Answer:
1.714 M
Explanation:
We'll begin by calculating the number of mole in 46.8 g of NaHCO₃. This can be obtained as follow:
Mass of NaHCO₃ = 46.8 g
Molar mass of NaHCO₃ = 23 + 1 + 12 + (3×16)
= 23 + 1 + 12 + 48
= 84 g/mol
Mole of NaHCO₃ =?
Mole = mass / molar mass
Mole of NaHCO₃ = 46.8 / 84
Mole of NaHCO₃ = 0.557 mole
Next, we shall convert 325 mL to L. This can be obtained as follow:
1000 mL = 1 L
Therefore,
325 mL = 325 mL × 1 L / 1000 mL
325 mL = 0.325 L
Thus, 325 mL is equivalent to 0.325 L.
Finally, we shall determine the molarity of the solution. This can be obtained as shown below:
Mole of NaHCO₃ = 0.557 mole
Volume = 0.325 L
Molarity =?
Molarity = mole / Volume
Molarity = 0.557 / 0.325
Molarity = 1.714 M
Therefore the molarity of the solution is 1.714 M
Chloride ion is a strong nucleophile and bromide is a good leaving group. The major product of treating (S)-2-bromobutane with NaCl in CH3C(O)CH3 (acetone) is _________. (1S,2R)-1-chloro-2-bromobutane cis-2-butene (1R,2S)-1-chloro-2-bromobutane (S)-2-chlorobutane trans-2-butene (R)-2-chlorobutane
Answer:
Chloride ion is a strong nucleophile and bromide is a good leaving group. The major product of treating (S)-2-bromobutane with NaCl in CH3C(O)CH3 (acetone) is _________. (1S,2R)-1-chloro-2-bromobutane cis-2-butene (1R,2S)-1-chloro-2-bromobutane (S)-2-chlorobutane trans-2-butene (R)-2-chlorobutane
Explanation:
The reaction of (S)-2-bromobutane with NaCl in CH3C(O)CH3 (acetone) forms the following product:
The answer is (R)-2-chlorobutane.
The reaction take splace through [tex]S_{N} _2[/tex] mechansim and inversion in configuration happens.
When electrons in a molecule are not found between a pair of atoms but move throughout the molecule, this is called Group of answer choices
Answer:
delocalised electrons
Explanation:
they are called delocalised electrons because that can move freely in the molecule
Calculate the vapor pressure (in torr) at 298 K in a solution prepared by dissolving 46.8 g of the non-volatile non-electrolye glucose in 117 g of methanol. The vapor pressure of methanol at 298 K is 122.7 torr. Enter your answer to 2 decimal places.
Answer: The total partial pressure of the solution is 131.37 torr.
Explanation:
The number of moles is defined as the ratio of the mass of a substance to its molar mass. The equation used is:
[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex] ......(1)
For glucose:Given mass of glucose = 46.8 g
Molar mass of glucose = 180 g/mol
Plugging values in equation 1:
[tex]\text{Moles of glucose}=\frac{46.8g}{180g/mol}=0.26 mol[/tex]
For methanol:Given mass of methanol = 117 g
Molar mass of methanol = 32 g/mol
Plugging values in equation 1:
[tex]\text{Moles of methanol}=\frac{117g}{32g/mol}=3.66 mol[/tex]
Mole fraction is defined as the moles of a component present in the total moles of a solution. It is given by the equation:
[tex]\chi_A=\frac{n_A}{n_A+n_B}[/tex] .....(2)
where n is the number of moles
Putting values in equation 2:
[tex]\chi_{methanol}=\frac{3.66}{0.26+3.66}=0.934[/tex]
Raoult's law is the law used to calculate the partial pressure of the individual gases present in the mixture. The equation for Raoult's law follows:
[tex]p_A=\chi_A\times p_T[/tex] .....(3)
where [tex]p_A[/tex] is the partial pressure of component A in the mixture and [tex]p_T[/tex] is the total partial pressure of the mixture
We are given:
[tex]p_{methanol}=122.7torr\\\chi_{methanol}=0.934[/tex]
Putting values in equation 3, we get:
[tex]122.7torr=0.066\times p_T\\\\p_T=\frac{122.7torr}{0.934}=131.37torr[/tex]
Hence, the total partial pressure of the solution is 131.37 torr.
