What is the frequency of blue light that has a wavelength of 448 nm?

Answers

Answer 1

Answer:

The frequency of light can be calculated using the following formula:

frequency = speed of light / wavelength

where the speed of light is approximately 299,792,458 meters per second.

First, we need to convert the given wavelength from nanometers to meters:

448 nm = 448 × 10^-9 m

Now we can plug in the values and solve for frequency:

frequency = (299,792,458 m/s) / (448 × 10^-9 m)

frequency = 6.69 × 10^14 Hz

Therefore, the frequency of blue light with a wavelength of 448 nm is approximately 6.69 × 10^14 Hz.


Related Questions

Two moles of oxygen gas, which can be regarded as an Ideal gas with Cv = 22,1 JK 'mol, are maintained at 273k in a volume of 0,1 m ³ under 1 Sothermal conditions. Then, the gas is compressed reversibly to half of its original volume at constant pressure calculate P₁ and P2 Cp W, Show all derivation steps qp​

Answers

Answer:

P1 = 45,174 Pa

P2 = 90,348 Pa

W = 2,259 J

Q = 2,259 J

ΔS = 0

Explanation:

We can use the ideal gas law, PV = nRT, to solve this problem. Since the gas is at constant temperature (isothermal), we can simplify this to PV = constant.

Given that there are two moles of oxygen gas in a volume of 0.1 m^3 at 273 K, we can calculate the initial pressure as follows:

P1V1 = nRT

P1 = nRT/V1

P1 = (2 mol)(8.31 J/mol.K)(273 K)/(0.1 m^3)

P1 = 45,174 Pa

Next, we compress the gas reversibly to half of its original volume (i.e. V2 = 0.05 m^3) at constant pressure. We can use the same equation, PV = constant, and the fact that the pressure is constant to solve for the final pressure:

P1V1 = P2V2

P2 = P1V1/V2

P2 = (45,174 Pa)(0.1 m^3)/(0.05 m^3)

P2 = 90,348 Pa

Now, we can calculate the work done during the compression process using the equation:

W = -PΔV

where ΔV is the change in volume (i.e. V2 - V1 = -0.05 m^3), and the negative sign indicates that work is done on the system during compression. Substituting the values, we get:

W = -(45,174 Pa)(-0.05 m^3)

W = 2,259 J

Finally, we can calculate the heat added to the system using the first law of thermodynamics:

ΔU = Q - W

where ΔU is the change in internal energy (which is zero since the temperature is constant), Q is the heat added to the system, and W is the work done on the system (which is negative). Solving for Q, we get:

Q = ΔU + W

Q = 0 J + 2,259 J

Q = 2,259 J

Since the temperature is constant, the heat added to the system is equal to the change in enthalpy:

ΔH = Q = 2,259 J

We can also calculate the change in entropy using the equation:

ΔS = nCv ln(T2/T1)

where Cv is the molar heat capacity at constant volume (which is given as 22.1 J/K.mol), and ln(T2/T1) is the natural logarithm of the ratio of final and initial temperatures. Since the temperature is constant, ΔS = 0.

Therefore, the final answers are:

P1 = 45,174 Pa

P2 = 90,348 Pa

W = 2,259 J

Q = 2,259 J

ΔS = 0

A rock is launched at a 50-degree angle above the horizontal with
an initial velocity of +16 m/s.
a. Calculate the rock's maximum height.

Answers

Explanation:

Vertical component of velocity

 = 16 sin 50  =  12.3 m/s

Vertical height will be given by

h  =   vo t + 1/2 a t^2

h = 1/2 ( -9.81) t^2 + 12.3 t    

h = - 4.905 t^2 + 12.3 t

         will have max at t = - b/2a = -12.3/(2*(-4.905) )   = 1.25 sec

            use this value of 't' in the equation to find the max height:

h = - 4.905 ( 1.25^2) + 12.3 ( 1.25) =  7.7 meters    max height

                 

A 1.5kg block is held in place and compresses a 150N/m spring by 30cm from its relaxed position. The block is then released. What speed will the block have at the instant when the spring is no longer compressed?

Answers

Answer: simple harmonic motion

Simple harmonic motion. At the instant the spring is no longer compressed(equilibrium), all of our spring potential energy(kx^2/2) has been converted to kinetic energy(mv^2/2). All you have to do is find what your spring potential energy is when the spring is compressed using the spring constant(150N/m) and the distance it's compressed(30cm), use that as your kinetic energy, and solve for the velocity since you already know the mass.

A crane lifts an object weighing 25000N up with a constant speed of 0.8m/s. calculate the capacity of that crane

Answers

The capacity of a crane refers to the maximum weight it can lift. In this case, the crane is lifting an object weighing 25000N (Newtons) with a constant speed of 0.8m/s.

To calculate the capacity of the crane, we need to use the formula:

Capacity = Force × Distance ÷ Time

In this case, the force is the weight of the object, which is 25000N. The distance is the height to which the object is lifted, which is not given in the problem statement. Therefore, we cannot determine the exact capacity of the crane.

However, we can use the given speed of 0.8m/s to estimate the height to which the object is lifted.

Let's assume that the crane lifts the object to a height of "h" meters. Then, the time taken by the crane to lift the object to this height is:

Time = Distance ÷ Speed

Time = h ÷ 0.8

Now, we can substitute the values of force, distance, and time into the formula to get the capacity of the crane:

Capacity = Force × Distance ÷ Time

Capacity = 25000 × h ÷ (h ÷ 0.8)

Capacity = 25000 × 0.8

Capacity = 20000 N

Therefore, the capacity of the crane is approximately 20000 N

Person A stands on the ground, train B with proper length L moves to the right at speed 3c/5, and person C runs to the right at speed 4c/5. C starts behind the train and eventually passes it. Let event E1 be "C coincides with the back of the train," and let event E2 be "C coincides with the front of the train." Find the Delta t and Delta x between the events E1 and E2 in the frames of A, B, and C, and show that c2 Delta t2 - Delta x2 is the same in all three frames.

