Answer:
Step-by-step explanation:
(0, -1) & (3 ,1)
[tex]Slope=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\\\\=\frac{1-[-1]}{3-0}\\\\=\frac{1+1}{3}\\\\=\frac{2}{3}[/tex]
Decreased by 0% is 800 ?
Find the negative reciprocal of the slope of the orginal line. Undefined
Answer:
800
Step-by-step explanation:
100%-0%=100%
100% is also equal to the number 1.
We now have 1x=800
Simplify that and get 800
Write an addition or a subtraction equation (your choice!) to describe the diagram. Pls help
Answer:
Addition equation = -4-0) + [(-13)-(-4)]
Answer = -13
Step-by-step explanation:
For the small arrow in the diagram, the expression is (-4 - 0)
For the bog arrow, the expression will be -13 - (-4)
Adding both expressions
Addition = (-4-0) + [(-13)-(-4)]
Addition = (-4) + (-13+4)
Addition = -4 + (-9)
Addition = -4-9
Addition = -13
how to solve these questions?!
Answer:
1. x + 4 = 9
Hint: the word 'sum' generally refers to addition.
2. 10a = 70
3. [tex]\frac{3}{4} t[/tex] = 15
4. [tex]\frac{1}{4} x[/tex] - 4 = 4
PLEASE ANYONE definition of a percent increase?
Answer:
In any quantitative science, the terms relative change and relative difference are used to compare two quantities while taking into account the "sizes" of the things being compared. The comparison is expressed as a ratio and is a unitless number.
Step-by-step explanation:
I hope it helps
Please help
Find the value of x,
m∠5 = x-6, m∠4 = 2x+4, m∠2 = 2x-26
urdxvjok NCAA earth bno
The total cost (in dollars) of printing x dictionaries is C(x) = 20,000 + 10x. Find the average value of the cost function over the interval [0, 700).
Answer:
The average value of the cost function over the interval is of $23,500.
Step-by-step explanation:
Average value of a function:
The average value of a function, over an inteval [a,b], is given by:
[tex]A = \frac{1}{b-a} \int_{a}^{b} f(x) dx[/tex]
In this case:
Function [tex]C(x) = 20000 - 10x[/tex], interval with [tex]a = 0,b = 700[/tex]
So
[tex]A = \frac{1}{700} \int_{0}^{700} 20000+10x dx[/tex]
[tex]A = \frac{1}{700} (20000x+5x^2)|_{0}^{700}[/tex]
So
[tex]A = \frac{20000(700)+5(700)^2}{700} = 23500[/tex]
The average value of the cost function over the interval is of $23,500.
Type the correct answer in each box. Use numerals instead of words.
Multiply the expressions.
If a = 1, find the values of b, c, and d that make the given expression equivalent to the expression below.
Answer:
a=1, b=9, c=-2, d=4
Step-by-step explanation:
GET 95 POINTS Let f(x) = 1/x and g(x)=x² + 6x. What
two numbers are not in the domain of fᵒg?
Separate your answers with a comma.
Answer:
hey there hope this answer helps you out
Step-by-step explanation:
we have two functions f(x) and g(x) such that
[tex]f(x) = \frac{1}{x} [/tex]
and
[tex]g(x) = {x}^{2} + 6x[/tex]
solving for f ° g, we'll substitute the x in f(x) by the value of g(x)
[tex]fog = \frac{1}{g(x)} [/tex]
[tex]fog \: = \frac{1}{ {x}^{2} + 6x } [/tex]
taking x common in denominator
[tex]fog = \frac{1}{x(x + 6)} [/tex]
for a function to exist it should not have 0 in its denominator
checking the values of x for which the denominator of f ° g becomes 0 :-
x = 0 and x = -6so the function doesn't exist at values x = 0, -6
So, 0, -6 cannot be in the domain of f°gwhat is the value of c? enter your answer in the box. round only your final answer to the nearest whole number.
