Answer:
The frequency of the photon is 7.41*10¹⁶ Hz
Explanation:
Planck states that light is made up of photons, whose energy is directly proportional to the frequency of radiation, according to a constant of proportionality, h, which is called Planck's constant. This is expressed by:
E = h*v
where E is the energy, h the Planck constant (whose value is 6.63*10⁻³⁴ J.s) and v the frequency (Hz or s⁻¹).
So the frequency will be:
[tex]v=\frac{E}{h}[/tex]
Being E= 4.91*10⁻¹⁷ J and replacing:
[tex]v=\frac{4.91*10^{-17} J}{6.63*10^{-34} J.s}[/tex]
You can get:
v= 7.41*10¹⁶ [tex]\frac{1}{s}[/tex]= 7.41*10¹⁶ Hz
The frequency of the photon is 7.41*10¹⁶ Hz
Which of the following solutions is acidic? [H3O+] = 1.0 x 10-10 M [H3O+] < 1.0 x 10-7 M [OH-] = 1.0 x 10-10 M [OH-] = 1.0 x 10-7 M [OH-] > 1.0 x 10-7 M
Answer:
[OH-] = 1.0 x 10-10 M
Explanation:
The acidity of a solution can be determined directly from the concentration of the hydrogen ions and indirectly from the concentrations of the hydroxide ions.
Generally, for a neutral solution we have;
[H3O+] = [OH-] = 1.0 x 10-7 M
For an acidic solution;
[H3O+] > 1.0 x 10-7 M
[OH-] < 1.0 x 10-7 M
Comparing the options the correct option is;
[OH-] = 1.0 x 10-10 M
At what temperature in K will 0.750 moles of oxygen gas occupy 10.0 L and exert 2.50 atm of pressure
Answer:
406 K.
Explanation:
The following data were obtained from the question:
Number of mole (n) = 0.750 mole
Volume (V) = 10.0 L
Pressure (P) = 2.50 atm
Temperature (T) =.?
Note: Gas constant (R) = 0.0821 atm.L/Kmol
The temperature, T can be obtained by using the ideal gas equation as follow:
PV = nRT
2.5 x 10 = 0.75 x 0.0821 x T
Divide both side by 0.75 x 0.0821
T = (2.5 x 10) /(0.75 x 0.0821 )
T = 406 K.
Therefore, the temperature is 406 K.
Answer: 406 K
Explanation:
We can rewrite the ideal gas law to solve for T:
PV = nRT
T=PV / nR
We are given the following from the problem:
n=0.750 mol P=2.50 atm V=10.0 L
Plugging in our values and using R=0.08206 L⋅atm / K⋅mol we get:
T=(2.50 atm)(10.0 L) / (0.750 mole)(0.08206L ⋅ atm ⋅ mole K) = 406 K
Rank the following amine derivatives from highest acidity (lowest pKa value) to lowest acidity (highest pKa value).
Highest acidity
anilinium ion
aniline
ammonium ion
secondary amine
amide
Lowest acidity
Answer:
anilinium ion > ammonium ion > amide > aniline > secondary amine
Explanation:
Acidity of amine derivatives can derived from their pKa values.
The rule of thumb for acidity with relation to pKa values is that:
As the pKa decreases the acid strength increases and the conjugate base decreases. Similarly, as the pKa increases, the acid strength decreases and the conjugate base increase.
Hence the stronger the acid , the lower pKa value and the weaker the acid , the stronger the pKa value.
So the pKa value for anilinium ion = 4.6
ammonium ion = 9.4
Amide = 15
Similarly, for aniline and secondary amine, in order to determine the derivative with the higher acidity, we will consider the electron withdrawing substituent group.
The more difficult the electron are being withdraw from the electron withdrawing substituent , the more acidic the compound.
In aniline , the stabilized benzene ring attached to NH₂ makes it a less electron withdrawing group compared to the straight chains structure found in secondary amine where electron are easily withdraw by nucleophilic substitution reactions.