Answers

The Delta t and Delta x between the events E1 and E2 in the frames of A, B, and C, and show that c2 Delta t2 - Delta x2 is the same in all three frames. The Space time interval in all frames is [tex]\frac{144}{25}L^2[/tex].

In the following we will find out the time interval and space interval between the two events E1 and E2 with respective to  A, B and C.

Simultaneously we will find out space time interval in each case and finally show that they are the same.



In the frame of reference of C

The time interval is the time it takes for ( to Cover the contracted length of B.

with respect to C, B will have a relative velocity Ux' = (-5/13)C  (we had already found out it.Only the sign changes)

Then the contrasted length of B with respect to C.

would be L' =  [tex]L\sqrt{1 - \frac{Ux^2}{C^2}} = L\sqrt{1 - \frac{25}{169}}[/tex]

L' = (12/13)L

So dt = L'/un\x' =(12/13)L / (-5/13)C = (12/5)(L/C)

dx =0 as E1, and E2 occurs at the same point with respect to C. Now space time Interval is Cdt^2 = dx^2 =

[tex]C^2 \frac{144}{25}\frac{L^2}{C^2}-0 = \frac{144}{25}L^2[/tex]

The quantity of time between two given instances is referred to as time interval. In other words, it is the amount of time that has surpassed among the beginning and end of the event. it is also called elapsed time. interval of time is measured in special units. every unit describes a one of a kind quantity of time. some units are better appropriate to specific durations of time.

As an instance, if you were baking a cake within the oven, you will select to measure the time in minutes or perhaps in hours. in case you were calculating the time on your birthday from a particular date, you will choose to measure the time in days, weeks, or months (relying on how far away it became).

To learn more about Time interval visit here:

brainly.com/question/28210196

#SPJ4

5. In the diagram below, Aircraft A is flying East and maintaining a groundspeed of 340 kt (a kt = speed of 1 NM / hr). Aircraft B is flying in the same direction as aircraft A but 210 NM ahead, maintaining a ground speed of 280 kt. Aircraft A will catch Aircraft B at Point ‘X’. What distance will Aircraft B have travelled when this event occurs?

Answers

For the event to occur, Aircraft B will have travelled a distance of 980 NM.

How to calculate distance?

Since Aircraft A is flying East, we can assume that the positive direction is to the East and negative direction is to the West. Let's assume that the position of Aircraft A is x and position of Aircraft B is x + 210 NM.

Let t be the time it takes for Aircraft A to catch up with Aircraft B. At that moment, both aircraft will be at the same position, so:

distance traveled by Aircraft A = distance traveled by Aircraft B

Ground speed x time = Ground speed x time + 210

Using the given ground speeds, we can set up the equation as:

340t = 280t + 210

60t = 210

t = 3.5 hours

Therefore, Aircraft B will have traveled a distance of:

distance = ground speed x time

distance = 280 kt x 3.5 hr

distance = 980 NM

So, Aircraft B will have traveled 980 NM when Aircraft A catches up with it at Point X.

Find out more on Aircraft here: https://brainly.com/question/31362675

#SPJ1

What is the equivalent
capacitance of this
combination?
(Remember, μ means 10-6.)
[?] × 10¹ F
5.2 µF
HH
7 μF 9 μF
10 V

Answers

The equivalent capacitance of the combination is 2.2405 μF.

Steps

To find the equivalent capacitance of the combination, we can use the formula:

1/C = 1/C1 + 1/C2 + 1/C3

where C1, C2, and C3 are the capacitances of the three capacitors.

Plugging in the values, we get:

1/C = 1/5.2μF + 1/7μF + 1/9μF

1/C = 0.1923077 + 0.1428571 + 0.1111111

1/C = 0.4462759

C = 1/0.4462759

C = 2.2405 μF (rounded to 4 significant figures)

Therefore, the equivalent capacitance of the combination is 2.2405 μF.

Capacitance

A system's capacitance is its capacity to store an electric charge. The proportion of the electric charge held on a conductor to the difference in potential between the conductors is what is meant by this term.

The farad (F), which is equal to one coulomb per volt, is the unit of capacitance.

learn more about capacitance here

https://brainly.com/question/13578522

#SPJ1

Please do help me. Nonsense answers will be reported.

An object is thrown horizontally with a speed of 30 m/s from the top of a building. Complete the table below for the indicated time interval. Use g≈ 10 m/s²)​

Answers

The time that was taken for the movement of the item is observed as 3 seconds.

How do you use the equations of motion?

The equations of motion describe the motion of objects in terms of their position, velocity, acceleration, and time.

For the equation;

v = u + at

This equation relates the final velocity (v) of an object to its initial velocity (u), acceleration (a), and time (t). If three of these variables are known, the equation can be rearranged to solve for the unknown variable.

We know that;

v = u - gt

We know that the object would come to rest after being thrown.

0 = 30 - 10t

-30 = - 10t

t = 3 seconds

Learn more about equations of motion:https://brainly.com/question/29278163

#SPJ1

If the pressure exerted on the floor by a box is 200kpa, find the weight of the box given that the bottom of the box has a contact area of 20cm³?​

Answers

Basically the pressure times area gives the force applies by the box on the floor which is its weight.
So, F = 2 x 20 x 10^5 x 10^-6 N = 4N
So the weight is 4 Newtons

The weight of the box is approximately 0.0408 kg.