Answer:
c ≈ 21
Step-by-step explanation:
By applying cosine rule in the given triangle ABC,
c² = a² + b² - 2abcos(C)
c² = (17)² + (10)² - 2(17)(10)cos(98.8°)
c² = 289 + 100 - 340(-0.1530)
c² = 441.015
c = 21
c ≈ 21
Số táo của An Bình Chi là như nhau. An cho đi 17 quả, Chi cho đi 19 quả thì lúc đó số táo của Chi gấp 5 lần tổng số táo của An và Bình. Hỏi lúc đầu mỗi bạn có bao nhiêu quả táo?( Giải bài toán trên bằng phương trình hoặc hệ phương trình )
Answer:
please write in english i cannot understand
Step-by-step explanation:
Which system of equations shows a solution of (0.5, -1)?
Need answers asap plzzz
Answer:
The first graph
Step-by-step explanation:
If a student walked 2 feet straight to the chalk board in 2 seconds and
then walked 2 feet back to his or her original position at his or her desk at
the same speed, what was the student's displacement at 2 seconds
compared to 0 seconds?
O 6 feet
O O feet
O2 feet
O 4 feet
Answer:
2 feet
Step-by-step explanation:
Displacement at 0 seconds is 0 feet.
Displacement at 2 seconds is 2 feet because it took them 2 seconds to walk 2 feet.
^ means to the power, / indicationg fraction.
PLEASE IF YOU CAN ANSWER AND EXPLAIN TYVM!
1. simplify. 32^2/5. 32 raised to the power of 2 over 3(fraction)
27. the function f is definded below
f(x) = x^2+x-30/ x^2-10x+21
find all variables that are NOT in the domain of f
13. factor the following expression
16vx^3y^4+28v^5x^6
8. simplify, write answer without parentheses
(w^2/-3v^4)^2
24. solve for x 8=3/x-2
11. solve the following ewuation for R
Q=i^2Rt/J
16. solve for v
5v^2=-21v-4
Answer:
udirkkdjdjdjehdhebhgwdxddrergghg
Does the equation 3x-6y=0 represent a direct variation? *
Answer:
yes
Step-by-step explanation:
if you change it to standard form, it would be
y=1/2x
because it's in the format of y=ax then it is direct variation
Find f(6), f(0), and f(-1)
f(x)=-7X
Answer:
f(6)=-42
f(0)=0
f(-1)=7
Step-by-step explanation:
since f(x) =-7x
it implies that f(6),f(0) and f(-1) are all equal to f(x)
which is equal to -7x .
so wherever you find x you out it in the
function
Michael was 1.0 metres tall, and could
only reach up to the 1st floor lift button. .
From the 1st floor, he had to walk up 100
steps to reach the 6th floor.
Vinh was 1.4 metres tall, and could reach
the 5th floor button. He had to walk up
20 steps to reach the 6th floor.
Lucy was 1.1 metres tall. To reach the
6th floor, how many steps did she have to
walk up?
Answer:
Lucy must walk up 80 steps to reach the 6th floor.
Step-by-step explanation:
Since Michael was 1.0 meters tall, and could only reach up to the 1st floor lift button, and from the 1st floor, he had to walk up 100 steps to reach the 6th floor; while Vinh was 1.4 meters tall, and could reach the 5th floor button, and he had to walk up 20 steps to reach the 6th floor; If Lucy was 1.1 meters tall, to determine how many steps did she have to walk up to reach the 6th floor, the following calculation must be performed:
1 = 100
1.4 = 20
1.4 - 1 = 100 - 20
0.4 = 80
0.1 = X
0.1 x 80 / 0.4 = X
20 = X
100 - 20 = 80
Therefore, Lucy must walk up 80 steps to reach the 6th floor.
I need help with this.