Each of the following sets of quantum numbers is supposed to specify an orbital. Choose the one set of quantum numbers that does NOT contain an error.
a. n = 4, l = 3, ml =-4
b. n = 2, l = 2, ml =0
c. n = 3, l = 2, ml =-2
d. n = 2, l = 2, ml =+1
Answer:
n = 3, l = 2, ml =-2
Explanation:
Quantum numbers are a set of values which can be used to describe the energy and position of an electron in space.
There are four sets of quantum numbers;
1) principal quantum number
2) orbital quantum number
3) spin quantum number
4) magnetic quantum number.
The values of orbital quantum number include; -l to +l;
The set of quantum numbers without error is ; n = 3, l = 2, ml =-2
b) What is the change in entropy of the reaction if ΔH° = -3.2 kJ mol-1?
The doctor has ordered Claforan 1 g in 100 ml D5W to run IV piggyback for 30 minutes twice daily. The pharmacy sends Claforn 2 g in a powdered form, which when reconstituted has a concentration of 180 mg Claforan per ml. How much Claforn will you add to the bag of D5W
Answer:
0.111 g
Explanation:
1 g = 1000 mg
Doctor ordered the following concentration of Claforan:
C = 1 g/100 mL x 1000 mg/1 g = 10 mg/mL
If we add 2 g iof Claforan, we obtain:
2 g Claforn ---- 180 mg/mL Claforan
To reach a concentration equal to C (10 mg/mL), we need:
10 mg/mL Claforan x 2 g Claforn/(180 mg/mL Claforan) = 0.111 g Claforn
Therefore, we have to add 0,111 g (111 mg) of Claforn to the bag of 100 ml D5W to obtain the ordered concentration of 10 mg/mL Claforan.
Question 16(Multiple Choice Worth 5 points)
(04.01 LC) Which statement is true about the total mass of the reactants during a chemical change?
O It is destroyed during chemical reaction.
O It is less than the total mass of the products. O It is equal to the total mass of the products.
O It is greater than the total mass of the products.
Answer:
It is equal to the total mass of the products.
Explanation:
Hope this helps :)
The mass of a single tantalum atom is 3.01×10-22 grams. How many tantalum atoms would there be in 37.1 milligrams of tantalum?
Answer: There are [tex]1.23 \times 10^{22}[/tex] atoms present in 37.1 mg of tantalum.
Explanation:
Given: Mass of single tantalum atom = [tex]3.01 \times 10^{-22} g[/tex]
Mass of tantalum atoms = 37.1 mg (1 mg = 0.001 g) = 0.0371 g
Therefore, number of tantalum atoms present in 0.0371 grams is calculated as follows.
[tex]No. of atoms = \frac{0.0371 g}{3.01 \times 10^{-22}}\\= 1.23 \times 10^{20}[/tex]
Thus, we can conclude that there are [tex]1.23 \times 10^{22}[/tex] atoms present in 37.1 mg of tantalum.
There are [tex]1.23\times 10^{20}[/tex] atoms of tantalum in 37.1 mg of tantalum.
Explanation:
Given:
Mass of single atom of tantalum =[tex]3.01\times 10^{-22} g[/tex]
To find:
The number of atoms of tantalum in 37.1 milligrams.
Solution:
Mass of tantalum = 37.1 mg
[tex]1 mg = 0.001 g\\37.1 mg=37.1\times 0.001 g=0.0371 g[/tex]
The number of atoms in 0.0371 grams of tantalum = N
Mass of a single atom of tantalum = [tex]3.01\times 10^{-22} g[/tex]
Then a mass of N atoms of tantalum will be:
[tex]0.0371 g=N\times 3.01\times 10^{-22} g\\N=\frac{0.0371 g}{ 3.01\times 10^{-22} g}\\=1.23\times 10^{20}[/tex]
There are [tex]1.23\times 10^{20}[/tex] atoms of tantalum in 37.1 mg of tantalum.