What is Pressure?

Pressure is a measure of how much force is applied per unit area of surface. It is a scalar quantity and has units of force per unit area. It is typically expressed in units such as pascals (Pa), atmospheres (atm), or pounds per square inch (psi).

We can use the formula:

pressure = force / area

where pressure is given as 200 kPa and area is given as 20 cm^2. Converting cm^2 to m^2:

20 cm^2 = 20 x 10^-4 m^2 = 0.002 m^2

Substituting the values in the formula and solving for force:

200 kPa = force / 0.002 m^2

force = 200 kPa x 0.002 m^2

force = 0.4 kN (kilonewtons)

The weight of the box is the force acting on it due to gravity, which is given by:

weight = mass x gravitational acceleration

Assuming the box is on the Earth's surface, we can use a value of 9.81 m/s^2 for gravitational acceleration. Solving for mass:

mass = weight / gravitational acceleration

mass = 0.4 kN / 9.81 m/s^2

mass = 0.0408 kg (kilograms)

Therefore, the weight of the box is approximately 0.0408 kg.

Learn more about Pressure from given link

https://brainly.com/question/28012687

#SPJ1

Find the net electric flux through a spherical closed surface of two charges +1.00nc and -3.00nC embedded inside and a +2.00nC outside.​

Answers

Answer:

Explanation:

To find the net electric flux through a closed surface, we need to apply Gauss's law:

Phi_E = Q_enclosed / epsilon_0

where Phi_E is the electric flux, Q_enclosed is the net charge enclosed by the closed surface, and epsilon_0 is the electric constant.

Let's consider a spherical closed surface of radius R enclosing the charges. We can divide the surface into two regions: inside and outside the sphere.

For the charges inside the sphere, the net charge enclosed is:

Q_enclosed = +1.00 nC - 3.00 nC = -2.00 nC

Therefore, the electric flux through the inner surface of the sphere is:

Phi_E_inside = Q_enclosed / epsilon_0 = (-2.00 nC) / epsilon_0

For the charge outside the sphere, the net charge enclosed is:

Q_enclosed = +2.00 nC

Therefore, the electric flux through the outer surface of the sphere is:

Phi_E_outside = Q_enclosed / epsilon_0 = (2.00 nC) / epsilon_0

The net electric flux through the closed surface is the sum of the electric flux through the inner and outer surfaces:

Phi_E_net = Phi_E_inside + Phi_E_outside = (-2.00 nC) / epsilon_0 + (2.00 nC) / epsilon_0

= 0

Therefore, the net electric flux through the closed surface is zero. This means that the total amount of electric field lines entering the surface is equal to the total amount of electric field lines leaving the surface. This result is consistent with Gauss's law, which states that the net electric flux through a closed surface is proportional to the net charge enclosed by the surface. In this case, since the net charge enclosed is zero, the net electric flux is also zero.

ball thrown upward from the top of a building 220 feet tall. The height of the ball is described by the function A is h()-162 + 20t + 220. where t is the time in seconds and t 0 corresponds to the moment the ball is thrown (a) Determine for which value of f the ball reaches the maximum height and determine this maximum height. Max Height: 905/4 (b) Determine when the ball reaches the ground. t(5+sqrt(905)/8 (c) With what velocity does the ball hit the ground?

Answers

The value of f is 905/4 feet, After 4 seconds the ball reaches the ground and the velocity of the ball hit the ground is -10 - 4sqrt(905) ft/s

step 1:

When the ball reaches the maximum height, it means that the velocity is zero, we use this fact to calculate the value of "f".

The height of the ball is described by the function A is

[tex]h(t) = -16t² + 20t + 220[/tex]

When the ball reaches the maximum height, its velocity is zero, therefore:

[tex]v = dh/dt = 0[/tex]

We take the derivative of the height function to get the velocity function:

[tex]v(t) = -32t + 20[/tex]

When the velocity is zero, the ball has reached its maximum height:

[tex]-32t + 20 = 0[/tex] => t = 5/8 seconds

Step 2:

Now we calculate the maximum height by plugging in t = 5/8 seconds into the height function:\

[tex]h(5/8) = -16(5/8)² + 20(5/8) + 220[/tex]

= 905/4 feet

Step 3:

To determine when the ball reaches the ground, we need to find the time when the ball reaches a height of 0:

[tex]0 = -16t² + 20t + 220= > 2t² - 5t - 55 = 0[/tex]

Using the quadratic formula:

[tex]t = [5 ± sqrt(5² - 4(2)(-55))] / [2(2)]= (5 ± sqrt(905)) / 4[/tex]

We take the positive root since time cannot be negative:

t =  4 seconds

Step 4:

To calculate the velocity at which the ball hits the ground,

we take the derivative of the height function and evaluate it at the time when the ball hits the ground:

[tex]v(t) = -32t + 20= > v((5 + sqrt(905)) / 4)[/tex]

= -32((5 + sqrt(905)) / 4) + 20

= -10 - 4sqrt(905) ft/s

For more such questions on velocity , Visit:

https://brainly.com/question/24445340

#SPJ11

A spring of spring constant k=8.25N/m is displaced from equilibrium by a distance of 0.150 m. What is the stored energy in the form of spring potential energy?

Answers

PE is the potential energy stored in the spring, k is the spring constant, and x is the  PE is the potential energy stored in the spring, k is the spring constant, and x is the displacement from equilibrium.

What is a displacement?

Displacement is a vector quantity that describes the overall change in position of an object from its initial position to its final position. It is a vector because it has both magnitude (the distance between the initial and final positions) and direction (the direction from the initial position to the final position).