Thus, from highest acidity (lowest pKa value) to lowest acidity (highest pKa value).
the amine derivatives ranking is as follows:
anilinium ion > ammonium ion > amide > aniline > secondary amine
If a sample of C-14 initially contains 1.6 mmol of C-14, how many millimoles will be left after 2250 years
Answer: 1.2 millimoles will be left after 2250 years
Explanation:
Expression for rate law for first order kinetics is given by:
[tex]t=\frac{2.303}{k}\log\frac{a}{a-x}[/tex]
where,
k = rate constant
t = age of sample
a = let initial amount of the reactant
a - x = amount left after decay process
a) for completion of half life:
Half life is the amount of time taken by a radioactive material to decay to half of its original value.
[tex]t_{\frac{1}{2}}=\frac{0.693}{k}[/tex]
[tex]k=\frac{0.693}{5730}=0.00012years^{-1}[/tex]
b) Amount left after 2250 years
[tex]2250=\frac{2.303}{k}\log\frac{1.6}{a-x}[/tex]
[tex]2250=\frac{2.303}{0.00012}\log\frac{1.6}{a-x}[/tex]
[tex]\log\frac{1.6}{a-x}=0.117[/tex]
[tex]\frac{1.6}{a-x}=1.31[/tex]
[tex]{a-x}=\frac{1.6}{1.31}=1.2[/tex]
Thus 1.2 millimoles will be left after 2250 years
The respiration rate of a goldfish is measured. The goldfish is then placed in cold water and the respiration rate is measured again. What is the INDEPENDENT variable?
Answer:
Temperature of the water
Explanation:
In every study, there must be independent and dependent variables. An independent variable is the variable that is changed in order to obtain a response. In this case, the temperature of the water is being changed, the response in this experiment is the respiration rate of the goldfish.
Thus the respiration rate of the goldfish is the dependent variable because it is controlled by the temperature of the water and changes accordingly.
Summarily, the independent variable is the temperature of the water while the dependent variable is the respiration rate of the goldfish.
To refine aluminum from its ore, aluminum oxide is electrolyzed to form aluminum and oxygen. At which electrode does oxygen form? options: A) Both the anode and the cathode B) Cathode C) Neither electrode D) Anode
Answer:
im pretty sure its the anode
Explanation:
To solve such, we must know the concept of electrolysis reaction. The correct option is option D among all given options. At anode electrode oxygen forms.
What is chemical reaction?Chemical reaction is a process in which two or more than two molecules collide in right orientation and energy to form a new chemical compound. The mass of the overall reaction should be conserved. There are so many types of chemical reaction reaction like combination reaction, double displacement reaction.
Electrolysis is the process of passing an electric current through a material to cause a chemical change. A chemical change occurs when a material loses or acquires the electron. To refine aluminum from its ore, aluminum oxide is electrolyzed to form aluminum and oxygen. At anode electrode oxygen forms.
Therefore, the correct option is option D among all given options. At anode electrode oxygen forms.
Learn more about the chemical reactions, here:
https://brainly.com/question/3461108
#SPJ2
What creation would you make if you had access to any of the chemical elements? can someone answer this for me please.
Answer:
Depends on the chemicals.
Explanation:
The creation of something depends on the chemical we have. If I have chemicals such as acid and base so I can produce salt and water by mixing acid and base. If I have ethanol, vegetable oil and sodium hydroxide which is a catalyst, I can produce biodiesel which can be used in vehicles instead of fossil fuel. If I have sodium element and chlorine gas, I can produce sodium chloride also known as table salt.
g The electronic structure of which ONE of the following species cannot be adequately described by a single Lewis formula? (In other words, the electronic structure of which one can only be described by drawing two or more resonance structures?) A) C2H4 B) SO3 2– C) SO3 D) C3H8 E) HCN
Answer:
C) SO3
Explanation:
Lewis formula shows the bonding between atoms of a molecule and expresses the lone pair present in the atoms.
SO3 or Sulfur trioxide cannot be adequately described by a single Lewis formula because it has majorly 3 resonance structures because Sulfur does not follow the octet rule and can expand electrons in its outer shell.
Hence, the correct answer is C) SO3
Given the data: Ag2O(s), = ‑31.1 kJ mol-1, S° = +121.3 J mol-1 K-1 Ag(s), = 0.00 kJ mol-1, S° = +42.55 J mol-1 K-1 O2(g), = 0.00 kJ mol-1, S° = +205.0 J mol-1 K-1 Calculate the temperature at which = 0 for the reaction, Ag2O(s) → 2 Ag(s) + ½ O2(g). Assume that, since the physical states do not change, and are independent of temperature between ‑50.0 °C and 950.0 °C.
