Oxygen plays a crucial role in energy-yielding pathways by serving as the final electron acceptor in the electron transport chain (ETC) during cellular respiration.
Oxygen is the most important factor in energy-yielding pathways. The oxygen molecule is the final acceptor of electrons in cellular respiration, which is the process of energy production in cells. When electrons are passed down the electron transport chain, they lose energy, which is then used to pump hydrogen ions (protons) out of the mitochondrial matrix. This creates a concentration gradient of hydrogen ions, which then flow back into the matrix through ATP synthase.
The flow of hydrogen ions back into the matrix releases energy that is used to produce ATP from ADP and inorganic phosphate. Oxygen, as the final electron acceptor, is essential for this process because it helps to maintain the electron transport chain by accepting the electrons at the end of the process and allowing the cycle to continue. In summary, oxygen's role in energy-yielding pathways is crucial for the production of ATP, the main source of energy for cellular processes.
Learn more about cellular respiration here:
https://brainly.com/question/32872970
#SPJ11
what is the mass of 12.82 moles of lithium (li) atoms?
The mass of 12.82 moles of lithium (Li) atoms is 88.89 g.
The molar mass of Lithium (Li) is 6.94 g/mol. Therefore, the mass of 12.82 moles of lithium (Li) atoms can be calculated as follows:
The number of moles of lithium (Li) = 12.82 mol
Molar mass of Lithium (Li) = 6.94 g/mol
We know that the mass of one mole of an element is equal to its atomic or molecular mass in grams.Therefore, the mass of 1 mole of Li atoms is equal to its molar mass which is 6.94 g/mol.
Then the mass of 12.82 moles of Li atoms can be found using mole to mass conversion as follows:
Mass = Number of moles × Molar mass
= 12.82 mol × 6.94 g/mol
= 88.89 g.
Learn more about molar mass -
brainly.com/question/837939
#SPJ11
how many h+ ions can the acid h3po4 donate per molecule?
The acid H3PO4 can donate three hydrogen ions (H+) per molecule.
Thus, the number of H+ ions that the acid H3PO4 can donate per molecule is 3.Explanation:H3PO4 is also known as phosphoric acid. Phosphoric acid is an inorganic mineral acid that is commonly used in fertilizers, detergents, and food additives.
The chemical formula of H3PO4 is H3PO4 which implies that it has three hydrogen ions that are attached to the phosphate anion.Each hydrogen ion, which is donated by H3PO4, has the ability to donate a single positive hydrogen ion or proton (H+).
Therefore, since H3PO4 has three hydrogen ions, it has the ability to donate three H+ ions per molecule (per H3PO4 molecule).
In other words, one molecule of H3PO4 can donate three hydrogen ions.
Therefore, the number of H+ ions that the acid H3PO4 can donate per molecule is 3.
Learn more about hydrogen ions in the link:
https://brainly.com/question/29033205
#SPJ11
earning current is applied to an aqueous solution of lithium sulfide. What is produced at the anode? What is produced at the cathode? O o2(g) O s(s) o Lis O Li(s) Hz(g) O O2(g) O s(s) O H2(g) Map
When an electrical current is applied to an aqueous solution of lithium sulfide, hydrogen gas will be produced at the cathode and sulfur will be produced at the anode.
At the cathode, positively charged hydrogen ions (H+) gain electrons and are reduced to hydrogen gas (H2).2H+ + 2e- → H2
At the anode, negatively charged sulfide ions (S2-) lose electrons and are oxidized to form elemental sulfur (S).
S2- → S + 2e-
It's worth noting that lithium ions (Li+) will also be present in the solution but they will not be produced at either the anode or cathode.
To know more about electrical visit-
https://brainly.com/question/33513737
#SPJ11
describe the main difference between inorganic chemistry and organic chemistry
Organic Chemistry is the study of covalent compounds of Carbon and Hydrogen (Hydrocarbon) and their derivatives.
Inorganic Chemistry is the study of all elements and their compounds expect those of compounds of Carbon and Hydrogen (Hydrocarbon) and their derivatives.
Determine the pH of the resulting solution when the following two solutions are mixed: 20.0 mL of 0.20 M HC2H2O2 and 20.0 mL of 0.10 M NaOH. The value of Ka for HC2H2O2 is 1.8 x 10-5.
The pH of the resulting solution when 20.0 mL of 0.20 M HC₂H₂O₂and 20.0 mL of 0.10 M NaOH are mixed is 3.07.
Neutralization is a chemical reaction in which acid and base react to form salt and water. Hydrogen (H⁺) ions and hydroxide (OH⁻ ions) react with each other to form water.
The strong acid and strong base neutralization have a pH value of 7.
The balanced equation for the reaction is:
HC₂H₂O₂ + NaOH → NaC₂H₃O₂ + H₂O
Moles of HC₂H₂O₂= concentration × volume = 0.20 M × 0.020 L = 0.004 mol
Moles of NaOH = concentration × volume = 0.10 M × 0.020 L = 0.002 mol
Since HC₂H₂O₂ is a weak acid, it will partially dissociate in water according to the equation:
HC₂H₂O₂ ⇌ H⁺ + C₂H₂O₂⁻
Initial:
HC₂H₂O₂: 0.004 M
H⁺: 0 M
C₂H₂O₂⁻: 0 M
Change:
HC₂H₂O₂: -x M
H⁺: +x M
C₂H₂O₂⁻: +x M
Equilibrium:
HC₂H₂O₂: 0.004 - x M
H⁺: x M
C₂H₂O₂⁻: x M
Ka = [H⁺][ C₂H₂O₂⁻] / [HC₂H₂O₂]
1.8 x 10⁻⁵ = x × x / (0.004 - x)
Since x is small compared to 0.004, so 0.004 - x = 0.004:
1.8 x 10⁻⁵= x² / 0.004
x² = 1.8 x 10⁻⁵ × 0.004
x² = 7.2 x 10⁻⁸
x = 8.49 x 10⁻⁴ M = [H⁺]
pH = -log( 8.49 x 10⁻⁴)
pH = 3.07
Learn more about Neutralization, here:
https://brainly.com/question/14156911
#SPJ4