Answer:
640
Step-by-step explanation:
muntiply all the number length width height
A street light is mounted at the top of a 15-ft-tall pole. A man 6 feet tall walks away from the pole with a speed of 5 ft/s along a straight path. How fast (in ft/s) is the tip of his shadow moving when he is 45 feet from the pole
Answer:
25/3 ft/s
Step-by-step explanation:
Height of pole , h=15 ft
Height of man, h'=6 ft
Let BD=x
BE=y
DE=BE-BD=y-x
All right triangles are similar
When two triangles are similar then the ratio of their corresponding sides are equal.
Therefore,
[tex]\frac{AB}{CD}=\frac{BE}{DE}[/tex]
[tex]\frac{15}{6}=\frac{y}{y-x}[/tex]
[tex]\frac{5}{2}=\frac{y}{y-x}[/tex]
[tex]5y-5x=2y[/tex]
[tex]5y-2y=5x[/tex]
[tex]3y=5x[/tex]
[tex]y=\frac{5}{3}x[/tex]
Differentiate w.r.t t
[tex]\frac{dy}{dt}=\frac{5}{3}\frac{dx}{dt}[/tex]
We have dx/dt=5ft/s
Using the value
[tex]\frac{dy}{dt}=\frac{5}{3}(5)=\frac{25}{3}ft/s[/tex]
Hence, the tip of his shadow moving with a speed 25/3 ft/s when he is 45 feet from the pole.
Answer:
The tip pf the shadow is moving with speed 25/3 ft/s.
Step-by-step explanation:
height of pole = 15 ft
height of man = 6 ft
x = 45 ft
According to the diagram, dx/dt = 5 ft/s.
Now
[tex]\frac{y-x}{y}=\frac{6}{15}\\\\15 y - 15 x = 6 y \\\\y = \frac{5}{3} x\\\\\frac{dy}{dt} = \frac{5}{3}\frac{dx}{dt}\\\\\frac{dy}{dt}=\frac{5}{3}\times 5 =\frac{25}{3} ft/s[/tex]
please help, it’s urgent !!!
D
A
B
C
for more explanation please don't hesitate to just respond
The combined value of the ages of Mary, Kate and Tom is 26 years. What will be their age in total after 2 years?
Answer:
32
Step-by-step explanation:
they will each age two years, 3x2 is 6, add 6 to 26
Answer:
32
Step-by-step explanation:
they will each age two years, 3x2 is 6, add 6 to 26
Determine la razón de la siguiente progresión geométrica: 81,27,9,3,1,....
Answer:
BẠN BỊ ĐIÊN À
Step-by-step explanation:
CÚT
Please help me out really need it
Answer:
[tex]{ \tt{hypotenuse = { \boxed{5}}}} \\ { \tt{opposite = { \boxed{3}}}} \\ { \tt{adjacent = { \boxed{4}}}} \\ \\ { \tt{ \sin \angle R = \frac{{ \boxed{3}}}{{ \boxed{5}}} }} \\ \\ { \tt{ \cos \angle R = \frac{{ \boxed{4}}}{{ \boxed{5}}} }} \\ \\ { \tt{ \tan \angle R = \frac{ \boxed{3}}{{ \boxed{4}}} }}[/tex]
Identify the domain of the function shown in the graph.
A. -5
B. x> 0
C. 0
D. x is all real numbers.
HELP ANYONE PLZZZ ?
1sr.
z(x)=x+1
If you input a 3 into z(x), what do you get for the output?
2nd.
n(x)=2/x
n(x) will give you an output for any number you use as an input except which of the following?
A. 0
B .3
C. 5
D. Trick question- you can get an output for every number you use as an input .
9514 1404 393
Answer:
4A. 0Step-by-step explanation:
1. Input 3 for x and do the arithmetic.
z(x) = x+1
z(3) = 3+1 = 4 . . . . . the output is 4
__
2. The expression for n(x) has x in the denominator. The expression will be undefined when the denominator is zero, so x=0 cannot be used.
Simplify the expression. 8x^-10 y^'6 -2x^2y^-8 Write your answer without negative exponents.