Answer:
[tex]T=469.1K\\\\T=195.9\°C[/tex]
Explanation:
Hello,
In this case, for the given decomposition reaction, we can compute the enthalpy of reaction considering the enthalpy of formation of each involved species (products minus reactants):
[tex]\Delta _rH=2\Delta _fH_{Ag}+\frac{1}{2} \Delta _fH_{O_2}-\Delta _fH_{Ag_2O}\\\\\Delta _rH=2*0.00+\frac{1}{2} *0.00-(-31.1)=31.1kJ/mol[/tex]
Next, the entropy of reaction considering the standard entropy for each involved species (products minus reactants):
[tex]\Delta _rS=2S_{Ag}+\frac{1}{2} S_{O_2}-S_{Ag_2O}\\\\\Delta _rS=2(42.55)+\frac{1}{2} (205.0)-(121.3)=66.3J/(mol*K)[/tex]
Next, since the Gibbs free energy of reaction is computed in terms of both the enthalpy and entropy of reaction at the unknown temperature, for such Gibbs energy equaling 0, the temperature (in K and °C) turns out:
[tex]\Delta _rG=\Delta _rH-T\Delta _rS\\\\0=31.1kJ/mol-T(66.3\frac{J}{mol*K}*\frac{1kJ}{1000J} )\\\\T=\frac{31.1kJ/mol}{0.0663kJ/(mol*K)} =469.1K\\\\T=195.9\°C[/tex]
Which is within the given rank.
Best regards.
As a reaction proceeds, the ratio between the rate of consumption of reactant and the rate of formation of product:
Answer:
Depends on the reaction.
Explanation:
Hello,
In this case, the answer is depends on the reaction since the ratios between the rates of both consumption and formation depend upon the stoichiometric coefficients in the chemical reaction. For instance, for the reaction:
A -> 2B
The relationship is:
[tex]\frac{1}{-1}r_A =\frac{1}{2} r_B[/tex]
Therefore, we can see that the rate of consumption of A half the rate of formation of B, but is we consider the following chemical reaction:
2A -> B
The relationship is:
[tex]\frac{1}{-2}r_A =\frac{1}{1} r_B[/tex]
Therefore we can see that the rate of consumption of A doubles the rate of consumption of B.
Best regards.
Which two layers are part of the thermosphere?
O exosphere and ionosphere
O ionosphere and mesosphere
mesosphere and stratosphere
O stratosphere and troposphere
The two layers are part of the thermosphere are exosphere and ionosphere.
What is the exosphere layer?The Exosphere is the topmost layer of the Earth's atmosphere.
and its gradually disappear into the vacuum of space.
It consist two parts that are:
exosphere and ionosphere.
Thus, option "A" is correct, the rest of the option is not a part of thermosphere.
To learn more about atmospheric layers click here:
https://brainly.com/question/25881294
#SPJ2
Answer:
hi hope your doing great the answer is A
Explanation:
its on Edge 2020
hope i helped :)
1. For the following reaction, 4.86 g of magnesium nitride are mixed with excess water. The reaction yields 7.18 g of magnesium hydroxide.
magnesium nitride(s) + water(1) –> magnesium hydroxide (aq) + ammonia (aq)
What is the ideal yield of magnesium hydroxide?
What is the percent yield for this reaction?
2. For the following reaction, 6.41 g of hydrogen gas are mixed with excess nitrogen gas. The reaction yields 26.2 g of ammonia.
nitrogen(g) + hydrogen(g) –> ammonia(g)
What is the ideal yield of ammonia?
What is the percent yield for this reaction?
3. For the following reaction, 3.79 g of water are mixed with excess chlorine gas. The reaction yields 8.70 g of hydrochloric acid.
chlorine(g) + water(1) –> hydrochloric acid(aq) + chloric acid (HCIO3)(aq)
What is the ideal yield of hydrochloric acid?
What is the percent yield for this reaction?
