Answer:
Explanation:
In case of soap film , light gets reflected from denser medium , hence interference takes place between two waves , one reflected from upper and second from lower surface . For destructive interference the condition is
2μt = nλ where μ is refractive index of water , t is thickness , λ is wavelength of light and n is an integer .
2 x 1.34 x t = 1 x 580
t = 216.42 nm .
Thickness must be 216.42 nm .
A fan rotating with an initial angular velocity of 1500 rev/min is switched off. In 2.5 seconds, the angular velocity decreases to 400 rev/min. Assuming the angular acceleration is constant, answer the following questions.
How many revolutions does the blade undergo during this time?
A) 10
B) 20
C) 100
D) 125
E) 1200
Answer:
The blade undergoes 40 revolutions, so neither of the given options is correct!
Explanation:
The revolutions can be found using the following equation:
[tex]\theta_{f} = \theta_{i} + \omega_{i}*t + \frac{1}{2}\alpha*t^{2}[/tex]
Where:
α is the angular acceleration
t is the time = 2.5 s
[tex]\omega_{i}[/tex] is the initial angular velocity = 1500 rev/min
First, we need to find the angular acceleration:
[tex] \alpha = \frac{\omega_{f} - \omega_{i}}{t} = \frac{400 rev/min*2\pi rad*1 min/60 s - 1500 rev/min *2\pi rad*1 min/60 s}{2.5 s} = -46.08 rad/s^{2} [/tex]
Now, the revolutions that the blade undergo are:
[tex]\theta_{f} - \theta_{i} = \omega_{i}*t + \frac{1}{2}\alpha*t^{2}[/tex]
[tex]\Delta \theta = 1500 rev/min *2\pi rad*1 min/60 s*2.5 s - \frac{1}{2}*(46.08 rad/s^{2})*(2.5)^{2} = 248.7 rad = 39.9 rev[/tex]
Therefore, the blade undergoes 40 revolutions, so neither of the given options is correct!
I hope it helps you!
A rectangular coil lies flat on a horizontal surface. A bar magnet is held above the center of the coil with its north pole pointing down. What is the direction of the induced current in the coil?
Answer:
There is no induced current on the coil.
Explanation:
Current is induced in a coil or a circuit, when there is a break of flux linkage. A break in flux linkage is caused by a changing magnetic field, and must be achieved by a relative motion between the coil and the magnet. Holding the magnet above the center of the coil will cause no changing magnetic filed since there is no relative motion between the coil and the magnet.
what is the average flow rate in of gasoline to the engine of a plane flying at 700 km/h if it averages 100.0 km/l
Answer:
1.94cm³/s
Explanation:
1L = 1000cm³
Ihr = 3600s
So
Using
Average flow rate
Fr= 1L/100Km x 700Km/1hr x 1hr/3600s x 1000cm³/ 1L
= 1.94cm³/s
An electron moving in the direction of the +x-axis enters a magnetic field. If the electron experiences a magnetic deflection in the -y direction, the direction of the magnetic field in this region points in the direction of the:______
Answer:
-z axis
Explanation:
According to the left hand rule for an electron in a magnetic field, hold the thumb of the left hand at a right angle to the rest of the fingers, and the rest of the fingers parallel to one another. If the thumb represents the motion of the electron, and the other fingers represent the direction of the field, then the palm will push in the direction of the force on the electron. In this case, the left hand will be held out with the thumb pointing to the right (+x axis), and the palm facing your body (-y axis). The magnetic field indicated by the other fingers will point down in the the -z axis.
The advantage of a hydraulic lever is A : it transforms a small force acting over a large distance into a large force acting over a small distance. B : it transforms a small force acting over a small distance into a large force acting over a large distance. C : it allows you to exert a larger force with less work. D : it transforms a large force acting over a large distance into a small force acting over a small distance. E : it transforms a large force acting over a small distance into a small force acting over a large distance.
Answer:
A) it transforms a small force acting over a large distance into a large force acting over a small distance.
Explanation:
The hydraulic lever works based on Pascal's law of transmission of pressure through a fluid. In the hydraulic lever, the pressure transmitted is the same.
Pressure transmitted P = F/A
where F is the force applied
and A is the area over which the force is applied.
This pressure can be manipulated on the input end as a small force applied over a small area, and then be transmitted to the output end as a large force over a large area.
F/A = f/a
where the left side of the equation is for the output, and the right side is for the input.