For example, if an object moves from point A to point B, its displacement is the vector that points from A to B, regardless of the path taken to get there. Displacement can be positive, negative, or zero, depending on the direction of the vector.

Displacement is often used in kinematics, which is the study of motion without considering the forces that cause the motion. It is a key concept in describing the motion of objects in one, two, or three dimensions.

To know more about  displacement visit :

https://brainly.com/question/30087445

#SPJ1

For small bodies with high thermal conductivity, the features surrounding the medium that favor lumped system analysis
The medium should be a poor conductor of heat
The medium should be motionless

Answers

Small bodies with high thermal conductivity, the medium should be a poor conductor of heat and should be motionless in order to favour lumped system analysis.

For small bodies with high thermal conductivity, the features surrounding the medium that favor lumped system analysis are that the medium should be a poor conductor of heat and the medium should be motionless.

In other words, for small bodies with high thermal conductivity, the thermal energy will stay confined within the boundaries of the medium if it is a poor conductor of heat and the medium is not moving. This allows the energy to be spread evenly throughout the system, which is why lumped system analysis can be used.

Lumped system analysis is a method used to analyse heat transfer and energy flow within a system. It assumes that thermal energy is transferred across a body of homogeneous material and can be used to calculate the temperature of an object at different points in the body.

The effectiveness of this method relies on the heat capacity of the medium and its thermal conductivity, which is why it is most suitable for small bodies with high thermal conductivity.

For large bodies, or bodies with low thermal conductivity, distributed system analysis is typically used instead of lumped system analysis. This method assumes that the body has different thermal properties at different points, and calculates the temperature at those points based on their respective thermal properties.

For similar questions on thermal conductivity

https://brainly.com/question/29419715

#SPJ11

I actually have 3 questions. >33

1. Write about a time when you felt very cold and did something to make yourself feel warm, or a time when you felt hot and did something to cool yourself down. What caused the heat to transfer from one place to another place? How did this transfer of heat cause a change in temperature?

2. Why is the temperature of the liquid in the flask on the previous page measured when the liquid in the thermometer has stopped rising?

3. How can the thermometer in the flask on the previous page be used to demonstrate the relationship between heat transfer and kinetic energy? Explain.

Answers

When you contact anything hot, the heat is transmitted from the object to your hand, making it feel hot. When you contact something cold, heat is transmitted from your hand to the object, making it feel chilly.

When heated the molecules of the liquid move faster causes them to get a little further apart?

when heated, the molecules of the liquid in the thermometer move faster, causing them to get a little further apart. this results in movement up the thermometer. when cooled, the molecules of the liquid in the thermometer move slower, causing them to get a little closer together.

When the liquid in the thermometer is heated, the molecules move quicker, forcing them to move wider apart. This causes the thermometer to rise. When the liquid in the thermometer is chilled, the molecules travel slower, leading them to get closer together.

Learn more about heat

https://brainly.com/question/1429452

#SPJ1

A group of students conduct an experiment to study Newton's second law of motion. They applied a force to a toy car and measure its acceleration. The table shows the results.
Force (N) Acceleration (m/s²)
2.0 5.0
3.0 7.5
6.0 15.0
If the students graph the data points, which conclusion will they be able to make?
The data points will fall along a line. This shows that as the force increases, the acceleration increases.

Answers

Newton's second law of motion is the fundamental law of motion in classical mechanics.

The data points will fall along a line. This shows that as the force increases, the acceleration increases.

A group of students conduct an experiment to study Newton's second law of motion. They applied a force to a toy car and measure its acceleration.

The Force (N) and Acceleration (m/s²) measurement of the group of students, as seen in the table, is given as 2.0 and 5.0, 3.0 and 7.5, and 6.0 and 15.0 respectively.

As the group of students will graph the data points, they will be able to conclude that the data points will fall along a line. This shows that as the force increases, the acceleration increases.

The law is also known as the force law, and it is a fundamental principle of classical mechanics. It defines the relationship between an object's motion and the forces acting upon it.

for such more question on fundamental law

https://brainly.com/question/18805035

#SPJ11

the frequency of two alleles in a gene pool is 0.19 (a) and 0.81(a). assume that the population isin hardy-weinberg equilibrium.

Answers

Based on the information given, we can assume that there are two alleles for a particular gene in a population: allele "A" with frequency of 0.19 and allele "a" with frequency of 0.81.

What is the frequency?

If the population is in Hardy-Weinberg equilibrium, then the allele frequencies will remain constant from generation to generation.

According to the Hardy-Weinberg equation, the expected genotype frequencies can be calculated as follows:

AA genotype frequency = p^2 = (0.19)^2 = 0.0361Aa genotype frequency = 2pq = 2(0.19)(0.81) = 0.3082aa genotype frequency = q^2 = (0.81)^2 = 0.6561

What is genotype?

These genotype frequencies should remain constant in future generations as long as the assumptions of the Hardy-Weinberg equilibrium are met, such as random mating, no migration, no mutation, no natural selection, and large population size.

To know more about genotype, visit:

https://brainly.com/question/29156144

#SPJ1

Just after launch from the earth, the space-shuttle orbiter is in the 42 x 153–mi orbit shown. At the apogee point A, its speed is 17246 mi/hr. If nothing were done to modify the orbit, what would its speed be at the perigee P? Neglect aerodynamic drag. (Note that the normal practice is to add speed at A, which raises the perigee altitude to a value that is well above the bulk of the atmosphere.) The radius of the earth is 3959 mi.

Answers

If nothing were done to modify the orbit, the speed of the space-shuttle orbiter at the perigee P would be approximately 17085 mi/hr

What is the speed of the  space-shuttle?

We can use the principle of conservation of energy to determine the speed of the space-shuttle orbiter at the perigee P.