Learn more about the unitary method here:
brainly.com/question/24566352
brainly.com/question/17743460
A student needed to make a 3 g/L NaCl solution. The student weighed 3 g of NaCl in a beaker and measured 1 L of water in a 1L volumetric flask that was labeled TC. The student then added the water to the beaker containing the NaCl. What errors did this student make? Describe how this can be performed properly.
Answer:
The answer is in the explanation.
Explanation:
A solution is defined as the homogeneous mixture of a solute (In this case, NaCl) and the solvent (water).
To prepare 1L of the solution, the student can weigh the 3g of NaCl in the volumetric flask but need to add slowly water to dissolve the NaCl (That is very soluble in water). When all NaCl is dissolved the student must transfer the solution to the 1L volumetric flask. Then, you must add more water to the beaker until "Clean" all the solute of the beaker to transfer it completely to the volumetric flask.
A sample of gas is placed into an enclosed cylinder and fitted with a movable piston. Calculate the work (in joules) done by the gas if it expands from 5.33 L to 11.05 L against a pressure of 1.50 atm.
Explanation:
here is the answer. Feel free to ask for more chem help
Identify the most oxidized compound. Group of answer choices CH3CH2CHO CH3CH2CH3 CH3CH2CH2OH CH3CH2OCH3 CH3CH2COOH
Answer:
Huh!?
Explanation:
explain me please
I have an unknown volume of gas held at a temperature of 115 K in a container with a pressure of 60atm. If by increasing the temperature to 225 K and decreasing the pressure to 30. atm causes the volume of the gas to be 29 liters, how many liters of gas did I start with?
SHOW YOUR WORK
Explanation:
here is the answer to your question.
Classify each of the following as either macroscopic, microscopic or particulate:
a. a red blood cell.
b. a sugar molecule.
c. baking powder.
Answer:
Classify each of the following as either macroscopic, microscopic or particulate:
a. a red blood cell.
b. a sugar molecule.
c. baking powder.
Explanation:
a. A red blood cell is a microscopic particle.
It can be viewed under a microscope.
b. A sugar molecule is also a microscopic substance.
It can be viewed under a microscope.
c. Baking powder is macroscopic substance.
Copper reacts with sulfuric acid to yield copper(II) sulfate, water, and sulfur dioxide.
a. True
b. False
Answer:
B. False
Explanation:
Water does NOT react too copper. Copper does not react with water because the oxygen in water is locked into a compound with one part oxygen and two parts hydrogen. Copper oxide is a compound from the two elements copper and oxygen. Everything else listed does but since water is on this list it is false.
Draw the major product that is obtained when (2S,3S)-2-Bromo-3-phenylbutane is treated with sodium ethoxide.
Answer:
Explanation:
The mechanism of the reaction is shown in the diagram below. From the reaction, when (2S,3S)-2-Bromo-3-phenylbutane undergoes a reaction with sodium ethoxide (ETONa), the E2 elimination reaction is put into place. Here, the H and the leaving group are antiperiplanar to one another and the reaction mechanism proceeds to form an isomeric (E)-2-phenyl-2butane as the major product.
pls help ive been stuck on this question for a while im not good with chemistry lol.
Answer:
The answer would be B, putting thermal energy into something means you're adding heat into it.
Suppose a 48. L reaction vessel is filled with 1.6 mol of Br2 and 1.6 mol of OCl2. What can you say about the composition of the mixture in the vessel at equilibrium
Answer:
There will be very little of BrOCl BrCl
Explanation:
Based on the equilibrium:
Br2(g) + OCl2(g) ⇄ BrOCl(g) + BrCl(g)
The equilibrium constant, Kc, is:
Kc = 1.58x10⁻⁵ = [BrOCl] [BrCl] / [Br2] [OCl2]
As Kc is <<< 1, in equilibrium, the concentration of products will remain lower regard to the concentration of the reactants. That means, right answer is;
There will be very little of BrOCl BrClPlz help me ASAP in my final project I am ready to pay 20$
Answer:
what do you need help with
if a bottle of vinegar has 4.78g of acetic acid (CH3COOH) per 100.0 g of solution (mixed with water, what is the molarity of the vinegar? Density of the solution is 1.00g/mL.