The volume of the displaced fluid will be the same on both ends of the hydraulic lever. Since we know that
volume V = (area A) x (distance d)
this means that the the piston on the input smaller area of the hydraulic lever will travel a greater distance, while the piston on the larger output area of the lever will travel a small distance.
From all these, we can see that the advantage of a hydraulic lever is that it transforms a small force acting over a large distance into a large force acting over a small distance.
With the same block-spring system from above, imagine doubling the displacement of the block to start the motion. By what factor would the following change?
A. Kinetic energy when passing through the equilibrium position.
B. Speed when passing through the equilibrium position.
Answer:
A) K / K₀ = 4 b) v / v₀ = 4
Explanation:
A) For this exercise we can use the conservation of mechanical energy
in the problem it indicates that the displacement was doubled (x = 2xo)
starting point. At the position of maximum displacement
Em₀ = Ke = ½ k (2x₀)²
final point. In the equilibrium position
[tex]Em_{f}[/tex] = K = ½ m v²
Em₀ = Em_{f}
½ k 4 x₀² = K
(½ K x₀²) = K₀
K = 4 K₀
K / K₀ = 4
B) the speed value
½ k 4 x₀² = ½ m v²
v = 4 (k / m) x₀
if we call
v₀ = k / m x₀
v = 4 v₀
v / v₀ = 4
W is the work done on the system, and K, U, and Eth are the kinetic, potential, and thermal energies of the system, respectively. Any energy not mentioned in the transformation is assumed to remain constant; if work is not mentioned, it is assumed to be zero.
1. Give a specific example of a system with the energy transformation shown.
W→ΔEth
2. Give a specific example of a system with the energy transformation shown.
a. Rolling a ball up a hill.
b. Moving a block of wood across a horizontal rough surface at constant speed.
c. A block sliding on level ground, to which a cord you are holding on to is attached .
d. Dropping a ball from a height.
Answer:
1) a block going down a slope
2) a) W = ΔU + ΔK + ΔE, b) W = ΔE, c) W = ΔK, d) ΔU = ΔK
Explanation:
In this exercise you are asked to give an example of various types of systems
1) a system where work is transformed into internal energy is a system with friction, for example a block going down a slope in this case work is done during the descent, which is transformed in part kinetic energy, in part power energy and partly internal energy that is represented by an increase in the temperature of the block.
2)
a) rolling a ball uphill
In this case we have an increase in potential energy, if there is a change in speed, the kinetic energy also increases, if the change in speed is zero, there is no change in kinetic energy and there is a change in internal energy due to the stationary rec in the point of contact
W = ΔU + ΔK + ΔE
b) in this system work is transformed into internal energy
W = ΔE
c) There is no friction here, therefore the work is transformed into kinetic energy
W = ΔK
d) if you assume that there is no friction with the air, the potential energy is transformed into kinetic energy
ΔU = ΔK
The metal wire in an incandescent lightbulb glows when the light is switched on and stops glowing when it is switched off. This simple
process is which kind of a change?
OA a physical change
OB. a chemical change
OC. a nuclear change
OD
an ionic change
B. A chemical change
Explanation:
I'm guessing ?
A stone is dropped from the bridge, it takes 4s to reach the water. what's the height of the bridge?
Explanation:
Using Equations of Motion :
[tex]s = ut + \frac{1}{2} g {t}^{2} [/tex]
Height = 0 * 4 + 4.9 * 16
Height = 78.4 m
The ceiling of your lecture hall is probably covered with acoustic tile, which has small holes separated by about 6.1 mm. Using light with a wavelength of 578 nm, how far could you be from this tile and still resolve these holes
Answer:
8.65x10^3m
Explanation:
See attached file
A car moving at 36 m/s passes a stationary police car whose siren has a frequency of 500 Hz. What is the change in the frequency (in Hz) heard by an observer in the moving car as he passes the police car? (The speed of sound in air is 343 m/s.)
Answer:
Change in the frequency (in Hz) = 104.96 Hz
Explanation:
Given:
Speed of sound in air (v) = 343 m/s
Speed of car (v1) 36 m/s
Frequency(f) = 500 Hz
Find:
Change in the frequency (in Hz)
Computation:
Frequency hear by the observer(before)(f1) = [f(v+v1)] / v
Frequency hear by the observer(f1) = [500(343+36)] / 343
Frequency hear by the observer(f1) = 552.48 Hz
Frequency hear by the observer(after)(f2) = [f(v-v1)] / v
Frequency hear by the observer(f2) = [500(343-36)] / 343
Frequency hear by the observer(f2) = 447.52 Hz
Change in the frequency (in Hz) = f1 - f2
Change in the frequency (in Hz) = 552.48 Hz - 447.52 Hz
Change in the frequency (in Hz) = 104.96 Hz
A spring with spring constant 15 N/m hangs from the ceiling. A ball is attached to the spring and allowed to come to rest. It is then pulled down 6.0 cm and released. If the ball makes 30 oscillations in 20 s, what are its (a) mass and (b) maximum speed?