At the apogee point A, the potential energy of the space-shuttle orbiter is at a maximum, while its kinetic energy is at a minimum. Conversely, at the perigee point P, the kinetic energy is at a maximum, while the potential energy is at a minimum.

The potential energy of the space-shuttle orbiter at any point in its orbit can be calculated as:

U = - G M m / r

where;

G is the gravitational constant, M is the mass of the Earth, m is the mass of the orbiter, and r is the distance between the Earth's center and the orbiter.

The kinetic energy of the orbiter can be calculated as:

K = (1/2) m v^2

where;

v is the velocity of the orbiter.

Since the sum of the kinetic energy and potential energy remains constant throughout the orbit, we can set the total energy E equal to the sum of the kinetic and potential energies at the apogee point A:

E = U(A) + K(A)

At the perigee point P, the total energy is the same, so we can write:

E = U(P) + K(P)

Equating these two expressions for E, we get:

U(A) + K(A) = U(P) + K(P)

Substituting the expressions for potential and kinetic energy, we get:

G M m / r(A) + (1/2) m v(A)² = - G M m / r(P) + (1/2) m v(P)²

Canceling out the mass of the orbiter and multiplying both sides by -1, we get:

G M / r(A) - (1/2) v(A)² = G M / r(P) - (1/2) v(P)²

Solving for v(P), we get:

v(P) = √[2 G M / r(P) - (1/2) v(A)² + 2 G M / r(A)]

Now we can substitute the given values and solve for v(P):

v(A) = 17246 mi/hr

r(A) = 3959 + 153 = 4112 mi

r(P) = 3959 + 42 = 4001 mi

G M = 1.327 × 10^11 m^3/s^2

Converting units to SI, we get:

v(A) = 7742.6 m/s

r(A) = 6617.6 km

r(P) = 6400.2 km

G M = 3.986 × 10¹⁴ m³/s²

Substituting these values, we get:

v(P) = √[2 (3.986 × 10¹⁴) / (6400.2 × 1000) - (1/2) (7742.6)² + 2 (3.986 × 10¹⁴) / (6617.6 × 1000)]

= 7640.7 m/s

Converting back to miles per hour, we get:

v(P) = 17085 mi/hr (rounded to the nearest mile per hour)

Learn more about conservation of energy here: https://brainly.com/question/27422874

#SPJ1

Help with 2 Kirchoff law exercises

1-For the circuit in the figure below, find V₁ and V2.

2-Find the currents and voltages in the following circuit.

Answers

Answer:

v1 = 8V; v2=12Vi1=9/7A, i2=13/14A, i3=5/14A, v1=18/7V, v2=52/7V, v3=10/7V

Explanation:

You want the voltages in each circuit, and also the currents in the second circuit.

1. Voltage divider

In this series circuit, the voltage is divided in proportion to the resistance.

  v1 = 2/5(20V) = 8V

  v2 = 3/5(20V) = 12V

2. Current equations

The sum of voltages around a loop is 0, so we can write the equations ...

  2·i1 +8·i2 = 10

  8·i2 -4·i3 = 6

  i1 -i2 -i3 = 0

The attachment shows the calculation of the currents. Those are used to find the corresponding voltages.

  (i1, i2, i3) = (9/7, 13/14, 5/14)A

  (v1, v2, v3) = (18/7, 52/7, 10/7)V

__

Additional comment

A T-circuit as in figure 2 can usually be solved handily by making use of Norton's equivalents for the sources. The left source can be replaced by a 5A current source in parallel with 2Ω. The right source can be replaced by a 1.5A current source in parallel with 4Ω. Then the circuit degenerates to a 6.5A source in parallel with 8/(4+1+2) = 8/7Ω. So, the voltage v2 is ...

  v2 = (6.5A)(8/7Ω) = 52/7V

Then {v1, -v3} = {10, 6} -v2  ⇒  (v1, v3) = (18/7, 10/7)

The currents are found by dividing the voltage by the resistance:

  {i1, i2, i3} = {18/7, 52/7, 10/7}÷{2, 8, 4} = (9/7, 13/14, 5/14) . . . . as above

Note that these calculations can all be done without the aid of calculator.

Parallel resistors that are multiples of one another can be thought of as some number of resistors in parallel. Here, the 2Ω resistor can be thought of as 4 8Ω resistors in parallel. Similarly, the 4Ω resistor is effectively 2 8Ω resistors in parallel. Thus the parallel combination of 2Ω, 8Ω, and 4Ω is effectively 4+1+2 = 7 8Ω resistors in parallel, or 8/7Ω. No calculator required.

Derive a formula for the efficiency of the Diesel cycle, in terms of the compression ratio �
1
/

2
V 1

/V 2

and the cutoff ratio �
3
/

2
.
V 3

/V 2

. Show that for a given compression ratio, the Diesel cycle is less efficient than the Otto cycle. Evaluate the theoretical efficiency of a Diesel engine with a compression ratio of 18 and a cutoff ratio of 2.

Answers

The theoretical efficiency of a Diesel engine with a compression ratio of 18 and a cutoff ratio of 2 is 0.94.

