Calls to a customer service center last on average 2.3 minutes with a standard deviation of 2 minutes. An operator in the call center is required to answer 76 calls each day. Assume the call times are independent.
What is the expected total amount of time in minutes the operator will spend on the calls each day?
What is the standard deviation of the total amount of time in minutes the operator will spend on the calls each day? Give your answer to four decimal places.
What is the approximate probability that the total time spent on the calls will be less than 166 minutes? Give your answer to four decimal places. Use the standard deviation as you entered it above to answer this question.
What is the value c such that the approximate probability that the total time spent on the calls each day is less than c is 0.95? Give your answer to four decimal places. Use the standard deviation as you entered it above to answer this question.
Answer:
The expected total amount of time in minutes the operator will spend on the calls each day is of 174.8 minutes.
The standard deviation of the total amount of time in minutes the operator will spend on the calls each day is of 17.4356 minutes.
0.3085 = 30.85% approximate probability that the total time spent on the calls will be less than 166 minutes.
The value c such that the approximate probability that the total time spent on the calls each day is less than c is 0.95 is [tex]c = 203.4816[/tex]
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
n instances of a normally distributed variable:
For n instances of a normally distributed variable, the mean is:
[tex]M = n\mu[/tex]
The standard deviation is:
[tex]s = \sigma\sqrt{n}[/tex]
Calls to a customer service center last on average 2.3 minutes with a standard deviation of 2 minutes.
This means that [tex]\mu = 2.3, \sigma = 2[/tex]
An operator in the call center is required to answer 76 calls each day.
This means that [tex]n = 76[/tex]
What is the expected total amount of time in minutes the operator will spend on the calls each day?
[tex]M = n\mu = 76*2.3 = 174.8[/tex]
The expected total amount of time in minutes the operator will spend on the calls each day is of 174.8 minutes.
What is the standard deviation of the total amount of time in minutes the operator will spend on the calls each day?
[tex]s = \sigma\sqrt{n} = 2\sqrt{76} = 17.4356[/tex]
The standard deviation of the total amount of time in minutes the operator will spend on the calls each day is of 17.4356 minutes.
What is the approximate probability that the total time spent on the calls will be less than 166 minutes?
This is the p-value of Z when X = 166.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
For this problem:
[tex]Z = \frac{X - M}{s}[/tex]
[tex]Z = \frac{166 - 174.8}{17.4356}[/tex]
[tex]Z = 0.5[/tex]
[tex]Z = 0.5[/tex] has a p-value of 0.6915.
1 - 0.6915 = 0.3085.
0.3085 = 30.85% approximate probability that the total time spent on the calls will be less than 166 minutes.
What is the value c such that the approximate probability that the total time spent on the calls each day is less than c is 0.95?
This is X = c for which Z has a p-value of 0.95, so X = c when Z = 1.645. Then
[tex]Z = \frac{X - M}{s}[/tex]
[tex]1.645 = \frac{c - 174.8}{17.4356}[/tex]
[tex]c - 174.8 = 1.645*17.4356[/tex]
[tex]c = 203.4816[/tex]
The value c such that the approximate probability that the total time spent on the calls each day is less than c is 0.95 is [tex]c = 203.4816[/tex]
Triangle DEF contains right angle E. If angle D measures 40° and its adjacent side measures 7.6 units, what is the measure of side EF? Round your answer to the nearest hundredth.
[tex]\\ \rm\longmapsto cot40=\dfrac{7.6}{EF}[/tex]
[tex]\\ \rm\longmapsto EF=\dfrac{7.6}{cot40}[/tex]
[tex]\\ \rm\longmapsto EF=\dfrac{7.6}{1.19}[/tex]
[tex]\\ \rm\longmapsto EF=6.38units[/tex]
Answer:
[tex]\displaystyle 6,38\:units[/tex]
Step-by-step explanation:
You would set your proportion up like so:
[tex]\displaystyle \frac{7,6}{EF} = cot\:40° \\ \\ 7,6 = EFcot\:40° → 6,3771571969... = \frac{7,6}{cot\:40°} \\ \\ 6,38 ≈ EF[/tex]
I am joyous to assist you at any time.
I need the help ASAP please
Answer:
Option B
Answered by GAUTHMATH
Which decimal is equivalent to
15/100?
A- O 0.015
B- 0.15
C-o 1.5
D- 0.0015
Answer:
D
Step-by-step explanation:
0.0015
hope this helps
2 men can build a wall in 10 days. in how many days will 8 men build the wall?
