Answer:
11 sqrt(2)
Step-by-step explanation:
Since this is a right triangle, we can use trig functions
sin theta = opp / hypotenuse
sin 45 = x /22
22 sin 45 = x
22 ( sqrt(2)/2) =x
11 sqrt(2)
The legs are equal since the base angles are equal
Solve the triangle ,find m
Answer:
m A = 63
m C = 27
Step-by-step explanation:
to find the angle of a use trigonometry by doing, cos-1(17/38) = 63
to find C, we know angles in a triangle add to 180. We know the right angle is 90 degrees so do 90 + 63 = 153
180 - 153 = 27
so C = 27 degrees
Find the circumference.
Use 3.14 for t.
r= 2 m
C = [?] m
C=Td
Answer:
12.56 m
Step-by-step explanation:
The circumference of a circle is given by
C = 2 * pi *r
C = 2 * (3.14) * 2
C =12.56
Can someone please help me out
Step-by-step explanation:
[tex] \sqrt{ - 81} = 9i \\ \sqrt{ - 11} = i \sqrt{11} \\ \sqrt{ - 20} = i \sqrt{20} [/tex]
in how many ways can 10 people be divided into three groups of 2, 3, and 5 people respectively
Answer:
2520 ways
Step-by-step explanation:
Given
[tex]n = 10[/tex]
[tex]r = (2,3,5)[/tex]
Required
The number of selection
First, select 2 people from 10 in 10C2 ways.
There are 8 people, left.
Next, select 3 people from 8 in 8C3 ways.
There are 5 people left.
Lastly, select 5 from 5 in 5C5 ways
So, we have:
[tex]Total = ^{10}C_2 * ^8C_3 * ^5C_5[/tex]
Using combination formula
[tex]Total = 45 * 56 * 1[/tex]
[tex]Total = 2520[/tex]
Which of the following describes graphing y ≥ |x| + 4?
A. Translate y = |x| down 4 units and shade inside the V.
B. Translate y = |x| right 4 units and shade inside the V.
C. Translate y = |x| left 4 units and shade inside the V.
D. Translate y = |x| up 4 units and shade inside the V.
Answer:
The choose (D)
D. Translate y = |x| up 4 units and shade inside the V.
HELP PLEASE!!! The expected value of a random variable X is 35. The variable is transformed
by multiplying X by 4 and then adding 1 to it. Find the expected value (mean)
of the transformed variable. A. 135 B.117 C. 154 D.141
Answer:
Expected value x= 35
linear transformation is defined as a + bx
here, b=4, a=1
The transformation is [tex]z=1+4x[/tex]
now, expected value, [tex]l_z=l_z(a+bx)[/tex]
[tex]=l(a)+l(bx)[/tex]
[tex]=a+b\:l\:x[/tex]
substitute the value of a=1, b=4 and l=35
[tex]l_z=1+4\times35[/tex]
[tex]=1+140[/tex]
[tex]=141[/tex]
So, the expected value of the transformed variable is 141.
OAmalOHopeO
=======================================================
Explanation:
Let's consider a set of three values such that they're all equal to 35
{35,35,35}
This rather boring set has a mean of 35 and it's hopefully very clear why this is the case. The terms "mean" and "expected value" are interchangeable.
If we multiply everything by 4, then we get the new set {140,140,140}
Then add 1 to everything and we arrive at {141,141,141}. You can quickly see that the mean here is 141.
-----------------------------
You could play around with that original set of 3 values to make things more interesting. Let's say we subtract 1 from the first item and add 1 to the last item. So we could have {35,35,35} turn into {34,35,36}. You should find that the mean is still 35 here.
If we quadruple each item, then we have {34,35,36} turn into {136,140,144}
Finally, add 1 to everything to get {137,141,145}. Computing the mean of this set leads to 141.
These are just two examples you could do to help see why the answer is D) 141
-----------------------------
In a more general theoretical sense, we're saying the following
Y = mX+b
E[Y] = E[m*X+b]
E[Y] = E[m*X] + E[b]
E[Y] = m*E[X] + b
where Y is the transformed variable based on the random variable X. In this case, m = 4 and b = 1. Also, E[X] = 35.
So,
E[Y] = m*E[X] + b
E[Y] = 4*35 + 1
E[Y] = 141
-----------------------------
Why go through all this trouble? Well consider that you know a certain distribution is centered around 35. Then consider that you want to convert those measurements to some other unit. This conversion process is us going from variable X to variable Y. Think of it like a batch conversion of sorts.