The efficiency of the Diesel cycle, denoted by η, can be expressed as a function of the compression ratio (r)
and the cutoff ratio (r_c)
as follows:
[tex]η = 1 - 1/(r^(r_c-1))[/tex]
This equation shows that as the compression ratio increases, the efficiency of the Diesel cycle increases.
When comparing the efficiency of the Diesel cycle to that of the Otto cycle, it can be seen that for a given compression ratio, the Diesel cycle is less efficient than the Otto cycle. To evaluate the theoretical efficiency of a Diesel engine with a compression ratio of 18 and a cutoff ratio of 2, we can use the equation above to calculate the efficiency as:
[tex]η = 1 - 1/(18^(2-1))[/tex]
η = 1 - 1/18
η = 0.94
Therefore, the theoretical efficiency of a Diesel engine with a compression ratio of 18 and a cutoff ratio of 2 is 0.94.

for such more question on theoretical efficiency

https://brainly.com/question/22224978

#SPJ11

what is one way to increase the momentum of an object

1 . decrease aerodynamics
2. decrease velocity
3. increase friction
4. increase force

Answers

Explanation:

Momentum = mv     so the most likely way to increase an object's momentum would be to increase its velocity

which of the following formulas gives us ml, the total number of possible orbitals within a subshell? select the correct answer below: ml

Answers

Ml = 2l + 1 is the right formula to calculate the total number of potential orbitals in a subshell.

How does ML calculate the number of orbitals?

ml = -l,..., 0,..., +l is the magnetic quantum number (ml). Describes how an orbital with a certain energy (n) and form should be oriented in space. (l). Each subshell has 2l+1 orbitals, each of which may house one electron. This number separates each subshell into independent orbitals.

How many Subshells in total are there in a shell?

Due to the existence of subshells in each shell, this model collapses at the n=3 shell. The names of the four subshells are s, p, d, and f. Within each subshell, a different amount of electrons can fit. The n value determines how many subshells there are in the shell.

To know more about potential orbitals visit:-

https://brainly.com/question/4033076

#SPJ1

Question:

Which of the following formulas gives us ml, the total number of possible orbitals within a subshell?

A person with a mass of 55.0 kg jumps straight upwards, gaining 820.0 J of gravitational potential energy. How high did the person jump?

Answers

m=55.0 D=820 so were are looking for the velocity ? v= m\d V = 55.0*820 =45100 ...

If pulse 1 were reflected from a wall, which one of the patterns above would represent the reflected pulse? A) 1 B) 2 C) 3 D) 4 E) 5

Answers

If pulse 1 is reflected from a wall, pattern 2 would represent the reflected pulse. This is because when a wave is reflected from a fixed end, its amplitude is inverted. So, pattern 2 represents the reflection of pulse 1 from a fixed end.

A pulse is a short burst of energy that travels through space or matter. These bursts of energy can come in many different forms, including sound waves, light waves, and even electromagnetic radiation. In the context of waves, a pulse refers to a single disturbance that propagates through a medium. The reflection of waves refers to the behavior of waves that encounter a barrier or a discontinuity in a medium that causes them to return to their original medium. When waves are reflected, their direction of motion changes, and they experience a change in amplitude, phase, and polarization.

The amplitude of the reflected wave is related to the amplitude of the incident wave, as well as to the reflectivity of the medium. The reflection of waves is an essential phenomenon in many fields of science and engineering. For example, it is essential in optics, where it is used to form images in mirrors and lenses. It is also important in acoustics, where it is used to analyze the characteristics of sound waves. In addition, the reflection of waves is a critical aspect of the design of structures such as bridges and buildings, where it can help to reduce the impact of seismic waves during an earthquake.

To learn more about Amplitude ;

https://brainly.com/question/3613222

#SPJ11

A slingshot consists of a light leather cup attached between two rubber bands. It takes a force of 33 N to stretch the bands 1.3 cm.A) What is the equivalent spring constant of the rubber bands? Answer in n/m.B) How much force is required to pull the cup of the slingshot 4.2 cm from its equilibrium position? Answer in units of N.

Answers

The force needed to pull the cup of the slingshot 4.2 cm from its equilibrium position is 2667N/m.

From the Hook's law, the spring constant may be expressed as follows:

k=F / x

wherein F=32N is the elastic pressure (which is identical to the applied one if rubber bands do no longer flow after stretching), and x=1.2cm=0.012m is the elongation of the bands.

k= 32N / 0.012m ≈ 2667N/m

A slingshot is a handheld projectile weapon that uses elastic materials, such as rubber bands or natural fibers, to propel small projectiles. It consists of a Y-shaped frame with two rubber bands attached to the forks of the frame. The user stretches the bands back with their fingers, placing a projectile such as a small rock or ball in a pouch or cradle, and then releases the bands to launch the projectile.

Slingshots have been used for hunting and recreation for thousands of years, and are still popular today. They are relatively inexpensive and easy to make, and can be used for target shooting, small game hunting, and even self-defense in some situations.

To learn more about Slingshot visit here:

brainly.com/question/31135747

#SPJ4

P2. Charges q and Q are placed on the x-y plane at (0,0) and at (0, 3) m, respectively.
Where q = 50 pC and Q = -40 pC.
a. Draw the situation to solve the next step.
b. Determine the net electric flux through a closed cylindrical surface that has a diameter of 5 ma
a height of 4 m, where the axis of the cylinder is the z axis and its mid-point is at the origin.

Answers

a. Here is a diagram of the situation:

                Q (-40 pC)

       |

       |

       |    (0,3)

       |

------ o-------- x-axis

       |

       |

       |    (0,0)

       |

     q (50 pC)

(b) The net electric flux through the closed cylindrical surface is -5.69×10⁵ Nm²/C.

To calculate this, we use Gauss's Law, which states that the net electric flux through any closed surface is proportional to the net charge enclosed by the surface. Mathematically, this is expressed as:

flux = E * A = (q_enclosed / ε0) * A

where E is the electric field, A is the area of the closed surface, q_enclosed is the net charge enclosed by the surface, and ε0 is the permittivity of free space.

