which of the following is the solution set of the given equation? (x - 3) - 2(x + 6) = -5 a) {-4} b) {8} c) {-10}