Answer:
See explanation
Explanation:
1)
Mg3N2(s) + 6H2O(l) ------------> 3Mg(OH)2 + 2NH3(g)
Number of moles of magnesium nitride= mass/molar mass= 4.86g/100.9494 g/mol = 0.048 moles
1 mole of magnesium nitride yields 3 moles of magnesium hydroxide
0.048 moles of magnesium nitride yields 0.048 moles × 3= 0.144 moles of magnesium hydroxide
Theoretical yield of magnesium hydroxide = 0.144 moles × 58.3197 g/mol = 8.398 g
Percent yield= actual yield/ theoretical yield × 100
Percent yield= 7.18/8.398 × 100/1 = 85.5%
2)
N2(g) + 3H2(g) -------> 2NH3(g)
Number of moles of hydrogen gas = mass/ molar mass = 6.41g/ 2gmol-1 = 3.205 moles of hydrogen gas.
From the balanced reaction equation;
3 moles of hydrogen gas yields 2 moles of ammonia
3.205 moles of hydrogen gas yields 3.205 × 2/3 = 2.1367 moles of ammonia
Theoretical yield of ammonia = 2.1367 moles × 17 gmol-1 = 36.3 g
Percent yield = actual yield/ theoretical yield ×100
Percent yield = 26.2/36.3 ×100
Percent yield = 72.2%
3)
3Cl2(g) + 3H2O(l) ------> HOCl3(aq) + 5HCl(aq)
Number of moles of water= mass/ molar mass = 3.79g/18 gmol-1 = 0.21 moles
Since
3 mole of water yields 5 mole of HCl
0.21 moles of water yields 0.21 × 5/3 = 0.35 moles of HCl
Theoretical yield of HCl = 0.35 moles × 36.5 gmol-1 = 12.775 g
Percent yield = actual yield/ theoretical yield × 100/1
Percent yield = 8.70/12.775 ×100
Percent yield = 68.1%
When the nuclide carbon-14 undergoes beta decay: The name of the product nuclide is . The symbol for the product nuclide is
Answer:
Explanation:
The equation for the decay is given as;
¹⁴₆C --> X + ⁰₋₁e
For conservation of matter, the mass number and atomic number has to be the same in both the reactant and product side f he equation;
Mass number;
14 = x + 0
x = 14
Atomic Number;
6 = x + (-1)
x = 6 + 1 =7
¹⁴₆C --> ¹⁴₇N + ⁰₋₁e
The name of the product nuclide with atomic number of 7 is Nitrogen. The symbol is; ¹⁴₇N
Why will the conjugate base of a weak acid affect pH? Select the correct answer below: it will react with hydroxide
Answer:
It will react with water
Explanation:
I know this is an older question, but I just wanted to provide the correct answer.
Since we are dealing with a weak base, and the acid is somewhat stronger, it will react with the water molecules to produce hydronium, which will affect the pH of the solution.
The conjugate base of a weak acid affect pH because it will react with hydronium ion.
A weak acid is an acid that does not dissociate completely in water. On the other hand, a strong acid achieves almost 100% dissociation in water.
Acids dissociate in water to yield the hydronium ion and a conjugate base. For instance, the weak acid, acetic acid is dissociated as follows;
CH3COOH(aq) + H2O(l) ⇄ CH3COO-(aq) + H3O+(aq)
We can see that the conjugate base( CH3COO-) could react with the hydronium ions thereby moving the equilibrium position to the left hand side and affecting the pH by decreasing the hydronium ion concentration.