Answer:
[tex]8x^{-10}y^6 - 2x^2y^{-8} = \frac{8y^{14} - 2x^{12}}{x^{10}y^8}[/tex]
Step-by-step explanation:
Given
[tex]8x^{-10}y^6 - 2x^2y^{-8}[/tex]
Required
Simplify
Rewrite as:
[tex]8x^{-10}y^6 - 2x^2y^{-8} = \frac{8y^6}{x^{10}} - \frac{2x^2}{y^8}[/tex]
Take LCM
[tex]8x^{-10}y^6 - 2x^2y^{-8} = \frac{8y^6*y^8 - 2x^2 * x^{10}}{x^{10}y^8}[/tex]
Apply law of indices
[tex]8x^{-10}y^6 - 2x^2y^{-8} = \frac{8y^{14} - 2x^{12}}{x^{10}y^8}[/tex]
Select the correct answer.
Each statement describes a transformation of the graph of y=x. Which statement correctly describes the graph of y= x - 13?
OA. It is the graph of y= x translated 13 units to the right.
OB. It is the graph of y=xwhere the slope is decreased by 13.
It is the graph of y= x translated 13 units to the left.
OD. It is the graph of y= x translated 13 units up.
ОС.
minus sign ironically makes it go to the right
because the function crosses the y axis at -13
It is the graph of y = x translated 13 units down is the statement describes a transformation of the graph of y=x.
What is Graph?Graph is a mathematical representation of a network and it describes the relationship between lines and points.
The equation y = x - 13 represents a transformation of the graph of y = x. To find the type of transformation, we have to compare the two equations and look for changes.
In the equation y = x - 13, we subtract 13 from the value of x.
This means that the graph of y = x is shifted 13 units downwards,
since every point on the graph has 13 subtracted from its y-coordinate.
Hence, It is the graph of y = x translated 13 units down is the statement describes a transformation of the graph of y=x.
To learn more on Graph click:
https://brainly.com/question/17267403
#SPJ7
Which of the following statements are correct? Select ALL that apply!
Select one or more:
O a. -1.430 = -1.43
O b. 2.36 < 2.362
O c.-1.142 < -1.241
O d.-2.33 > -2.29
O e. 2.575 < 2.59
O f. -2.25 -2.46
Verify that the indicated family of functions is a solution of the given differential equation. Assume an appropriate interval I of definition for each solution.
d^2y/ dx^2 − 6 dy/dx + 9y = 0; y = c1e3x + c2xe3x When y = c1e3x + c2xe3x,
y'' - 6y' + 9y = 0
If y = C₁ exp(3x) + C₂ x exp(3x), then
y' = 3C₁ exp(3x) + C₂ (exp(3x) + 3x exp(3x))
y'' = 9C₁ exp(3x) + C₂ (6 exp(3x) + 9x exp(3x))
Substituting these into the DE gives
(9C₁ exp(3x) + C₂ (6 exp(3x) + 9x exp(3x)))
… … … - 6 (3C₁ exp(3x) + C₂ (exp(3x) + 3x exp(3x)))
… … … + 9 (C₁ exp(3x) + C₂ x exp(3x))
= 9C₁ exp(3x) + 6C₂ exp(3x) + 9C₂ x exp(3x))
… … … - 18C₁ exp(3x) - 6C₂ (exp(3x) - 18x exp(3x))
… … … + 9C₁ exp(3x) + 9C₂ x exp(3x)
= 0
so the provided solution does satisfy the DE.
A bank records deposits as positive numbers and withdrawals as negative numbers.
Mike withdrew $60 from his bank account 3 times.
what is the change in mikes account balance after all 3 withdrawals?
I need the answer to this
Answer:
[tex]A)\:x<12[/tex]
[tex]5(x+5)<85\\5x+25<85\\5x<85-25\\5x<60\\x<12[/tex]
OAmalOHopeO
Answer:
x < 12.................................
Please help!!! Find the domain of the function y = 2 cot(5∕8x).