Answer:
A and b Are in quadrant 2. F and D are in quadrant 1. F is in quadrant 3 and C is in quadrant 4
Step-by-step explanation:
each quadrant is in the boxes and the question is asking what is each coordinate is in what quadrant
Given that Q(x)=2x^2 +5x-3 find and simplify Q(a+h)-Q(a-h)
Step-by-step explanation:
here is the answer. Feel free to ask for more.
Solve the equation −96=3(8x)^(5/3).
Answer:
x= - 1
Step-by-step explanation:
To find the equation of a line, we need the slope of the line and a point on the line. Since we are requested to find the equation of the tangent line at the point (36, 6), we know that (36, 6) is a point on the line. So we just need to find its slope. The slope of a tangent line to f(x) at x
Answer:
[tex]m = \frac{1}{12}[/tex]
Step-by-step explanation:
Given
[tex](x,y) = (36,6)[/tex]
[tex]f(x) = \sqrt x[/tex] ----- the equation of the curve
Required
The slope of f(x)
The slope (m) is calculated using:
[tex]m = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h}[/tex]
[tex](x,y) = (36,6)[/tex] implies that:
[tex]a = 36; f(a) = 6[/tex]
So, we have:
[tex]m = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h}[/tex]
[tex]m = \lim_{h \to 0} \frac{f(36 + h) - 6}{h}[/tex]
If [tex]f(x) = \sqrt x[/tex]; then:
[tex]f(36 + h) = \sqrt{36 + h}[/tex]
So, we have:
[tex]m = \lim_{h \to 0} \frac{\sqrt{36 + h} - 6}{h}[/tex]
Multiply by: [tex]\sqrt{36 + h} + 6[/tex]
[tex]m = \lim_{h \to 0} \frac{(\sqrt{36 + h} - 6)(\sqrt{36 + h} + 6)}{h(\sqrt{36 + h} + 6)}[/tex]
Expand the numerator
[tex]m = \lim_{h \to 0} \frac{36 + h - 36}{h(\sqrt{36 + h} + 6)}[/tex]
Collect like terms
[tex]m = \lim_{h \to 0} \frac{36 - 36+ h }{h(\sqrt{36 + h} + 6)}[/tex]
[tex]m = \lim_{h \to 0} \frac{h }{h(\sqrt{36 + h} + 6)}[/tex]
Cancel out h
[tex]m = \lim_{h \to 0} \frac{1}{\sqrt{36 + h} + 6}[/tex]
[tex]h \to 0[/tex] implies that we substitute 0 for h;
So, we have:
[tex]m = \frac{1}{\sqrt{36 + 0} + 6}[/tex]
[tex]m = \frac{1}{\sqrt{36} + 6}[/tex]
[tex]m = \frac{1}{6 + 6}[/tex]
[tex]m = \frac{1}{12}[/tex]
Hence, the slope is 1/12
How many flowers spaced every 4 inches are needed to surround a circular garden with a 15-foot radius? Round all circumference and area calculations to the nearest whole number.
Answer:
283 flowers
Step-by-step explanation:
c=2pi*r
c = 1130.973 =1131
1131/4
282.75 = 283
The length of a rectangle is 12 m and its diagonal is 15 m. find
the breadth and area of the rectangle.
Answer:
108 square metres
Step-by-step explanation:
A=√d square - l square
here
A = area
d= diagonal
l= length
Choose ASA SAA or neither to describe this figure
Answer:
SAA
Step-by-step explanation:
HOPE IT HELPS YOU IN YOUR LEARNING PROCESS.
You can afford a $950 per month mortgage payment. You've found a 30 year loan at 8% interest. a) How big of a loan can you afford? b) How much total money will you pay the loan company? c) How much of that money is interest?
Answer:
129469.3194
342000
212530.6806
Step-by-step explanation:
Going to assume that the 8% is a nominal, montly rate
which means the effective monthly rate is .08/12= .006667
using the annuity immediate formula...
a.)