Step-by-step explanation:
8 men can do 60 man days of work by dividing 60 man days by the 8 men, which gives us 60/8 = 7 1/2 da
What is the dimension of the null space Null (A) of A =
Answer:
the nullity of a matrix A is the demision of its null space:nullity A = dim (n(A).
express 111 as a sum of two primes
Answer:
2 + 109 = 111
Step-by-step explanation:
.............
what is the area of the triangle ://
Answer:
The area of a triangle is:
Area = 1/2(bh)
Area = 1/2(70)
Area = 35 square inches
Let me know if this helps!
Need the answer please, soon as possible
9514 1404 393
Answer:
(d) 27.4%
Step-by-step explanation:
The desired percentage is ...
(juniors for Kato)/(total juniors) × 100%
= 129/(129 +194 +147) × 100%
= (129/470) × 100% ≈ 27.4%
About 27.4% of juniors voted for Kato.
The firm had 15 billion VND of earnings before interest and tax (EBIT), corporate tax is 20%. The market price of stock is 60.000đ. Knowing that net income will be held 40% before using it for dividend. How much of the net income can be divided for shareholders?
Answer:
was assigned with this problem (the reference text is attached):
Which of the following, if included in a student's paper, would NOT be an example of plagiarism?
1. In the game of baseball, which is rather boring, the batter stands on home base (Hughes 1).
2. Baseball is rather surprisingly known as "America's Favorite Pastime."
3. Baseball is "a rather boring sport played between two teams of nine players" (Hughes 1).
4. All of these are plagiarism.
The answer tells that only the third choice is NOT a plagiarism. My question is, why is the first choice a plagiarismwas assigned with this problem (the reference text is attached):
Which of the following, if included in a student's paper, would NOT be an example of plagiarism?
1. In the game of baseball, which is rather boring, the batter stands on home base (Hughes 1).
2. Baseball is rather surprisingly known as "America's Favorite Pastime."
3. Baseball is "a rather boring sport played between two teams of nine players" (Hughes 1).
4. All of these are plagiarism.
The answer tells that only the third choice is NOT a plagiarism. My question is, why is the first choice a plagiarismwas assigned with this problem (the reference text is attached):
Which of the following, if included in a student's paper, would NOT be an example of plagiarism?
1. In the game of baseball, which is rather boring, the batter stands on home base (Hughes 1).
2. Baseball is rather surprisingly known as "America's Favorite Pastime."
3. Baseball is "a rather boring sport played between two teams of nine players" (Hughes 1).
4. All of these are plagiarism.
The answer tells that only the third choice is NOT a plagiarism. My question is, why is the first choice a plagiarismwas assigned with this problem (the reference text is attached):
Which of the following, if included in a student's paper, would NOT be an example of plagiarism?
1. In the game of baseball, which is rather boring, the batter stands on home base (Hughes 1).
2. Baseball is rather surprisingly known as "America's Favorite Pastime."
3. Baseball is "a rather boring sport played between two teams of nine players" (Hughes 1).
4. All of these are plagiarism.
The answer tells that only the third choice is NOT a plagiarism. My question is, why is the first choice a plagiarismwas assigned with this problem (the reference text is attached):
Which of the following, if included in a student's paper, would NOT be an example of plagiarism?
1. In the game of baseball, which is rather boring, the batter stands on home base (Hughes 1).
2. Baseball is rather surprisingly known as "America's Favorite Pastime."
3. Baseball is "a rather boring sport played between two teams of nine players" (Hughes 1).
4. All of these are plagiarism.
The answer tells that only the third choice is NOT a plagiarism. My question is, why is the first choice a plagiarismwas assigned with this problem (the reference text is attached):
Which of the following, if included in a student's paper, would NOT be an example of plagiarism?
1. In the game of baseball, which is rather boring, the batter stands on home base (Hughes 1).
2. Baseball is rather surprisingly known as "America's Favorite Pastime."
3. Baseball is "a rather boring sport played between two teams of nine players" (Hughes 1).
4. All of these are plagiarism.
The answer tells that only the third choice is NOT a plagiarism. My question is, why is the first choice a plagiarismwas assigned with this problem (the reference text is attached):
Which of the following, if included in a student's paper, would NOT be an example of plagiarism?
Find the area of the shape shown below.
Answer:
28 units²
Step-by-step explanation:
Area of trapezoid =
2(8 + 4)/2 = 12
Area of rectangle =
2 x 8 = 16
16 + 12 = 28
If my answer is incorrect, pls correct me!
If you like my answer and explanation, mark me as brainliest!
-Chetan K
There is 3m wide path around a circular cricket ground having the diameter of 137 m. Find the area of the path.