A) All real numbers except odd integer multiples of 8π∕5
B) All real numbers except 0 and integer multiples of 8π∕5
C) All real numbers except 0 and integer multiples of 4π∕5
D) All real numbers except odd integer multiples of 4π∕5
Answer:
B) All real numbers except 0 and integer multiples of 8π∕5
Step-by-step explanation:
Cotangent function:
The cotangent function is given by:
[tex]y = \cot{ax} = \frac{\cos{ax}}{\sin{ax}}[/tex]
Domain:
All real values except those at which:
[tex]\sin{ax} = 0[/tex]
The sine is 0 for 0 and all integer multiples of [tex]\frac{1}{a}[/tex]
In this question:
[tex]a = \frac{5}{8}[/tex], so the values outside the domain are 0 and the integer multiples of [tex]\frac{8}{5}[/tex]. Then the correct answer is given by option b.
What is the percent increase from 250 to 900?
1. Write the percent change formula for an increase.
Percent Increase =
Amount of Increase
Original Amount
2. Substitute the known quantities for the amount of the increase and the original amount.
Percent Increase =
900 − 250
250
3. Subtract.
Percent Increase =
650
250
Answer:
260% is the correct answer
Step-by-step explanation:
i hope i helped
X = The set of months in a year?
there are 12 set of months in a year
Solve 60 ÷ 5(1 + 1(1 + 1))
Answer:
Creo que es 36
Step-by-step explanation
:D
Answer:
36
Step-by-step explanation:
Two workers finished a job in 12 days. How long would it take each worker to do the job by himself if one of the workers needs 10 more days to finish the job than the other worker
Two workers finished a job in 7.5 days.
How long would it take each worker to do the job by himself if one of the workers needs 8 more days to finish the job than the other worker?
let t = time required by one worker to complete the job alone
then
(t+8) = time required by the other worker (shirker)
let the completed job = 1
A typical shared work equation
7.5%2Ft + 7.5%2F%28%28t%2B8%29%29 = 1
multiply by t(t+8), cancel the denominators, and you have
7.5(t+8) + 7.5t = t(t+8)
7.5t + 60 + 7.5t = t^2 + 8t
15t + 60 = t^2 + 8t
form a quadratic equation on the right
0 = t^2 + 8t - 15t - 60
t^2 - 7t - 60 = 0
Factor easily to
(t-12) (t+5) = 0
the positive solution is all we want here
t = 12 days, the first guy working alone
then
the shirker would struggle thru the job in 20 days.
Answer:7 + 17 = 24÷2 (since there are 2 workers) =12. Also, ½(7) + ½17 = 3.5 + 8.5 = 12. So, we know that the faster worker will take 7 days and the slower worker will take 17 days. Hope this helps! jul15
Step-by-step explanation:
Given: F = {(0, 1), (2, 4), (4, 6), (6, 8)} and G = {(2, 5), (4, 7), (5, 8), (6, 9), (7, 5)}
(F + G) (2) =
4
5
9
9514 1404 393
Answer:
9
Step-by-step explanation:
The ordered pair (2, 4) in the relation for function F tells you F(2) = 4.
The ordered pair (2, 5) in the relation for function G tells you G(2) = 5.
Then the sum is ...
(F+G)(2) = F(2) +G(2) = 4 +5
(F+G)(2) = 9
Log6^(4x-5)=Log6^(2x+1)
Answer:
[tex]x = 3[/tex]
Step-by-step explanation:
Given
[tex]\log6^{(4x-5)} =\log6^{(2x+1)}[/tex]
Required
Solve for x
We have:
[tex]\log6^{(4x-5)} =\log6^{(2x+1)}[/tex]
Remove log6 from both sides
[tex](4x-5) = (2x+1)[/tex]
Collect like terms
[tex]4x - 2x = 5 + 1[/tex]
[tex]2x = 6[/tex]
Divide by 2
[tex]x = 3[/tex]
The elevation E, in meters, above sea level at which the boiling point of a certain liquid ist degrees Celsius is given by the function shown below. At what elevation is the boling point 99.5*7 100°?
E() - 1200(100-1) • 580(100 - 1)
At what elevation is the boiling point 99.5?
E (90.5*)=. meters
At what elevation is the boiling point 100"?