Answer:
0.796 M
Explanation:
Step 1: Given data
Gravimetric concentration (Cg): 4.78 g%g
Density of the solution (ρ): 1.00 g/mL
Step 2: Calculate the volumetric concentration of the solution (Cv)
We will use the following expression.
Cv = Cg × ρ
Cv = 4.78 g%g × 1.00 g/mL = 4.78 g%mL
Step 3: Calculate the molarity of the solution (M)
The volumetric concentration is 4.78 g%mL, that is, there are 4.78 g of acetic acid per 100 mL of solution. We can calculate the molarity using the following expression.
M = mass solute / molar mass solute × liters of solution
M = 4.78 g / 60.05 g/mol × 0.1 L = 0.796 M
Which substrate is used in the last step of glycolysis
Pyruvate Kinase
Pyruvate Kinase performs a substrate level phosphorylation on ADP to generate an ATP and pyruvate, the final product of glycolysis.
PK dificiency is transmitted in an autosomal recessive disorder in which both alleles must contain the mutated gene, PK-LR.
Hope it helps you! \(^ᴥ^)/
the ability of organism to sense changes in its body is an example of
Answer:
the ability of organism to sense changes in its body is an example of responsiveness.Hope it is helpful to you
c) Solar energy is the source of all forms of energy.give reasons
Answer:
All energy is made by the sun because without the sun there would be no humans to produce other energy
Explanation:
We use many different forms of energy here on earth, but here’s the thing: almost all of them originate with the sun, not just light and heat (thermal) energy! The law of conservation of energy says that energy can’t be created or destroyed, but can change its form. And that’s what happens with energy from the sun—it changes into lots of different forms:
Plants convert light energy from the sun into chemical energy (food) by the process of photosynthesis. Animals eat plants and use that same chemical energy for all their activities.
Heat energy from the sun causes changing weather patterns that produce wind. Wind turbines then convert wind power into electrical energy.
Hydroelectricity is electrical energy produced from moving water, and water flows because heat energy from the sun causes evaporation that keeps water moving through the water cycle.
Right now, much human activity uses energy from fossil fuels such as coal, oil, and natural gas. These energy sources are created over very long periods of time from decayed and fossilized living matter (animals and plants), and the energy in that living matter originally came from the sun through photosynthesis.
solar panel shows what is the ultimate source of energy
A solution of hydrochloric acid had a hydrogen ion concentration of 1.0 mol/dm3
Water was added to hydrochloric acid until the ph increased by 1
What was the hydrogen ion concentration of the hydrochloric acid after had been added?
Answer:
pH = -log[H+]
Where [H+] = Hydrogen ion concentration
In this case,
[H+] = 1 × 10^(-2) = 10^(-2)
log{10^(-2)} = -2
-log{10^(-2)} = -(-2) = 2
pH = -log{10^(-2)} = 2
and hi.!!!
Answer:
0.1
Explanation:
Hydrogen ion concentration can be calculated using the formula [H+] = 10^-pH
pH can be concentrated using ph = -log[H+]
let's calculate the initial pH before anything was added: pH = -log(1) = 0
it increased by 1 so the final pH is 1.
Now we'll find the [H+] of a solution with a pH of 1:
concentration = 10^(-1) = 0.1
What is the best explanation for why solid sodium chloride CANNOT conduct electricity and why molten sodium chloride can?
Answer: See explanation
Explanation:
The explanation for why solid sodium chloride can't conduct electricity while molten sodium chloride can is explained below:
Ionic compounds that are in their solid state like sodium chloride have their ions fixed in position. Due to this reason, the able to move, therefore we can say that the solid ionic compounds cannot be able to conduct electricity.
On the other hand, ionic compounds in their molten state, are free to flow unlike when they're in their solid state and therefore we can say that molten sodium chloride can be able to conduct electricity.
A
(c) 2 C(s) + MnO2(s)
Mn(s) + 2 CO(g)
O combination reaction
O decomposition reaction
O combustion reaction
O single-displacement reaction
Answer: The reaction, [tex]2C(s) + MnO_{2}(s) \rightarrow Mn(s) + 2CO(g)[/tex] is a single-displacement reaction.