A more real world example would be something like "we know the average temperature is 35 degrees Celsius. The question is: what is the average temperature in Fahrenheit?" The numbers would be different, but the idea still holds up.
someone, please help this is due soon if you can explain them I really appreciate it (PICTURE) 15 points and brainliest.
Step-by-step explanation:
1. Given,
Sides of the shape = 3y+9, 2y+4, y+3 and 2y+4
Therefore ,
Perimeter of the shape = Sum of all the sides
= (3y+9) + (2y+4) + (y+3) + (2y+4)
= 3y + 2y + y + 2y + 9 + 4 + 3 + 4
= 8y + 20 (Ans)
2. Given,
Side of the square = 5x - 2
Therefore,
Perimeter of the square = 4 × Sides = 4s
= 4 × (5x - 2)
= 4 × 5x + 4 × (-2)
= 20x - 8 (Ans)
Which of the following is the inverse of the function given below?
I + 2
7
O A. (1)
-1 + 2
=
7
7
1 + 2
O B. ()
OC. s()
OD. p(t)
=
2x + 7
= 7r – 2
Answer:
d) p(x)= 7x-2
Step-by-step explanation:
d) p(x) = 7x -2
What are the steps to this problem (along with the answer)?
Answer:
x = 3
Step-by-step explanation:
In this piece-wise function, there are three defined sections, each for a different range of x. To find an x where y is -9, we have to set all parts of it equal to -9.
-x, x < -3
So, we can start by setting -x equal to -9 and solve for x:
-x = -9
x = 9
Our domain for this piece of the function is supposed to be x < -3. x = 9 does not fit into this range, meaning, in this range, there is no x for y = -9.
2x, -3 ≤ x ≤ -2
We can set the value 2x equal to -9 and, again, solve for x:
2x = -9
x = -4.5
The solution x = -4.5 does not fit into the defined domain of -3 ≤ x ≤ -2, therefore it is not a solution.
-x^2, x > -2
One last time, we can set -x^2 equal to -9 and solve for x:
-x^2 = -9
x^2 = 9
x = 3, x = -3
We are looking for a solution that fits into the domain, x > -2, x = -3 does not work, but x = 3 does.
In conclusion, the only solution where it fit the domain was x = 3
Answer:
x = 3
Step-by-step explanation:
x = - 3 in interval - 3 ≤ x ≤ - 2 then f(x) = 2x , so
f(- 3) = 2(- 3) = - 6 ≠ - 9
x = 9 in interval x > - 2 then f(x) = - x² , so
f(9) = - 9² = - 81 ≠ - 9
x = 3 in interval x > - 2 then f(x) = - x²
f(3) = - 3² = - 9
x = - 4.5 in the interval x < - 3 then f(x) = - x , so
f(- 4.5) = - (- 4.5) = 4.5
Thus
y = - 9 when x = 3
Please help ! pythagoran theaeom ! I need someone to please explain how to answer this ASAP , giving brainlist
Answer:
Floor=2*sqrt(11)
Step-by-step explanation:
Using Pythagoras theorem, we have
Wall^2+Floor^2=(Ladder)^2
Floor^2=12^2-10^2
Floor=sqrt(44)=2*sqrt(11)
Answer:The floor is 6m
Step-by-step explanation:
In this we have to solve to find B
First we know that A^2+B^2+C^2 and we know A is 10 and C is 12 so now we are going square both 10 and 12 which would be 100 and 144 then we subtract each other 144-100=44 and lastly we are going to get the square root of 44 which is 6.
Please give brainlist
Based on your observations in question 7, what general conclusion can you draw about any line that is parallel to one side of a triangle and intersects the other two sides?
(question 7. Now check the boxes for Show Segment Parallel to AC and Show Segment Parallel to AB. Find the ratio of BF to FC and the ratio of GB to AG. Then find the ratio of IC to BI and the ratio of HC to AH. (If you want to move , select point F, and if you want to move , select point H.) What can you say about the relationship between the pairs of lengths in each case? (The ratio of BF to FC is proportional to the ratio of GB to AG. Similarly, the ratio of IC to BI is proportional to the ratio of HC to AH.))
Answer: A line parallel to one side of a triangle and intersects the other two sides divides the two sides of the triangle proportionally.
Got this straight from Edmentum
Step-by-step explanation:
Answer:
The ratio of BF to FC is proportional to the ratio of GB to AG. Similarly, the ratio of IC to BI is proportional to the ratio of HC to AH.
Step-by-step explanation:
This is the actual answer for question 7 the one above is question 8
:)
what’s the answer help pls
Answer:
D should be the anwser if im not mistaken!