Learn more: https://brainly.com/question/8592296
Missing parts;
Why will the conjugate base of a weak acid affect pH? Select the correct answer below: O it will react with hydroxide O it will react with water O it will react with hydronium O none of the above
A solution of LiCl in water has XLiCl = 0.0800. What is the molality? A solution of LiCl in water has XLiCl = 0.0800. What is the molality? 4.44 m LiCl 8.70 m LiCl 4.83 m LiCl 4.01 m LiCl
Answer:
mol LiCl = 4.83 m
Explanation:
GIven:
Solution of LiCl in water XLiCl = 0.0800
Mol of water in kg = 55.55 mole
Find:
Molality
Computation:
mole fraction = mol LiCl / (mol water + mol LiCl)
0.0800 = mol LiCl / (55.55 mol + mol LiCl)
0.0800 mol LiCl + 4.444 mol = mol LiCl
mol LiCl - 0.0800 mol LiCl = 4.444 mol
0.92 mol LiCl = 4.444 mol
mol LiCl = 4.83 m
Find the pH of these buffer solutions using the information provided: 1L solution containing 80g of lactic acid (MW
Answer:
pH of the solution is 2.0
Explanation:
The lactic acid is a weak acid that is in equilibrium with water as follows:
Lactic acid + H2O ⇄ Lactate + H₃O⁺
And Ka for lactic acid: 1.38x10⁻⁴
Ka = 1.38x10⁻⁴ = [Lactate] [H₃O⁺] / [Lactic acid]
Initial concentration of lactic acid is (MW: 112.06g/mol):
80g * (1mol / 112.06g) / 1L = 0.714M
The equilibrium concentration of the species in the equilibrium are:
[Lactate] = X
[H₃O⁺] = X
[Lactic acid] = 0.714-X
Replacing in Ka expression:
1.38x10⁻⁴ = [X] [X] / [0.714-X]
9.8532x10⁻⁵ - 1.38x10⁻⁴X = X²
9.8532x10⁻⁵ - 1.38x10⁻⁴X - X² = 0
Solving for X:
X = -1.0x10⁻². False solution, there is no negative concentrations
X = 9.86x10⁻³M. Right solution.
As [H₃O⁺] = X
[H₃O⁺] = 9.86x10⁻³M
and pH = -log [H₃O⁺] = -log 9.86x10⁻³M
pH = 2.0
pH of the solution is 2.0PLEASE HELP WILL GIVE BRAINLIEST!!!
Refining aluminum takes place in steel vats lined with graphite. What function does the graphite lining serve?
A. It is the cathode.
B. It is the anode.
C. It soaks up the waste oxygen released from bauxite (Al2O3)
D. It serves as a grounding layer to prevent electrical surges.
Answer: It's the anode broski (B)
Explanation: I'm taking the Chem summer course too broski, this was the correct answer. Cheers broski
In the Lewis structure of AB4 where B is more electronegative than A. Both are main group elements where A has 8 valence electrons and each B has 7 valence electrons.
Required:
a. What is the total number of valence electrons?
b. How many lone pairs are in the molecule?
Answer:
1. 36
2. Two
Explanation:
The Lewis structure shows the valence electrons present in a compound. Usually the valence electrons are shown as dot structures around the symbol of the elements involved in the compound.
For a compound AB4 where B is more electronegative than A and A has 8 electrons in its valence shell, there will be thirty six valence electrons on the outermost shell of the molecule.
There are six electron pair domains present in the molecule, four bond pairs and two lone pairs. The molecule is in a square planar geometry.
Answer: a- 36 valence electrons
b- 14 lone pairs
Explanation:
Valence is equal to A + 4B = 8 + 4(7)
With 4 bonds between A and the 4 B, that is 36 valence minus 8 electrons in those pairs = 28. 28 is 14 lone pairs.
If you had a cup full of methanol and a pool full of methanol, would the mass change?
Answer:
the mass does not change
Explanation:
What is the energy of a photon of electromagnetic radiation with a wavelength of 963.5 nm? (c = 3.00 × 108 m/s, h = 6.63 × 10–34 J · s
Answer:
[tex]E=2.06\times 10^{-19}\ J[/tex]
Explanation:
Given that,
The wavelength of electromagnetic radiation is 963.5 nm.
We need to find the energy of a photon with this wavelength.
The formula used to find the energy of a photon is given by :
[tex]E=\dfrac{hc}{\lambda}\\\\E=\dfrac{6.63\times 10^{-34}\times 3\times 10^8}{963.5\times 10^{-9}}\\\\E=2.06\times 10^{-19}\ J[/tex]
So, the energy of a photon is [tex]2.06\times 10^{-19}\ J[/tex].
Consider the compound hydrazine N2H4 (MW = 32.0 amu). It can react with I2 (MW = 253.8 amu) by the following reaction 2 I2 + N2H4 ------------- 4 HI + N2 (a) How many grams of I2 are needed to react with 36.7 g of N2H4? (b) How many grams of HI (MW = 127.9 amu) are produced from the reaction of 115.7 g of N2H4 with excess iodine?