Explanation:
A chemical reaction in which one element of a compound is replaced by another element participating in the reaction.
For example, [tex]2C(s) + MnO_{2}(s) \rightarrow Mn(s) + 2CO(g)[/tex]
Here, the element manganese is replaced by carbon atom. As only one element gets replaced so, it is a single-displacement reaction.
Thus, we can conclude that [tex]2C(s) + MnO_{2}(s) \rightarrow Mn(s) + 2CO(g)[/tex] is a single-displacement reaction.
Based on the equations below, which metal is the least active? Pb(NO3)2(aq) + Ni (s) --> Ni(NO3)2 (aq)+ Pb(s) Pb(NO3)2(aq) + Ag(s) --> No reaction Cu(
Answer:
Ni
Explanation:
An active metal is a highly reactive metal. Active metals are found high up in the activity series.
Active metals react with other metals that are lower than them in the activity thereby displacing the lower metals from a solution of their salts. This is what may have happened in the other two reactions.
Ni is the most active metal listed in the question since it can react a compounds with Pb(NO3)2(aq) to liberate Pb metal.
1 or 2 topics or two lessons should be explained in an illustrated childrens book minimum of 10 pages must have 3 or more sentences
Answer:
Yes because same topic are long
Calculate the moment of inertia of a CH³⁵CL₃ molecule around a rotational axis that contains the C-H bond. The C-Cl bond length is 177pm and the HCCl angle is 107⁰f
Answer:
The correct answer is "[tex]4.991\times 10^{-45} \ kg.m^2[/tex]".
Explanation:
According to the question,
[tex]R_{C-Cl} = 177 \ pm[/tex]
or,
[tex]=1.77\times 10^{-10} \ m[/tex]
[tex]\alpha = 107^{\circ}[/tex]
[tex]m_{Cl}=34.97 \ m.u[/tex]
or,
[tex]=34.97\times 1.66\times 10^{-27}[/tex]
[tex]=5.807\times 10^{-26} \ kg[/tex]
The moment of inertia around the rotational axis will be:
⇒ [tex]I=3\times m_{Cl}\times (R_{C-Cl})^2 \ Sin^2 \alpha[/tex]
By putting the values, we get
[tex]=3\times 5.807\times 10^{-26}\times (1.77\times 10^{-10})^2 \ Sin^2 (107)[/tex]
[tex]=3\times 5.807\times 10^{-26}\times (1.77\times 10^{-10})^2\times 0.91452[/tex]
[tex]=4.991\times 10^{-45} \ kg.m^2[/tex]
The data shows the number of years that 30 employees worked for an insurance company before retirement. is the population mean for the number of years worked, and % of the employees worked for the company for at least 10 years. (Round off your answers to the nearest integer.)
Answer:
14
73%
Explanation:
The mean Number of years worked :
. (sum of service years) / employees in the
(8+13+15+3+13+28+4+12+4+26+29+3+10+3+17+13+15+15+23+13+12+1+14+14+17+16+7+27+18+24) /
(417 / 30)
= 13.9 years
= 14 years
The percentage of employees who have worked for atleast 10 years :
Number of employees with service years ≥ 10 years = 22 employees
Total number of employees
Percentage (%) = (22 / 30= * 100% = 0.7333 * 100% = 73.33% = 73%
A buffer is prepared containing 0.75 M NH3 and 0.20 M NH4 . Calculate the pH of the buffer using the Kb for NH3. g
Answer:
pH=8.676
Explanation:
Given:
0.75 M [tex]NH_{3}[/tex]
0.20 M [tex]NH_{4}[/tex]
The objective is to calculate the pH of the buffer using the kb for [tex]NH_3[/tex]
Formula used:
[tex]pOH=pka+log\frac{[salt]}{[base]}\\[/tex]
pH=14-pOH
Solution:
On substituting salt=0.75 and base=0.20 in the formula
[tex]pOH=-log(1.77*10^{-5})+log\frac{0.75}{0.20}\\ =4.75+0.5740\\ =5.324[/tex]
pH=14-pOH
On substituting the pOH value in the above expression,
pH=14-5.324
Therefore,
pH=8.676