Answer:
a
[tex]m = 0.169 \ kg[/tex]
b
[tex]|v_{max} |= 0.5653 \ m/s[/tex]
Explanation:
From the question we are told that
The spring constant is [tex]k = 14 \ N/m[/tex]
The maximum extension of the spring is [tex]A = 6.0 \ cm = 0.06 \ m[/tex]
The number of oscillation is [tex]n = 30[/tex]
The time taken is [tex]t = 20 \ s[/tex]
Generally the the angular speed of this oscillations is mathematically represented as
[tex]w = \frac{2 \pi}{T}[/tex]
where T is the period which is mathematically represented as
[tex]T = \frac{t}{n}[/tex]
substituting values
[tex]T = \frac{20}{30 }[/tex]
[tex]T = 0.667 \ s[/tex]
Thus
[tex]w = \frac{2 * 3.142 }{ 0.667}[/tex]
[tex]w = 9.421 \ rad/s[/tex]
this angular speed can also be represented mathematically as
[tex]w = \sqrt{\frac{k}{m} }[/tex]
=> [tex]m =\frac{k }{w^2}[/tex]
substituting values
[tex]m =\frac{ 15 }{(9.421)^2}[/tex]
[tex]m = 0.169 \ kg[/tex]
In SHM (simple harmonic motion )the equation for velocity is mathematically represented as
[tex]v = - Awsin (wt)[/tex]
The velocity is maximum when [tex]wt = \(90^o) \ or \ 1.5708\ rad[/tex]
[tex]v_{max} = - A* w[/tex]
=> [tex]|v_{max} |= A* w[/tex]
=> [tex]|v_{max} |= 0.06 * 9.421[/tex]
=> [tex]|v_{max} |= 0.5653 \ m/s[/tex]
Question 18(Multiple Choice Worth 2 polnis)
When riding your skateboard you crash into a curb, the skateboard stops, and you continue moving forward. Which law of
motion is being described in this scenario?
O Law of Universal Gravitation
o Newton's Second Law of Motion
o Law of Conservation of Energy
o Newton's First Law of Motion
Consider a wire of a circular cross-section with a radius of R = 3.17 mm. The magnitude of the current density is modeled as J = cr2 = 9.00 ✕ 106 A/m4 r2. What is the current (in A) through the inner section of the wire from the center to r = 0.5R?
Answer:
The current is [tex]I = 8.9 *10^{-5} \ A[/tex]
Explanation:
From the question we are told that
The radius is [tex]r = 3.17 \ mm = 3.17 *10^{-3} \ m[/tex]
The current density is [tex]J = c\cdot r^2 = 9.00*10^{6} \ A/m^4 \cdot r^2[/tex]
The distance we are considering is [tex]r = 0.5 R = 0.001585[/tex]
Generally current density is mathematically represented as
[tex]J = \frac{I}{A }[/tex]
Where A is the cross-sectional area represented as
[tex]A = \pi r^2[/tex]
=> [tex]J = \frac{I}{\pi r^2 }[/tex]
=> [tex]I = J * (\pi r^2 )[/tex]
Now the change in current per unit length is mathematically evaluated as
[tex]dI = 2 J * \pi r dr[/tex]
Now to obtain the current (in A) through the inner section of the wire from the center to r = 0.5R we integrate dI from the 0 (center) to point 0.5R as follows
[tex]I = 2\pi \int\limits^{0.5 R}_{0} {( 9.0*10^6A/m^4) * r^2 * r} \, dr[/tex]
[tex]I = 2\pi * 9.0*10^{6} \int\limits^{0.001585}_{0} {r^3} \, dr[/tex]
[tex]I = 2\pi *(9.0*10^{6}) [\frac{r^4}{4} ] | \left 0.001585} \atop 0}} \right.[/tex]
[tex]I = 2\pi *(9.0*10^{6}) [ \frac{0.001585^4}{4} ][/tex]
substituting values
[tex]I = 2 * 3.142 * 9.00 *10^6 * [ \frac{0.001585^4}{4} ][/tex]
[tex]I = 8.9 *10^{-5} \ A[/tex]
If R = 20 Ω, what is the equivalent resistance between points A and B in the figure?