Answer:
1320 m^2
Step-by-step explanation:
area of ground = π r ^2
= (22/7) × (137/2)^2
= 14,747.0714286 m^2
area of ground and path
=( 22/7)(143/2)^2
= 16,067.0714286 m^2
area of path
=16,067.0714286 -14,747.0714286
= 1320 m^2
note :
r = radius = diameter /2
area of a circle = π r^2
diameter of circle created with path and ground = 137 + 2 × width of path
= 137 + 2× 3 = 143 m
Coefficient and degree of the polynomial
Answer:
The leading coefficient is -8 as it is a mix of x and cardinal, if it was x alone then it wouldn't be the coefficient, we would use the next number shown.
If it was just a number and no x then it would still be the coefficient.
The degree is 9 as it is the highest power shown.
Step-by-step explanation:
See attachment for examples
For the given annual rate of change, find the corresponding growth or decay factor. + 300%
Answer:
50% growth would would be (1 + .5)^ n
and 100% growth would be (1+ 1)^n
I assume that the answer would be (1+3)^n
for 300% growth the factor would be 3
Step-by-step explanation:
Write the polynomial in standard form. Then name the polynomial based on its degree and number of
terms.
y-7y3 + 15y9
Answer:
[tex]15y^9 - 7y^3 + y[/tex]
Nonic polynomial
Step-by-step explanation:
Given
[tex]y - 7y^3 + 15y^9[/tex]
Required
Write in standard form
The standard form of a polynomial is:
[tex]ay^n + by^{n-1} + ......... + k[/tex]
So, we have:
[tex]y - 7y^3 + 15y^9[/tex]
The standard form is:
[tex]15y^9 - 7y^3 + y[/tex]
And the name is: Nonic polynomial (because it has a degree of 9)
Can someone please help me with this math problem
We have [tex]f\left(f^{-1}(x)\right) = x[/tex] for inverse functions [tex]f(x)[/tex] and [tex]f^{-1}(x)[/tex]. Then if [tex]f(x) = 2x+5[/tex], we have
[tex]f\left(f^{-1}(x)\right) = 2f^{-1}(x) + 5 = x \implies f^{-1}(x) = \dfrac{x-5}2[/tex]
Then
[tex]f^{-1}(8) = \dfrac{8-5}2 = \boxed{\dfrac32}[/tex]
Chad has a win loss ratio 5:5 across his games what percentage of games did he win
Answer:
Step-by-step explanation:
50%
Answer:
50%
Step-by-step explanation:
Win % = wins / total * 100%
Win% = (5/(5 + 5)) * 100
Win% = 5/10 * 100 = 50%
What is the sum of the infinite geometric series?
Answer:
-6
Step-by-step explanation:
a1= -3
r= -(3/2)/-3 = 0.5
r>-3
s= a1/1-r
= -3/1-0.5
=-6
Angelica’s bouquet of dozen roses contains 5 white roses. The rest of the roses. What fraction of the bouquet is pink? There are 12 roses in a dozen
Answer:
7/12
Step-by-step explanation:
total: 12 roses
white roses: 5
pink roses: 7
fraction of pink roses = 7/12
..............................
Answer:
[tex]x=17[/tex]
Step-by-step explanation:
[tex](6x+10)(x+17)(4x-34)[/tex]
[tex]6x+10+x+17+4x-34=180[/tex]
Add:- [tex]6x+x+4x=11x[/tex]
and [tex]10+17-34=-7[/tex]
So, [tex]11x-7=180[/tex]
Add 7 to both sides:-
[tex]11x=187[/tex]
Divide both sides by 11:-
[tex]\frac{11x}{11}=\frac{187}{11}[/tex]
[tex]x=17[/tex]
OAmalOHopeO
Kế hoạch đi dã ngoại của một gia đình sẽ bị hủy nếu trời có mây hoặc mưa. Biết xác suất để trời có mây là có mưa là có cả mây và mưa là . Tính xác suất để kế hoạch được thực hiện.
Answer:
itditsktxjtcv6tgcxufh-&#€#€($*:'₹€$*^'ditx_*^,tsitsitxmvditxitsitsjfxkhcoucuofoydoy
Casey's phone service charges a flat monthly fee of $30 for the first 1000 minutes of calls and $0.40 per minute over 1000. Determine Casey's monthly charge if he makes 1,100 minutes of calls?
Answer:
Casey's monthly charge for making 1,100 minutes of calls is $70.
Step-by-step explanation:
We can write a piecewise function to model the situation.