E(100*)-meters
Answer:
Given E(t)=1100(100-t)+580(100-t)^2
Put t = 99.5, we get
E(99.5)=1100(100-99.5)+580(100-99.5)^2
E(99.5)=1100(0.5)+580(0.5)^2
E(99.5)=1100(0.5)+580(0.25)
E(99.5)=550+145
E(99.5)=695m
Step-by-step explanation:
It can be concluded that -
E(99.5) = 695
E(100) = 0
What is expression?In mathematics, an expression or mathematical expression is a finite combination of symbols that is well-formed according to rules that depend on the context.
Mathematical symbols can designate numbers (constants), variables, operations, functions, brackets, punctuation, and grouping to help determine order of operations and other aspects of logical syntax.
Given is the function as follows -
E(t) = 1100(100 - t) + 580(100 - t)²
The given function is -
E(t) = 1100(100 - t) + 580(100 - t)²
At → E(99.5)
E(99.5) = 1100(100 - t) + 580(100 - t)²
E(99.5) = 1100(100 - 99.5) + 580(100 - 99.5)²
E(99.5) = 1100(0.5) + 580(0.5)²
E(99.5) = 550 + 145
E(99.5) = 695
At → E(100)
E(100) = 1100(100 - t) + 580(100 - t)²
E(100) = 1100(100 - 100) + 580(100 - 100)²
E(100) = 0
Therefore, it can be concluded that -
E(99.5) = 695
E(100) = 0
To solve more questions on expressions, visit the link below -
brainly.com/question/1041084
#SPJ2
according to the fundemental theorem of algebra, how many roots exist for the polynomial function? f(x) = (x^3-3x+1)^2
Answer:
6
Step-by-step explanation:
First, we can expand the function to get its expanded form and to figure out what degree it is. For a polynomial function with one variable, the degree is the largest exponent value (once fully expanded/simplified) of the entire function that is connected to a variable. For example, x²+1 has a degree of 2, as 2 is the largest exponent value connected to a variable. Similarly, x³+2^5 has a degree of 2 as 5 is not an exponent value connected to a variable.
Expanding, we get
(x³-3x+1)² = (x³-3x+1)(x³-3x+1)
= x^6 - 3x^4 +x³ - 3x^4 +9x²-3x + x³-3x+1
= x^6 - 6x^4 + 2x³ +9x²-6x + 1
In this function, the largest exponential value connected to the variable, x, is 6. Therefore, this is to the 6th degree. The fundamental theorem of algebra states that a polynomial of degree n has n roots, and as this is of degree 6, this has 6 roots
How many tens are in 6 hundreds
Answer:
60
Step-by-step explanation:
10 x 6 = 60
Hope this helped! :)
HELP ME WITH THIS MATHS QUESTION
PICTURE IS ATTACHED
Answer:
In picture.
Step-by-step explanation:
To do this answer, you need to count the boxes up to the mirror line. This will give us the exact place to draw the triangle.
The picture below is the answer.
use the figure to find y
Answer:
y = 3
Step-by-step explanation:
6sin(30) = 3
a+b=60000
[tex]\frac{a}{b}=\frac{4}{1}[/tex]
a=?
b=?
Answer: a = 25.67
Step-by-step explanation:
Simplify to the extent possible
(logx16)(log2x)
Answer:
[tex]{ \tt{ = ( log_{x}16)( log_{2}x) }}[/tex]
Change base x to base 2:
[tex]{ \tt{ = (\frac{ log_{2}16}{ log_{2}x } )( log_{2}x)}} \\ \\ { \tt{ = log_{2}(16) }} \\ = { \tt{ log_{2}(2) }} {}^{4} \\ = { \tt{4 log_{2}(2) }} \\ = { \tt{4}}[/tex]
Hi, help with question 18 please. thanks
Answer:
See Below.