Step-by-step explanation:
rp= 6 cm and as u can tell the side where q,s lies is a little bit longer so itll be 1 cm longer the r,p!!
Answer:
7
Step-by-step explanation:
Triangle Proportionality Theorem : If a line parallel to one side of a triangle intersects the other two sides of the triangle, then the line divides these two sides proportionally.
[tex]\frac{RP}{PT}[/tex] = [tex]\frac{SQ}{QT}[/tex] Set up proportions
[tex]\frac{6}{18}[/tex] = [tex]\frac{x}{21}[/tex] Cross multiply
18x = 126 Divide to isolate x
x = 7
Which of these is the absolute value parent function?
A. f(x) = 13x
B. f(x) = x + 2
C. f(x) = 1x1
D. f(x) = x - 11
Answer:
it's 'A' I guess
Step-by-step explanation:
hope it helps
A sector of a circle has an arc length of pi cm and a central angle of pi over 6 radians. What is the area of the sector?
Answer:
Area of sector is 6pi cm^2
Step-by-step explanation:
Mathematically pi radians is 180 degrees
thus pi/6 radians is 180/6 = 30 degrees
The formula for the length of an arc is;
theta/360 * 2 * pi * r
where theta in this case is 30 degrees
And the arc length is pi
so we have
30/360 * 2 * pi * r = pi
30/360 * 2 * r = 1
60r = 360
r = 360/60
r = 6 cm
Now the area of a sector is;
theta/360 * pi * r^2
30/360 * pi * 36
= 6pi cm^2
Prime numbers which are the sum and difference of other two prime numbers at the same time.
Answer:
Let a be the smaller of the two primes.
Now the middle of 2 primes is always even. So the middle number a+1 is divisible by 2.
Next the smaller of the primes when divided by 3 can have remainders 1,2.
1 is ruled out as possible remainder because then the remainder of a+2, the bigger of the primes would be (a+2) mod 3=(1+2) mod 3=3 mod 3=0,a contradiction since a prime number(except 3) when divided by 3 cannot have 0 as remainder.
So 2 is the only possible remainder of a. So the remainder of the bigger of the two primes when divided by 3 is (a+2) mod 3= (2+2) mod 3=4 mod 3=1.
This implies the middle number must have remainder (a+1)mod 3=(2+1)mod 3=3 mod 3=0. So the middle number is divisible by 3 also.
Hence a+1 is divisible by both 3 and 2 and since 2 and 3 have no common factors, so the middle number is divisible by 6
(c+d)^2+11(c+d)+30
Factor completely.
Answer:
firstable give c+b a polynomial value like x
so its will be x^2+11x+30
after the we have to factor it
30=6×5
and 11=6+5
so its will become
(x+6)×(x+5)=x^2+11x+30
x=c+d
(c+d+6)×(c+d+5)=(c+d)^2+11(c+d)+30
have a great day
What is the explicit formula for this sequence?
Answer:
D.
Step-by-step explanation:
we see a1 = 6.
that is the starting value. everything else then (to generate the new sequence elements) is added to this.
so, B and C are out.
and clearly, for every new sequence element we add -3. and we do this for every sequence element except for a1. so we add -3 (n-1) times.
therefore, only D is correct.
Let a=(1,2,3,4), b=(4,3,2,1) and c=(1,1,1,1) be vectors in R4. Part (a) [4 points]: Find (a⋅2c)b+||−3c||a. Part (b) [6 points]: Find two perpendicular vectors p and q in R4 such that their sum is the vector b and such that p is parallel to a. Part (c) [3 points]: If T(−1,1,2,−2) is the terminal point of the vector a, then what is its initial point? Part (d) [2 points]: Find a vector in R4 that is perpendicular to b.
Solution :
Given :
a = (1, 2, 3, 4) , b = ( 4, 3, 2, 1), c = (1, 1, 1, 1) ∈ [tex]R^4[/tex]
a). (a.2c)b + ||-3c||a
Now,
(a.2c) = (1, 2, 3, 4). 2 (1, 1, 1, 1)
= (2 + 4 + 6 + 6)
= 20
-3c = -3 (1, 1, 1, 1)
= (-3, -3, -3, -3)
||-3c|| = [tex]$\sqrt{(-3)^2 + (-3)^2 + (-3)^2 + (-3)^2 }$[/tex]
[tex]$=\sqrt{9+9+9+9}$[/tex]
[tex]$=\sqrt{36}$[/tex]
= 6
Therefore,
(a.2c)b + ||-3c||a = (20)(4, 3, 2, 1) + 6(1, 2, 3, 4)
= (80, 60, 40, 20) + (6, 12, 18, 24)
= (86, 72, 58, 44)
b). two vectors [tex]\vec A[/tex] and [tex]\vec B[/tex] are parallel to each other if they are scalar multiple of each other.
i.e., [tex]\vec A=r \vec B[/tex] for the same scalar r.