Answer:
c. 70 Ω
Explanation:
The R and R resistors are in parallel. The 2R and 2R resistors are in parallel. The 4R and 4R resistors are in parallel. Each parallel combination is in series with each other. Therefore, the equivalent resistance is:
Req = 1/(1/R + 1/R) + 1/(1/2R + 1/2R) + 1/(1/4R + 1/4R)
Req = R/2 + 2R/2 + 4R/2
Req = 3.5R
Req = 70Ω
Two football teams, the Raiders and the 49ers are engaged in a tug-of-war. The Raiders are pulling with a force of 5000N. Which of the following is an accurate statement?
A. The tension in the rope depends on whether or not the teams are in equilibrium.
B. The 49ers are pulling with a force of more than 5000N because of course they’d be winning.
C. The 49ers are pulling with a force of 5000N.
D. The tension in the rope is 10,000N.
E. None of these statements are true.
Answer:
E. None of these statements are true.
Explanation:
We can't say the exact or approximate amount of tension on the rope, since we do know for sure from the statement who is winning.
for A, the tension on the rope does not depend on if both teams pull are in equilibrium.
for B, the 49ers would be pulling with a force more than 5000 N, if they were winning. The problem is that we can't say with all confidence that they'd be winning.
for C, we don't know how much tension exists on the rope, and its direction, so we can't work out how much tension the 49ers are pulling the rope with.
for D, just as for C above, we can't work out how much tension there is on the rope, since we do not know how much force the 49ers are pulling with.
we go with option E.
What is the wavelength of electromagnetic radiation which has a frequency of 3.818 x 10^14 Hz?
Answer:
7.86×10⁻⁷ m
Explanation:
Using,
v = λf.................. Equation 1
Where v = velocity of electromagnetic wave, λ = wave length, f = frequency.
make λ the subject of the equation
λ = v/f............... Equation 2
Note: All electromagnetic wave have the same speed which is 3×10⁸ m/s.
Given: f = 3.818×10¹⁴ Hz
Constant: v = 3×10⁸ m/s
Substitute these values into equation 2
λ = 3×10⁸/3.818×10¹⁴
λ = 7.86×10⁻⁷ m
Hence the wavelength of the electromagnetic radiation is 7.86×10⁻⁷ m
The wavelength of this electromagnetic radiation is equal to [tex]7.86 \times 10^{-7} \;meters[/tex]
Given the following data:
Frequency = [tex]3.818\times 10^{14}\;Hz[/tex]Scientific data:
Velocity of an electromagnetic radiation = [tex]3 \times 10^8\;m/s[/tex]
To determine the wavelength of this electromagnetic radiation:
Mathematically, the wavelength of an electromagnetic radiation is calculated by using the formula;
[tex]Wavelength = \frac{Speed }{frequency}[/tex]
Substituting the given parameters into the formula, we have;
[tex]Wavelength = \frac{3 \times 10^8}{3.818\times 10^{14}}[/tex]
Wavelength = [tex]7.86 \times 10^{-7} \;meters[/tex]
Read more wavelength on here: https://brainly.com/question/6352445
A car moving east at 45 km/h turns and travels west at 30 km/h. What is the
magnitude and direction of the change in velocity?
mahalle 1.11
Explanation:
Change in Velocity = final velocity - initial velocity
Change in velocity = 30km/h - (- 45km/h )
= 75 km/h due west
A merry-go-round spins freely when Diego moves quickly to the center along a radius of the merry-go-round. As he does this, it is true to say that
Answer:
A) the moment of inertia of the system decreases and the angular speed increases.
Explanation:
The complete question is
A merry-go-round spins freely when Diego moves quickly to the center along a radius of the merry-go-round. As he does this, It is true to say that
A) the moment of inertia of the system decreases and the angular speed increases.
B) the moment of inertia of the system decreases and the angular speed decreases.
C) the moment of inertia of the system decreases and the angular speed remains the same.
D) the moment of inertia of the system increases and the angular speed increases.