Answer:Cobb
Explanation:What y'all
Which of the following forms a molecular solid? Which of the following forms a molecular solid? C10H22 CaO gold C, graphite
Answer:
C10H22
Explanation:
Graphite is known as an allotrope of carbon. Its characteristics include being black and slippery and as used as lubricants.
Gold (Au) is an element on the periodic table with atomic number 79 and a mass number 197 which exists as a metal due to its hydrogen bonds.
C10H22 which is also known as decane belongs to the Alkane family.The General forces of attraction between the alkane family are weak but in the case of decade there is Van der waal force which makes Decane C10H22 a Molecular Solid.
What are some geographic features that could be found in the hydrosphere?
Lakes, oceans, glaciers, clouds, etc. It categorizes all forms of water on earth.
hydro = water
Answer:
Lakes, streams, ground water, polar ice caps, glaciers, water vapor, and rivers!
Explanation:
The hydrosphere is made up of all the water on Earth. So anything that is water, like oceans, can be found in the hydrosphere:)
Calculate the energy required to heat 1.30kg of water from 22.4°C to 34.2°C . Assume the specific heat capacity of water under these conditions is 4.18·J·g−1K−1 . Round your answer to 3 significant digits.
Answer:
The energy required to heat 1.30 kg of water from 22.4°C to 34.2°C is 64,121.2 J
Explanation:
Calorimetry is the measurement of the amount of heat that a body gives up or absorbs in the course of a physical or chemical process.
The sensible heat of a body is the amount of heat received or transferred by a body when undergoing a temperature variation (Δt) without there being a change in physical state. That is, when a system absorbs (or gives up) a certain amount of heat, it may happen that it experiences a change in its temperature, involving sensible heat. Then, the equation for calculating heat exchanges is:
Q = c * m * ΔT
Where Q is the heat or quantity of energy exchanged by a body of mass m, constituted by a substance of specific heat c and where ΔT is the variation in temperature (ΔT=Tfinal - Tinitial).
In this case:
[tex]c=4.18 \frac{J}{g*K}[/tex]m= 1.30 kg= 1,300 g (1 kg=1,000 g)ΔT= 34.2 °C - 22.4 °C= 11.8 °C= 11.8 °K Being a temperature difference, it is independent if they are degrees Celsius or degrees Kelvin. That is, the temperature difference is the same in degrees Celsius or degrees Kelvin.Replacing:
[tex]Q=4.18 \frac{J}{g*K}*1,300 g*11.8 K[/tex]
Q= 64,121.2 J
The energy required to heat 1.30 kg of water from 22.4°C to 34.2°C is 64,121.2 J
A student mixes 1.0 mL of aqueous silver nitrate, AgNO3 (aq), with 1.0 mL of aqueous sodium chloride, NaCl (aq), in a clean test tube. What will the student observe
Answer:
AgCl (silver Chloride) is being precipitated out as white and cloudy crystals.
Explanation:
If a student mixes 1.0 mL of aqueous silver nitrate AgNO3 (aq) with 1.0 mL of aqueous sodium chloride, NaCl (aq), in a clean test tube.
The sodium chloride is being acidified with dilute trioxonitrate (V) acid. Then a few drops of silver trioxonitrate(V) is added afterwards. A white precipitate of silver chloride, which dissolves readily in aqueous ammonia indicates the presence of sodium chloride.
The reaction proceeds as follows:
[tex]\mathtt{AgNO_{3(aq)} + NaCl _{(aq)} \to AgCl _{(s)} + NaNO_3_{(aq)}}[/tex]
From the reaction between AgNO3 (aq) and NaCl (aq), AgCl (silver Chloride) is being precipitated out as white and cloudy crystals.
Which of the following processes is spontaneous? Select the correct answer below:
a. carbon graphite turning to carbon diamond at normal pressure
b. carbon diamond turning to carbon graphite at normal pressure
c. carbon diamond turning to carbon graphite at high pressure
d. none of the above
Answer:
b. carbon diamond turning to carbon graphite at normal pressure.
Explanation:
Graphite is the stable form of the carbon element under normal ambient pressure. The process of conversion of carbon diamond to carbon graphite is a spontaneous process under typical ambient conditions, since diamonds are said to be thermodynamically unstable but kinetically stable under ambient conditions, and the process of conversion can take place without a continuous input of energy from an external source.