Given [tex]\vec p[/tex] is parallel to [tex]\vec a[/tex], for the same scalar r, we have
[tex]$\vec p = r (1,2,3,4)$[/tex]
[tex]$\vec p = (r,2r,3r,4r)$[/tex] ......(1)
Let [tex]\vec q = (q_1,q_2,q_3,q_4)[/tex] ......(2)
Now given [tex]\vec p[/tex] and [tex]\vec q[/tex] are perpendicular vectors, that is dot product of [tex]\vec p[/tex] and [tex]\vec q[/tex] is zero.
[tex]$q_1r + 2q_2r + 3q_3r + 4q_4r = 0$[/tex]
[tex]$q_1 + 2q_2 + 3q_3 + 4q_4 = 0$[/tex] .......(3)
Also given the sum of [tex]\vec p[/tex] and [tex]\vec q[/tex] is equal to [tex]\vec b[/tex]. So
[tex]\vec p + \vec q = \vec b[/tex]
[tex]$(r,2r,3r,4r) + (q_1+q_2+q_3+q_4)=(4, 3,2,1)$[/tex]
∴ [tex]$q_1 = 4-r , \ q_2=3-2r, \ q_3 = 2-3r, \ q_4=1-4r$[/tex] ....(4)
Putting the values of [tex]q_1,q_2,q_3,q_4[/tex] in (3),we get
[tex]r=\frac{2}{3}[/tex]
So putting this value of r in (4), we get
[tex]$\vec p =\left( \frac{2}{3}, \frac{4}{3}, 2, \frac{8}{3} \right)$[/tex]
[tex]$\vec q =\left( \frac{10}{3}, \frac{5}{3}, 0, \frac{-5}{3} \right)$[/tex]
These two vectors are perpendicular and satisfies the given condition.
c). Given terminal point is [tex]\vec a[/tex] is (-1, 1, 2, -2)
We know that,
Position vector = terminal point - initial point
Initial point = terminal point - position point
= (-1, 1, 2, -2) - (1, 2, 3, 4)
= (-2, -1, -1, -6)
d). [tex]\vec b = (4,3,2,1)[/tex]
Let us say a vector [tex]\vec d = (d_1, d_2,d_3,d_4)[/tex] is perpendicular to [tex]\vec b.[/tex]
Then, [tex]\vec b.\vec d = 0[/tex]
[tex]$4d_1+3d_2+2d_3+d_4=0$[/tex]
[tex]$d_4=-4d_1-3d_2-2d_3$[/tex]
There are infinitely many vectors which satisfies this condition.
Let us choose arbitrary [tex]$d_1=1, d_2=1, d_3=2$[/tex]
Therefore, [tex]$d_4=-4(-1)-3(1)-2(2)$[/tex]
= -3
The vector is (-1, 1, 2, -3) perpendicular to given [tex]\vec b.[/tex]
[tex]3f^{2} - 15f - 108[/tex]
Answer:
3(f - 9)(f + 4)
Step-by-step explanation:
Assuming you require to factorise the expression
3f² - 15f - 108 ← factor out 3 from each term
= 3(f² - 5f - 36) ← factor the quadratic
Consider the factors 0f the constant term (- 36) which sum to give the coefficient of the f- term (- 5)
The factors are - 9 and + 4 , since
- 9 × 4 = - 36 and - 9 + 4 = - 5 , then
f² - 5f - 36 = (f- 9)(f + 4)
Then
3f² - 15f - 108 = 3(f - 9)(f + 4)
If Ф ∈ (0, pi/2) and tan(pi cosФ) = cot(pi sinФ), then cos(Ф- pi/4) is equal to?\
Answer:
please see the answer in the picture.
You wait in line for hours to get the new special edition Nikes for $250, but you have to pay 5.3% in Virginia state sales tax. What is the total you will pay?
Answer:
263.25
Step-by-step explanation:
250 x .053 (5.3%) = 13.25 tax
250 + 13.25 = 263.25 price plus sales tax
Answer:
263.25
Step-by-step explanation:
Find the reference angle for -200°
The reference angle of -200° is 20°. If you think about it, the terminal arm will be in Q2. That means that it has a reference angle of 200-180 = 20°
Please help me !!!!!!!!!!