In this case, we have a cylindrical surface with a height of 4 m and a diameter of 5 mA (which means a radius of 2.5 mA). The cylinder is centered at the origin and has the z-axis as its axis of symmetry. To apply Gauss's Law, we need to find the net charge enclosed by the cylinder.

Both charges q and Q are on the x-y plane, so they do not contribute to the net charge enclosed by the cylindrical surface. Therefore, the net charge enclosed by the surface is simply the sum of q and Q:

q_enclosed = q + Q = (50 pC) + (-40 pC) = 10 pC

Substituting this into Gauss's Law, we get:

flux = (q_enclosed / ε0) * A = (10 pC / 8.85×10⁻¹² F/m) * π (2.5×10⁻³ m)² (4 m) = -5.69×10⁵ Nm²/C

Therefore, the net electric flux through the closed cylindrical surface is -5.69×10⁵ Nm²/C.

What is an electric flux?

Electric flux is the measure of the number of electric field lines passing through a given surface. It is a scalar quantity and represents the amount of electric field passing through a surface per unit area. The SI unit of electric flux is volt-meter (V m) or newton-meter squared per coulomb (N m2/C).

To know more about electrical flux, visit:

https://brainly.com/question/14544020

#SPJ1

what are the difference between a planetary fly by and a planter orbit insertion. list 6 thing for each, find the answer for NASA.gov​

Answers

Answer:

Explanation:

Planetary Flyby:

The spacecraft does not go into orbit around the planet; instead, it uses the planet's gravity to change its speed and direction.

The spacecraft's closest approach to the planet is usually brief, ranging from a few minutes to a few hours.

The spacecraft is able to capture images and data during the brief encounter with the planet.

The spacecraft's trajectory can be adjusted to perform multiple flybys of different planets or moons.

The spacecraft does not require a large amount of fuel to perform a flyby, making it a cost-effective option for exploration.

Flybys are useful for studying a planet's atmosphere, magnetic field, and gravitational field.

Planetary Orbit Insertion:

The spacecraft goes into orbit around the planet, allowing for long-term study and data collection.

The spacecraft's orbit can be adjusted to achieve different scientific objectives, such as mapping the planet's surface or studying its atmosphere.

The spacecraft must have enough fuel to slow down and enter orbit, making it a more expensive option than a flyby.

The spacecraft's orbit can be stable or elliptical, depending on the scientific objectives and mission requirements.

The spacecraft may require several trajectory adjustments to achieve the desired orbit.

Orbit insertion allows for more detailed and comprehensive study of a planet's geology, climate, and magnetic field.

A 509g mass oscillates with an amplitude of 13.0cm on a spring whose spring constant is 20.0N/m . A. Determine the period T= ....... s B. Determine the maximum speed Vmax= ...... m/s C. Determine the total energy Wtotal= ........ J

Answers

Period (T):

T = 2π√(m/k)

where m is the mass of the object and k is the spring constant.

Maximum speed (Vmax):

Vmax = Aω

where A is the amplitude of oscillation and ω is the angular frequency, which is given by ω = √(k/m).

Total energy (Wtotal):

W total = 1/2 kA^2

where k is the spring constant and A is the amplitude of oscillation.

Given:

m = 509g = 0.509 kg

A = 13.0 cm = 0.13 m

k = 20.0 N/m

A. Determine the period T:

T = 2π√(m/k)

T = 2π√(0.509 kg / 20.0 N/m)

T = 0.798 s

Therefore, the period of oscillation is 0.798 s.

B. Determine the maximum speed Vmax:

ω = √(k/m) = √(20.0 N/m / 0.509 kg) = 8.05 rad/s

Vmax = Aω = 0.13 m * 8.05 rad/s = 1.05 m/s

Therefore, the maximum speed of the oscillating mass is 1.05 m/s.

C. Determine the total energy W total:

Wtotal = 1/2 kA^2 = 1/2 * 20.0 N/m * (0.13 m)^2 = 0.135 J

Therefore, the total energy of the oscillating mass is 0.135 J.

What is  energy ?

Energy is a physical property of objects that can be transferred to other objects or converted into different forms, but cannot be created or destroyed. It is often defined as the ability to do work, where work is the product of a force and the distance through which it acts.

Energy exists in many different forms, including mechanical energy associated with motion and position of objects, thermal energy associated with the temperature of objects, electromagnetic energy associated with electric and magnetic fields chemical energy associated with chemical reactions), and nuclear energy associated with the energy released during nuclear reactions.

To know more about Energy visit :

https://brainly.com/question/1932868

#SPJ1

calculate T1 , T2 and T3

Answers

Using the triangle of forces to get the system of the forces;

T1 = 866 NT2 = 500 NT3 = 1000 N

What is the triangle of forces theorem?

If three forces acting on a body are in equilibrium, then they can be represented in magnitude and direction by the three sides of a triangle taken in order.

In other words, the three forces can be drawn as vectors, and these vectors can be arranged to form a closed triangle.

We know that we have the other end of the triangle to be;

100 Kg * 10 m/s^2 = 1000 N

The missing angle is;

180 - (30 + 60)

= 90 degrees

Thus;

1000/Sin 90 = T1/Sin 60

T1 = 100 Sin 60/Sin 90

T1 = 866/1

T1 = 866 N

1000/Sin 90 = T2/Sin 30

T2 = 1000 Sin 30/Sin 90

T2 = 500 N

Learn more about forces:https://brainly.com/question/13191643

#SPJ1

What are density and volume?

Simple explanation please​

Answers

Answer:

Explanation:

Density is a measure of how much mass is contained in a given volume. It is the amount of matter (mass) in a given space (volume). Density is usually expressed in units of mass per unit of volume, such as kilograms per cubic meter (kg/m³) or grams per milliliter (g/mL).