[tex]950(\frac{1-(1+.006667)^{-30*12}}{.006667})=129469.3194[/tex]
b.) we would pay 950*30*12= 342000
c.) the amount in interest would be 342000-129469.3194=212530.6806
a) The loan one can afford is $1,29,460.2
b) The total amount of money paid to the loan company over the life of the loan is $342,000.
c) $212539.8 of the total amount paid is interest.
To determine the answers to these questions, we'll need to use the formula for calculating a fixed monthly mortgage payment:
[tex]M = \frac{P \times r \times (1 + r)^n}{((1 + r)^n - 1)}[/tex]
where:
M is the monthly payment,
P is the principal loan amount,
r is the monthly interest rate (annual interest rate divided by 12),
and n is the total number of payments (number of years multiplied by 12).
Given:
Monthly payment (M) = $950
Loan term = 30 years
Interest rate = 8% per year
a) How big of a loan can you afford?
Let's calculate the principal loan amount (P):
First, we need to convert the annual interest rate to a monthly interest rate:
r = 0.08 / 12
= 0.00667
n = 30 years × 12 months
n= 360
Using the formula and plugging in the values we have:
[tex]950 = \frac{P \times 0.00667 \times (1 + 0.00667)^{360}}{((1 + 0.00667)^{360} - 1)}[/tex]
[tex]950 = \frac{P \times 0.00667 \times 10.948}{10.948 - 1}[/tex]
[tex]950=\frac{P \times 0.07302316}{9.948}[/tex]
[tex]950\times9.948 = 0.0730P[/tex]
Divide by 0.073:
Now we can solve for P:
[tex]P=\frac{9450.6}{0.0730}[/tex]
[tex]P = 1,29,460.2[/tex]
Therefore, you can afford a loan amount of $1,29,460.2
b) The total amount paid to the loan company can be calculated by multiplying the monthly payment by the total number of payments:
Total amount = Monthly payment × Total number of payments
Total amount =[tex]$950 \times 360[/tex]
Total amount = [tex]342,000[/tex]
Therefore, the total amount of money paid to the loan company over the life of the loan is $342,000.
c) To find out how much of the total amount paid is interest, we can subtract the principal loan amount from the total amount:
Interest = Total amount - Principal loan amount
Interest = [tex]342,000 - 129460.2[/tex]
=$212539.8
Therefore, $212539.8 of the total amount paid is interest.
To learn more on Simple Interest click:
https://brainly.com/question/30964674
#SPJ4
13. Given that
[tex] {x}^{2} + {y}^{2} + 10y + 16 = 0[/tex]
and
[tex] {(x - 3)}^{2} + {y}^{2} = 1[/tex] are two circles on the same plane. Find:
a) the coordinates of the center and the radius for each circle.
b) the equation of the straight line joining the center of both circles.
step by step explanation:
[tex]\mathfrak{x}^{2}+{y}^{2}+16=0[/tex]
=[x2+16=0x26]
=[2x{y}^2{16}~0]
=[4×{y}^0{16}]
=[32x{y}^x]
write the expression x^2+8x-5 and x^2-4x-2 in the form (x+a)^2 +b
The following data was collected from a survey in which people identified their average salaries over the past ten years. Identify the number of classes in the histogram.
Answer:
nine 9 classes in the histogram
A riverboat travels 52 km downstream in 2 hours. It travels 66 km upstream in 3 hours. Find the speed of the boat and the speed of the stream
The speed of the boat is
and the speed of the stream is
Answer:
The speed of the boat is 24 kilometers per hour, and the speed of the stream is 2 kilometers per hour.