Answer:
[tex]EF=6[/tex]
Step-by-step explanation:
In this problem, one is given a circle with two secants (that is a line that intersects a circle at two points). One is given certain measurements, the problem asks one to find the unknown measurements.
The product of the lengths theorem gives a ratio between the lengths in the secants. Call the part of the secant that is inside the circle (inside), and the part of the secant between the exterior of the circle and the point of intersection of the secants (outside). The sum of (inside) and (outside) make up the entire secant, call this measurement (total). Remember, there are two secants, ([tex]secant_1[/tex]) and ([tex]secant_2[/tex]) in this situation. With these naming in mind, one can state the product of the length ratio as the following:
[tex]\frac{total_1}{outside_2}=\frac{total_2}{outside_1}[/tex]
Alternatively, one can state it like the following ratio:
[tex]\frac{inside_1+ouside_1}{outside_2}=\frac{inside_2+outside_2}{outside_1}[/tex]
Apply this ratio to the given problem, substitute the lengths of the sides of the secants in and solve for the unknown.
[tex]\frac{EF+FG}{HG}=\frac{SH+HG}{FG}[/tex]
[tex]\frac{2x+4}{5}=\frac{x+5}{4}[/tex]
Cross products, multiply the numerator and denominators of opposite sides of the fraction together,
[tex]\frac{2x+4}{5}=\frac{x+5}{4}[/tex]
[tex]4(2x+4)=5(x+5)[/tex]
Simplify,
[tex]4(2x+4)=5(x+5)[/tex]
[tex]8x+16=5x+25[/tex]
Inverse operations,
[tex]8x+16=5x+25[/tex]
[tex]3x+16=25\\3x=9\\x=3[/tex]
Substitute this value into the equation given for the measure of (EF),
[tex]EF=2x\\x=3\\\\EF=2x\\=2(3)\\=6[/tex]
Which choices are equivalent to the expression below ? Check all that apply sqrt(- 4)
Answer:
D 2i
Step-by-step explanation:
Answer:
B. i√4
D. 2i
Step-by-step explanation:
Can you guys help me find x for both
Answer:
x = 6 and x = 9
Step-by-step explanation:
16
MN is half the length of KL
MN = [tex]\frac{1}{2}[/tex] × 12 = 6
--------------------------------------------
17
Δ LMN and Δ LJK are similar triangles, so the ratios of corresponding sides are equal, that is
[tex]\frac{LM}{LJ}[/tex] = [tex]\frac{MN}{JK}[/tex] , substitute values
[tex]\frac{x}{x+9}[/tex] = [tex]\frac{8.5}{17}[/tex] = [tex]\frac{1}{2}[/tex] ( cross- multiply )
2x = x + 9 ( subtract x from both sides )
x = 9
Given the sequence -14, -6, -2, 0, 1, ..., find the recursive formula.
4. PLEASE HELP ME
Which of the quadratic functions has the widest graph?
A. y= -4/5x2
B. y= -4x2
C. y= 1/3x2
D. y= 0.3x2
Answer:
D. y= 0.3x2
Step-by-step explanation:
In quadratic functions, the value of a affects the wideness of the graph. The smaller the absolute value of a, the wider the graph. In these choices, 1/3 and 0.3 are the smallest. To understand which is smaller convert both to decimals; 1/3 is 0.3333 repeating. Therefore, 0.3 is slightly smaller and wider.
Which graphs are the graphs of even functions?
when a number is divided by 5 , the quotient is 8 and the remainder is 3. What is the number?
let's call the number "n", so we have a short term to talk about it
n will not exactly divisible by 5, because the remainder would be zero then.
since the remainder is 3, the number will be an integer that satisfies n = 5x + 3
example for 2x:
n = 5*2 + 3 = 13
if we devide 13 by 5, we would get 3 as remainder.
here the quotient would be 2 (the solution you get by dividing two numbers)
"x" is the quotient, so let's set it as 8
n = 5*8 +3
n = 43
checking it:
devide 43 by 5, you'll get 8 as the quotient and 3 as remainder.
hope it helps. Feel free to ask any question.
SOMEONE HELP ME PLEASE
Answer:
5/3
Step-by-step explanation:
Direct variation is of the form
y = kx
where k is a constant
Using the first set of point
9 = 5k
Divide by 5
9/5 = k
The equation becomes
y = 9/5 x
Using the second set of points
3 = 9/5 x
Multiply each side by 5/9
5/9 * 3 = 9/5 *5/9x
5/3 =x