Volume is the amount of space occupied by an object or substance. It is the measurement of the three-dimensional space occupied by an object, substance, or material. Volume can be measured in different units, such as liters (L), cubic meters (m³), or cubic feet (ft³), depending on the scale of the object being measured.

Answer ....Volume refers to the measurement of the amount of three-dimensional space occupied by an object. Unlike mass, volume changes according to the external conditions. Density refers to the mass contained in a substance for a given volume. It explains the relationship between mass and volume

What is the
equivalent
capacitance of this
combination?
(Remember, μ means 10-6.)
HHH
25 μF 15 μF
[?] × 10²¹ F
X

Answers

The equivalent capacitance of this combination is 9.375 μF, or 9.375 × 10⁻⁶ F in scientific notation.

What is capacitor ?

A capacitor is an electronic component that stores electrical energy in an electric field. It consists of two conductive plates separated by a non-conductive material, called a dielectric. When a voltage is applied to the capacitor, electric charge builds up on the plates, creating an electric field between them. The amount of charge that can be stored on the plates depends on the capacitance of the capacitor, which is determined by the size and spacing of the plates, as well as the properties of the dielectric material.

When capacitors are in series, their effective capacitance is given by:

1/C_series = 1/C_1 + 1/C_2 + ...

In this case, we have two capacitors in series, with capacitances of 25 μF and 15 μF:

1/C_series = 1/25μF + 1/15μF

1/C_series = (15 + 25)/(1525μF²)

1/C_series = 40/(375*μF²)

C_series = 375*μF²/40

C_series = 9.375 μF

Therefore, the equivalent capacitance of this combination is 9.375 μF, or 9.375 × 10⁻⁶ F in scientific notation.

To know more about capacitor visit :-

https://brainly.com/question/27753307

#SPJ1

Other Questions
TRUE OR FALSE in order for a film to be classified as a documentary, it cannot contain any statements of opinion, only facts What is the equation of the line that is parallel to thegiven line and passes through the point (-3, 2)?V(o, 3)O 3x - 4y = -17(-3,2O 3x - 4y = -204x + 3y = -24x + 3y = -6 Which term describes the energy an object has due to the motion of itsparticles?A. Magnetic energyB. Chemical energyC. Elastic energyD. Thermal energy An employee group with which of the following number of employees would qualify for a medical savings account?A) 23 employeesB) 51 employeesC) 101 employeesD) Any number of employees f the initial energy of a conservative system is ei and the final energy is ef, what can we say about the relationship between these two energies in such a system? Downy is purchasing a home for $283,000. He makes a 25% down payment and obtains a 25-year fixed rate mortgage loan at 7% annual interest. His monthly payments are $1,500.14. He pays an intangible tax of 0.2%. Which of the following is the total cost of principal, interest, down payment, and amount of intangible tax? (4 points)A. $450,042.00B. $521,358.00C. $521,216.50 In 1865-77 what happened in reconstruction (in your own words ) Evidence-based management includes bragging about new products you have in development. True or False. PLEASE HELP!!!What type of air masses form over land in polar regions?cold and dry air masseswarm and dry air massescold and wet air masseswarm and wet air masses which of the following terms describes the time a unit spends actually being worked on together with the time spent waiting in a queue? Which of the following identifies the three different types of intelligence in Sternberg's triarchic theory?verbal, nonverbal, and practicalanalytical, creative, and practicalemotional, cognitive, and linguisticverbal, mathematical, and interpersonal A small block with mass 0.0400 kg slides in a vertical circle of radius R = 0.500 m on the inside of a circular track. During one of the revolutions of the block, when the block is at the bottom of its path, point A, the normal force exerted on the block by the track has magnitude 3.95 N. In this same revolution, when the block reaches the top of its path, point B, the normal force exerted on the block has magnitude 0.680 N. How much work is done on the block by friction during the motion of the block from point A to point B? why do we think that ach is the neurotransmitter released at the neuro-muscular junction in vertebrates? Select the correct answer.In Shakespeare's "Sonnet 130," why does the speaker describe his beloved as plain and not comparable to beautiful things like the sun, coral, androses?To establish his immunity from falling for such thingsTo disguise his true feelings of admiration for herC.To mock poets who made exaggerated comparisonsA.B.ResetNext The invention of a punch card tabulator sped up data analysis after the 1880 Census. (a) What types of information related to labor might the new tabulator have helped to analyze? (b) Give other examples of types of economic information available as a result of technological innovations. an electron is moving parallel to an electric field (from higher to lower voltage). its potential energy is HELP what is the answer to this using systems of equationsy=1/8x15x+4y=13 How do the headings in "Career Planning for High Schoolers." guide students through the text? by introducing the steps in a process. A straight 2.40 m wire carries a typical household current of 1.50 A (in one direction) at a location where the earth's magnetic field is 0.550 gauss from south to north. *I know there's a lot of questions, but I will rate the you-know-what out of you a) Find the direction of the force that our planet's magnetic field exerts on this cord if is oriented so that the current in it is running from west to east. b) Find the magnitude of the force that our planet's magnetic field exerts on this cord if is oriented so that the current in it is running from west to east. c) Find the direction of the force that our planet's magnetic field exerts on this cord if is oriented so that the current in it is running vertically upward. d) Find the magnitude of the force that our planet's magnetic field exerts on this cord if is oriented so that the current in it is running vertically upward. e) Find the direction of the force that our planet's magnetic field exerts on this cord if is oriented so that the current in it is running from north to south. f) Find the magnitude of the force that our planet's magnetic field exerts on this cord if is oriented so that the current in it is running from north to south. g) Is the magnetic force ever large enough to cause significant effects under normal household conditions? How does economic development affect diffusion?