Step-by-step explanation:
Given that a riverboat travels 52 km downstream in 2 hours, and it travels 66 km upstream in 3 hours, the following calculations must be performed to find the speed of the boat and the speed of the stream:
Downstream = 52/2 = 26
Upstream = 66/3 = 22
Stream = 4/2 = 2
Therefore, the speed of the boat is 24 kilometers per hour, and the speed of the stream is 2 kilometers per hour.
sin4x - cosx
---------------- = f(x) f^1(π/4) what is the derivative?
tanx
I think you are asked to find the value of the first derivative of f(x) at π/4. Given
[tex]f(x) = \dfrac{\sin(4x)-\cos(x)}{\tan(x)}[/tex]
use the quotient to differentiate and you get
[tex]f'(x) = \dfrac{\tan(x)(4\cos(4x)+\sin(x))-(\sin(4x)-\cos(x))\sec^2(x)}{\tan^2(x)}[/tex]
Then at x = π/4, you have
tan(π/4) = 1
cos(4•π/4) = cos(π) = -1
sin(π/4) = 1/√2
sin(4•π/4) = sin(π) = 0
cos(π/4) = 1/√2
sec(π/4) = √2
==> f ' (π/4) = (1•(-4 + 1/√2) - (0 - 1/√2)•(√2)²) / 1² = -4 + 1/√2 + √2
1. Find the exact value of sin( a−B), given that sin a=−4/5 and cos B=12/13, with a in quadrant III and B in quadrant IV.
2. Find all real numbers in the interval [0,2pi) that satisfy the equation.
3sec^2 x tan x =4tan x
3. Simplify the following trigonometric expressions, using identities as needed:
sin(x)/1−cos(x) + 1−cos(x)/sin(x)
(1) Recall that
sin(x - y) = sin(x) cos(y) - cos(x) sin(y)
sin²(x) + cos²(x) = 1
Given that α lies in the third quadrant, and β lies in the fourth quadrant, we expect to have
• sin(α) < 0 and cos(α) < 0
• sin(β) < 0 and cos(β) > 0
Solve for cos(α) and sin(β) :
cos(α) = -√(1 - sin²(α)) = -3/5
sin(β) = -√(1 - cos²(β)) = -5/13
Then
sin(α - β) = sin(α) cos(β) - cos(α) sin(β) = (-4/5) (12/13) - (-3/5) (-5/13)
==> sin(α - β) = -63/65
(2) In the second identity listed above, multiplying through both sides by 1/cos²(x) gives another identity,
sin²(x)/cos²(x) + cos²(x)/cos²(x) = 1/cos²(x)
==> tan²(x) + 1 = sec²(x)
Rewrite the equation as
3 sec²(x) tan(x) = 4 tan(x)
3 (tan²(x) + 1) tan(x) = 4 tan(x)
3 tan³(x) + 3 tan(x) = 4 tan(x)
3 tan³(x) - tan(x) = 0
tan(x) (3 tan²(x) - 1) = 0
Solve for x :
tan(x) = 0 or 3 tan²(x) - 1 = 0
tan(x) = 0 or tan²(x) = 1/3
tan(x) = 0 or tan(x) = ±√(1/3)
x = arctan(0) + nπ or x = arctan(1/√3) + nπ or x = arctan(-1/√3) + nπ
x = nπ or x = π/6 + nπ or x = -π/6 + nπ
where n is any integer. In the interval [0, 2π), we get the solutions
x = 0, π/6, 5π/6, π, 7π/6, 11π/6
(3) You only need to rewrite the first term:
[tex]\dfrac{\sin(x)}{1-\cos(x)} \times \dfrac{1+\cos(x)}{1+\cos(x)} = \dfrac{\sin(x)(1+\cos(x))}{1-\cos^2(x)} = \dfrac{\sin(x)(1+\cos(x)}{\sin^2(x)} = \dfrac{1+\cos(x)}{\sin(x)}[/tex]
Then
[tex]\dfrac{\sin(x)}{1-\cos(x)}+\dfrac{1-\cos(x)}{\sin(x)} = \dfrac{1+\cos(x)+1-\cos(x)}{\sin(x)}=\dfrac2{\sin(x)}[/tex]