Step-by-step explanation:
We are given the equation:
[tex]\displaystyle y^2 = 1 + \sin x[/tex]
And we want to prove that:
[tex]\displaystyle 2y\frac{d^2y}{dx^2} + 2\left(\frac{dy}{dx}\right) ^2 + y^2 = 1[/tex]
Find the first derivative by taking the derivative of both sides with respect to x:
[tex]\displaystyle 2y \frac{dy}{dx} = \cos x[/tex]
Divide both sides by 2y:
[tex]\displaystyle \frac{dy}{dx} = \frac{\cos x}{2y}[/tex]Find the second derivative using the quotient rule:
[tex]\displaystyle \begin{aligned} \frac{d^2y}{dx^2} &= \frac{(\cos x)'(2y) - (\cos x)(2y)'}{(2y)^2}\\ \\ &= \frac{-2y\sin x-2\cos x \dfrac{dy}{dx}}{4y^2} \\ \\ &= -\frac{y\sin x + \cos x\left(\dfrac{\cos x}{2y}\right)}{2y^2} \\ \\ &= -\frac{2y^2\sin x+\cos ^2 x}{4y^3}\end{aligned}[/tex]
Substitute:
[tex]\displaystyle 2y\left(-\frac{2y^2\sin x+\cos ^2 x}{4y^3}\right) + 2\left(\frac{\cos x}{2y}\right)^2 +y^2 = 1[/tex]
Simplify:
[tex]\displaystyle \frac{-2y^2\sin x-\cos ^2x}{2y^2} + \frac{\cos ^2 x}{2y^2} + y^2 = 1[/tex]
Combine fractions:
[tex]\displaystyle \frac{\left(-2y^2\sin x -\cos^2 x\right)+\left(\cos ^2 x\right)}{2y^2} + y^2 = 1[/tex]
Simplify:
[tex]\displaystyle \frac{-2y^2\sin x }{2y^2} + y^2 = 1[/tex]
Cancel:
[tex]\displaystyle -\sin x + y^2 = 1[/tex]
Substitute:
[tex]-\sin x + \left( 1 + \sin x\right) =1[/tex]
Simplify. Hence:
[tex]1\stackrel{\checkmark}{=}1[/tex]
Q.E.D.
What is the endpoint of a line segment if the midpoint M( – 3, 4) and the other endpoint is E(7, – 2)?
Answers
(– 13, 10)
(10, – 13)
(– 1, 2)
(2, – 1)
9514 1404 393
Answer:
(-13, 10)
Step-by-step explanation:
If M is the midpoint of segment DE, then ...
D = 2M -E
D = 2(-3, 4) -(7, -2) = (2(-3)-7, 2(4)+2) = (-13, 10)
The other end point is (-13, 10).
Translate the triangle. Then enter the new coordinates. A(-3, 4) A'([?], [?]) B'([ ], [ ] C([],[]) B(0, 1) C(-4,1)
or
Answer:
The new coordinates are [tex]A'(x,y) = (3, 0)[/tex], [tex]B'(x,y) = (6, -3)[/tex] and [tex]C'(x,y) = (2, -3)[/tex].
Step-by-step explanation:
Vectorially speaking, the translation of a point can be defined by the following expression:
[tex]V'(x,y) = V(x,y) + T(x,y)[/tex] (1)
Where:
[tex]V(x,y)[/tex] - Original point.
[tex]V'(x,y)[/tex] - Translated point.
[tex]T(x,y)[/tex] - Translation vector.
If we know that [tex]A(x,y) = (-3,4)[/tex], [tex]B(x,y) = (0,1)[/tex], [tex]C(x,y) = (-4,1)[/tex] and [tex]T(x,y) = (6, -4)[/tex], then the resulting points are:
[tex]A'(x,y) = (-3, 4) + (6, -4)[/tex]
[tex]A'(x,y) = (3, 0)[/tex]
[tex]B'(x,y) = (0,1) + (6, -4)[/tex]
[tex]B'(x,y) = (6, -3)[/tex]
[tex]C'(x,y) = (-4, 1) + (6, -4)[/tex]
[tex]C'(x,y) = (2, -3)[/tex]
The new coordinates are [tex]A'(x,y) = (3, 0)[/tex], [tex]B'(x,y) = (6, -3)[/tex] and [tex]C'(x,y) = (2, -3)[/tex].