Since Casey's phone service only charges a monthly fee of $30 for the first 1000 minutes, we can write that for calling t minutes:
[tex]\displaystyle C(t) = 30\text{ if } t\leq 1000[/tex]
In other words, the total cost is only $30 is the total minutes of call is less than 1000 minutes.
However, if the total minutes of calls is greater than 1000, then its $0.40 per minute on top of the 30. Thus:
[tex]\displaystyle C(t) = 30 + 0.4(t-1000)\text{ if } t>1000[/tex]
All together, our piecewise function will be:
[tex]\displaystyle C(t) = \begin{cases} 30 & t\leq 1000 \\ 30 + 0.4(t-1000) & t>1000\end{cases}[/tex]
We want to determine Caseys monthly charge if he makes 1,100 minutes of calls. So, t = 1100. Since 1100 > 1000, we will use the second equation. This yields:
[tex]C(1100)= 30+0.4((1100)-1000)[/tex]
Evaluate:
[tex]\displaystyle C(1100) = 30+0.4(100) = 30+40=\$70[/tex]
Casey's monthly charge for using 1,100 minutes of call is $70.
What is the correct answer?
Answer:
Option D
Only the equation in option D matches with the table
Answered by GAUTHMATH
Question 17 of 25
Solve the inequality. Enter the answer as an inequality that shows the value of
the variable; for example f>7, or 6 < w. Where necessary, use <= to write s
and use >= to write .
V-(-5) <-9
Answer here
I
SUBMIT
Answer:
v-(-5)<-9
v- remove brackets -5
v- -5= -4 +5 ( opposite operation)
v- = -4
v< -4
A state lottery sells instant-lottery scratch tickets. 12% of the tickets have prizes. Neil goes to the store and buys 10 tickets. What is the probability that exactly three of Neil's tickets will have prizes?
Answer:
The probability of success is .12
The probability of failure is .88
According to the binomial theorem the probability of 3 success is
10! / (3! * 7!) * .12^3 * .88^7 = .085
What is the volume of the cylinder below?
Height 4
Radius 7
Answer:
V ≈ 615.75
r Radius 7
h Height 4
the length of a rectangle is 4 meters longer than the width. if the area is 22 square meters , find the rectangle dimension
Let breadth be x
Length=x+4We know
[tex]\boxed{\sf Area_{(Rectangle)}=Length\times Breadth}[/tex]
[tex]\\ \sf\longmapsto x(x+4)=22[/tex]
[tex]\\ \sf\longmapsto x^2+4x=22[/tex]
[tex]\\ \sf\longmapsto x^2+4x-22=0[/tex]
By solving[tex]\\ \sf\longmapsto x=-2\pm\sqrt{26}[/tex]
It doesnot have any real roots
When A = 200, solve the equation x2 - 40x + A=0 using the quadratic formula. Show all your working and give your answers correct to 2 decimal places.
Answer:
Solution given:
equation is:
x²-40x+A=0
when A=200
equation becomes
x²-40x+200=0
Comparing above equation with ax²+bx+c=0 we get
a=1
b=-40
c=200
By using quadratic equation formulax=[tex]\displaystyle \frac{-b±\sqrt{b²-4ac}}{2a}[/tex]
substituting value
x=[tex]\displaystyle \frac{-*-40±\sqrt{(-40)²-4*1*200}}{2*1}[/tex]
x=[tex]\displaystyle \frac{40±\sqrt{800}}{2}[/tex]
x=[tex]\displaystyle \frac{40±20\sqrt{2}}{2}[/tex]
taking positive
x=[tex]\displaystyle \frac{40+20\sqrt{2}}{2}[/tex]
x=34.14
taking negative
x=[tex]\displaystyle \frac{40-20\sqrt{2}}{2}[/tex]
x=5.86
x=34.14 or 5.86If f(x) = x2 + 7x and g(x) = 3x - 1, what is f(g(x))?
Answer:
f(g(x)) = 9x^2 + 15x - 6
Step-by-step explanation:
We are using function g(x) = 3x - 1 as the input to function f(x) = x^2 + 7x.
Starting with f(x) = x^2 + 7x, substitute g(x) for x on the left side and likewise substitute x^2 + 7x for each x on the right side. We obtain:
f(g(x)) = (3x - 1)^2 + 7(3x - 1).
If we multiply this out, we get:
f(g(x)) = 9x^2 - 6x + 1 + 21x - 7, or
f(g(x)) = 9x^2 + 15x - 6
rewrite the following statements into algebraic expression
the sum of x and y
5 is subtracted from y