E) the moment of inertia of the system increases and the angular speed decreases
In angular momentum conservation, the initial angular momentum of the system is conserved, and is equal to the final angular momentum of the system. The equation of this angular momentum conservation is given as
[tex]I_{1} w_{1} = I_{2} w_{2}[/tex] ....1
where [tex]I_{1}[/tex] and [tex]I_{2}[/tex] are the initial and final moment of inertia respectively.
and [tex]w_{1}[/tex] and [tex]w_{2}[/tex] are the initial and final angular speed respectively.
Also, we know that the moment of inertia of a rotating body is given as
[tex]I = mr^{2}[/tex] ....2
where [tex]m[/tex] is the mass of the rotating body,
and [tex]r[/tex] is the radius of the rotating body from its center.
We can see from equation 2 that decreasing the radius of rotation of the body will decrease the moment of inertia of the body.
From equation 1, we see that in order for the angular momentum to be conserved, the decrease from [tex]I_{1}[/tex] to [tex]I_{2}[/tex] will cause the angular speed of the system to increase from [tex]w_{1}[/tex] to [tex]w_{2}[/tex] .
From this we can clearly see that reducing the radius of rotation will decrease the moment of inertia, and increase the angular speed.
Two parallel metal plates, each of area A, are separatedby a distance 3d. Both are connected to ground and each plate carries no charge. A third plate carrying charge Qis inserted between the two plates, located a distance dfrom the upper plate. As a result, negative charge is induced on each of the two original plates. a) In terms of Q, find the amount of charge on the upper plate, Q1, and the lower plate, Q2. (Hint: it must be true that Q
Answer:
Upper plate Q/3
Lower plate 2Q/3
Explanation:
See attached file
Please help!
Much appreciated!
Answer:
your question answer is 22°
A Cannonball is shot at an angle of 35.0 degrees and is in flight for 11.0 seconds before hitting the ground at the same height from which it was shot.
A. What is the magnitude of the inital velocity?B. What was the maximum height reached by the cannonball?C. How far, horizontally, did it travel?
Answer:
Explanation:
According to Equations of Projectile motion :
[tex]Time\ of\ Flight = \frac{2vsin(x)}{g}[/tex]
vsin(x) = 11 * 9.8 / 2 = 53.9 m/sec
(A) v (Initial velocity) = 11 * 9.8 / 2 * sin(35) = 94.56 m/sec
[tex]Maximum Height = \frac{(vsinx)^{2} }{2g}[/tex]
(B) Maximum Height = 53.9 * 53.9 / 2 * 9.8 = 142.2 m
[tex]Horizontal Range = vcosx * t[/tex]
(C) Horizontal Range = 94.56 * 0.81 * 11 = 842.52 m
A metal sphere A of radius a is charged to potential V. What will be its potential if it is enclosed by a spherical conducting shell B of radius b and the two are connected by a wire?
Answer:
The potential will be Va/b
Explanation:
So Let sphere A charged Q to potential V.
so, V= KQ/a. ....(1
Thus, spherical shell B is connected to the sphere A by a wire, so all charge always reside on the outer surface.
therefore, potential will be ,
V ′ = KQ/b = Va/b... That is from .....(1), KQ=Va]
if a 1-m diameter sewer pipe is flowing at a depth of 0.4 m and has a flow rate of 0.15 m^3/s, what will be the flow rate when the pipe flows full?
Answer:
0.35 m³/s
Explanation:
When the pipe's depth is 0.4 m, the area of the circular segment is:
A = ½ R² (θ − sin θ)
The depth of the water is:
h = R (1 − cos(θ/2))
Solving for θ:
0.4 = 0.5 (1 − cos(θ/2))
0.8 = 1 − cos(θ/2)
cos(θ/2) = 0.2
θ/2 = acos(0.2)
θ = 2 acos(0.2)
θ ≈ 2.74 rad
The area is therefore:
A = ½ (0.5 m)² (2.74 − sin 2.74)
A = 0.338 m²
The cross-sectional area when the pipe is full is:
A = π (0.5 m)²
A = 0.785 m²
The flow velocity is constant:
v = v
Q / A = Q / A
(0.15 m³/s) / (0.338 m²) = Q / (0.785 m²)
Q = 0.35 m³/s
A small helium-neon laser emits red visible light with a power of 5.40 mW in a beam of diameter 2.30 mm.
Required:
a. What is the amplitude of the electric field of the light? Express your answer with the appropriate units.
b. What is the amplitude of the magnetic field of the light?
c. What is the average energy density associated with the electric field? Express your answer with the appropriate units.
d. What is the average energy density associated with the magnetic field? Express your answer with the appropriate units.