Identify four general properties that make an NSAID unique as compared to the NSAID aspirin. List specific properties that make aspirin, naproxen, and ibuprofen unique from one another
Answer:
NSAIDs are steroidal anti-inflammatories, their action is on the phospholipase A2 enzyme, this enzyme is responsible for breaking down the phospholipids of the membrane to trigger an inflammatory response. This is how steroidal anti-inflammatory drugs inhibit ALL inflammatory pathways (not like NSAIDs that they only inhibit the COX pathway).
These corticosteroid drugs cannot exceed the systemic mineralocorticoid value 1 in the body, since this corticosteroid hormone is also released by the adrenal cortex.
The NSAIDs generate: sporadic peaks in blood glucose, hypertension, fluid retention, increase in body fat mass, possible suppression of the adrenal cortex over time, inhibiting endogenous synthesis of corticosteroids.
On the other hand, naproxen and ibuprofen are NSAIDs, that is, non-steroidal anti-inflammatory drugs that do not influence both routes of inflammation, but only COX, this enzyme is abbreviated as COX but is called cyclooxygenase, and is responsible for a single route of inflammation.
NSAIDs such as naproxen and ibuprofen can cause gastric disorders such as ulcers or gastritis if they are consumed in a very repetitive manner.
In addition, both drugs are anti-inflammatory, analgesic and antipyretic. Although its two main functions are the first two, it was shown to have an effect in lowering body temperature.
That they are anti-inflammatory means that they inhibit the path of inflammation and analgesics the path of pain.
Explanation:
Both types of drugs generate the same effect but by different mechanisms.
Some are steroids and others are not, although steroids are considered to have a greater risk of benefit that is why they are administered against more systematically compromised instances such as anaphylactic shock.
NSAIDs such as naproxen and ibuprofen are the most prescribed today, since they have few risks and very good benefits, meaning that their adverse effects are not lethal or highly relevant and have a good effect on symptoms.
Both must be administered with care when treating a diabetic patient since corticosteroids generate glycemic peaks or increase in blood glucose, and NSAIDs compete for plasma protein with oral hypoglycemic agents, thus generating that these are in higher free concentrations. high diffusing better through the tissues and increases the potency of the adverse effects of these.
How many moles of bromine will react with 0.0500 mole of C 2H 2 in the reaction C 2H 4 + Br 2 → C 2H 4Br 2?
Answer:
0.05 mole of Br2.
Explanation:
We'll begin by writing the balanced equation for the reaction. This is given below:
C2H4 + Br2 —› C2H4Br2
From the balanced equation above,
1 mole of C2H4 reacted with 1 mole of Br2 to produce 1 mole of C2H4 Br2.
Finally, we shall determine the number of moles bromine that will react with 0.05 mole of C2H2.
The number of mole of Br2 needed for the reaction can be obtained as follow:
From the balanced equation above,
1 mole of C2H4 reacted with 1 mole of Br2.
Therefore, 0.05 mole of C2H4 will also react with 0.05 mole of Br2.
Therefore, 0.05 mole of Br2 is needed for the reaction.
Check 0/1 ptRetries 5 Element R has three isotopes. The isotopes are present in 0.0825, 0.2671, and 0.6504 relative abundance. If their masses are 97.62, 109.3, and 138.3 respectively, calculate the atomic mass of element R.
Answer:
Atomic mass = 127.198 amu
Explanation:
The average atomic mass is obtained by summing the masses of the isotopes each multiplied by its abundance.
Atomic mass = (97.62 * 0.0825) + (109.3 * 0.2671) + (138.3 * 0.6504)
Atomic mass = 8.05365 + 29.19403 + 89.95032
Atomic mass = 127.198 amu
Why can long chain fatty acids can form micelles in solutions with pH > 7 but are insoluble in pH < 5
Answer:
In basic conditions that is ( pH > 7 ), the equilibrium shifts towards right and produces a lot of (-ve) negatively charged fatty acids which are polar, In water, since they have long hydrophobic hydrocarbon part, this form micelles where the hydrocarbon part remain inside the sphere and -coo- group remain outside the sphere due to H-bonding interaction with water.
At ( pH < 5 ) I.e acidic conditions, the equilibrium shift to the left giving neutral molecules which can not have stronger H-bonding interaction .
So micelles cant form as they become insoluble.