E) What is the total energy contained in a 1.00-m length of the beam? Express your answer with the appropriate units.
Answer:
A. 990v/m
B.330x10^-8T
C.2.19x10^-6J/m³
D.1.45x10^-11J
Explanation:
See attached file
how does a system naturally change over time
Answer:
The movement of energy and matter in a system differs from one system to another. On the other hand, in open system both the matter and energy move into and out of the system. Therefore, matter and energy in a system naturally change over time will decrease in entropy.
Explanation:
Answer:
Decrease in entropy
Explanation:
Various systems which exist in nature possess energy and matter that move through these system continuously. The movement of energy and matter in a system differs from one system to another.
In a closed system for example, only energy flows in and out of the system while matter does not enter or leave the system.
On the other hand, in open system both the matter and energy move into and out of the system.
A flat loop of wire consisting of a single turn of cross-sectional area 7.30 cm2 is perpendicular to a magnetic field that increases uniformly in magnitude from 0.500 T to 3.50 T in 1.00 s. What is the resulting induced current if the loop has a resistance of 2.60
Answer:
-0.73mA
Explanation:
Using amphere's Law
ε =−dΦB/ dt
=−(2.6T)·(7.30·10−4 m2)/ 1.00 s
=−1.9 mV
Using ohms law
ε=V =IR
I = ε/ R =−1.9mV/ 2.60Ω =−0.73mA
At what speed (in m/s) will a proton move in a circular path of the same radius as an electron that travels at 7.45 ✕ 106 m/s perpendicular to the Earth's magnetic field at an altitude where the field strength is 1.10 ✕ 10−5 T
Answer:
The speed of the proton is 4059.39 m/s
Explanation:
The centripetal force on the particle is given by;
[tex]F = \frac{mv^2}{r}[/tex]
The magnetic force on the particle is given by;
[tex]F = qvB[/tex]
The centripetal force on the particle must equal the magnetic force on the particle, for the particle to remain in the circular path.
[tex]\frac{mv^2}{r} = qvB\\\\r = \frac{mv^2}{qvB} \\\\r = \frac{mv}{qB}[/tex]
where;
r is the radius of the circular path moved by both electron and proton;
⇒For electron;
[tex]r = \frac{(9.1*10^{-31})(7.45*10^6)}{(1.602*10^{-19})(1.1*10^{-5})}\\\\r = 3.847 \ m[/tex]
⇒For proton
The speed of the proton is given by;
[tex]r = \frac{mv}{qB}\\\\mv = qBr\\\\v = \frac{qBr}{m} \\\\v = \frac{(1.602*10^{-19})(1.1*10^{-5})(3.847)}{1.67*10^{-27}} \\\\v = 4059.39 \ m/s[/tex]
Therefore, the speed of the proton is 4059.39 m/s
The molecules in Tyler are composed of carbon and other atoms that share one or more electrons between two atoms, forming what is known as a(n) _____ bond.
Answer:
covalent
Explanation:
covalent bonds share electrons
The earth has a vertical electric field at the surface,pointing down, that averages 102 N/C. This field is maintained by various atmosphericprocesses, including lightning.
What is the excess charge on the surface of the earth? inC
Answer:
[tex]q = -461532.5 \ C[/tex]
Explanation:
From the question we are told that
The electric filed is [tex]E = 102 \ N/C[/tex]
Generally according to Gauss law
=> [tex]E A = \frac{q}{\epsilon_o }[/tex]
Given that the electric field is pointing downward , the equation become
[tex]- E A = \frac{q}{\epsilon_o }[/tex]
Here [tex]q[/tex] is the excess charge on the surface of the earth
[tex]A[/tex] is the surface area of the of the earth which is mathematically represented as
[tex]A = 4\pi r^2[/tex]
Where r is the radius of the earth which has a value [tex]r = 6.3781*10^6 m[/tex]
substituting values
[tex]A = 4 * 3.142 * (6.3781*10^6 \ m)^2[/tex]
[tex]A =5.1128 *10^{14} \ m^2[/tex]
So
[tex]q = -E * A * \epsilon _o[/tex]
Here [tex]\epsilon_o[/tex] s the permitivity of free space with value
[tex]\epsilon_o = 8.85*10^{-12} \ m^{-3} \cdot kg^{-1}\cdot s^4 \cdot A^2[/tex]
substituting values
[tex]q = -102 * 5.1128 *10^{14} * 8.85 *10^{-12}[/tex]
[tex]q = -461532.5 \ C[/tex]