Think of a hydropower dam . How is electrical energy produced from potential and kinetic energy ?
hydroelectric dam converts the potential energy stored in a water reservoir behind a dam to mechanical energy—mechanical energy is also known as kinetic energy. ... The generator converts the turbine's mechanical energy into electricity.
Hope this helps!
Answer:
Potential energy and kinetic energy are constituents of mechanical energy.
When a turbine is switched on, it rotates with mechanical energy.
Since a motor runs the turbine, it converts this mechanical energy to electrical energy.
A car is travelling at 27m/s and decelerates at a=5m/s2 for a distance of 10m. Calculate its final velocity. (Hint does deceleration imply that the acceleration is positive or negative?)[
Answer:
use the formula to calculate acceleration and you'll get the answers
If the girl skater has a mass of 30 kg and moves backward at 5 m/s, what is the velocity or the boy skater
his mass is 50 kg?
Question: Two people stand facing each other at a roller-skating rink then push off each other. If the girl skater has a mass of 30 kg and moves backward at 5 m/s, what is the velocity of the boy skater if his mass is 50 kg?
Answer:
3 m/s
Explanation:
Applying,
The Law of conservation of momentum
Momentum of the girl skater = momentum of the boy skater
MV = mv...................... Equation 1
Where M = mass of the girl skater, V = velocity of the girl skater, m = mass of the boy skater, v = velocity of the boy skater
From the question, we were asked to calculate v
v = MV/m.................. Equation 1
Given: M = 30 kg, V = 5 m/s, m = 50 kg
Substitute these values into equation 1
v = (30×5)/50
v = 3 m/s
Hence the velocity of the the boy skater is 3m/s
Which one of the following statements concerning the magnetic field inside (far from the surface) a long, current-carrying solenoid is true?
1) The magnetic field is zero.
2) The magnetic field is independent of the number of windings.
3) The magnetic field varies as 1/r as measured from the solenoid axis.
4) The magnetic field is independent of the current in the solenoid.
5) The magnetic field is non-zero and nearly uniform.
What is not the ideal location for a radioactive waste storage facility?
A.
in an area that already has a lot of background radiation
B.
in an area that has few earthquakes
C.
far away from ground water
D.
in an area that is unpopulated with people
Answer:
D
Explanation:
1. A group of students were trying to find the greatest
rebounded height of a rubber ball dropped on a basketball
court. They dropped from 3 different heights. The chart
below has their data.
26 cm
Drop Height Chart
Trials Drop height Rebound height
Trial 12 meters 103 cm
Trial 2% meter
Trial 31 meter 58 cm
Which explanation is the best reason for why trial 1 has the
greatest rebound height?
A. The speed of the ball is determined by the distance it
travels.
B. The force applied to the ball is a balanced force.
C) The greater the force applied to the ball the greater the
change in motion.
D. The closer the ball is to the ground the more gravity it
has.
Answer:
D th
Explanation:
D B. The force applied to the ball is a balanced force.
A skater spins with an angular speed of 5.9 rad/s with her arms outstretched. She lowers her arms, decreasing her moment of inertia by a factor of 1.7. Ignoring friction on the skates, determine the ratio of her final kinetic energy to her initial kinetic energy.
Answer:
the ratio of her final kinetic energy to her initial kinetic energy is 1.7.
Explanation:
Given;
initial angular speed, ω₁ = 5.9 rad/s
let her initial moment of inertia = I₁
her final moment of inertia [tex]I_2 = \frac{I_1}{1.7}[/tex]
Apply the principle of conservation of angular momentum to determine the final angular speed of the girl;
[tex]\omega_1I_1 = \omega_f I_2\\\\\omega_f = \frac{\omega _1 I_1}{I_2} \\\\\omega_f = \frac{5.9 \times I_1}{I_1/1.7} \\\\\omega = 5.9 \times 1.7 \\\\\omega_f = 10.03 \ rad/s[/tex]
The initial rotational kinetic energy is given as;
[tex]K.E_I = \frac{1}{2}I_1 \omega_I ^2[/tex]
The final rotational kinetic energy is given as;
[tex]K.E_f = \frac{1}{2}I_2 \omega_f ^2[/tex]
The ratio of her final kinetic energy to her initial kinetic energy is given as;
[tex]\frac{K.E_f}{K.E_I}= \frac{\frac{1}{2}I_2 \omega_f^2 }{\frac{1}{2} I_1\omega _1^2} \\\\\frac{K.E_f}{K.E_I}= \frac{I_2 \omega_f^2}{ I_1\omega _1^2} \\\\\frac{K.E_f}{K.E_I}= \frac{I_1/1.7 \times \omega_f^2}{ I_1 \times \omega _1^2} \\\\\frac{K.E_f}{K.E_I}= \frac{ \omega_f^2}{ 1.7 \omega _1^2} \\\\\frac{K.E_f}{K.E_I}= \frac{ (10.03)^2}{ 1.7(5.9)^2} = \frac{17}{10} = 1.7[/tex]
Therefore, the ratio of her final kinetic energy to her initial kinetic energy is 1.7.
Two point charges, initially 3 cm apart, are moved to a distance of 1 cm apart. By what factor does the resulting electric force between them change?
A. 3
B. 1/9
C. 1/3
D. 9
g A high-speed flywheel in a motor is spinning at 500 rpm when a power failure suddenly occurs. The flywheel has mass 39.0kg and diameter 78.0cm. The power is off for 34.0s, and during this time the flywheel slows due to friction in its axle bearings. During the time the power is off, the flywheel makes 170 complete revolutions.At what rate is the flywheel spinning when the power comes back on?
Answer:
[tex]10.54\ \text{rad/s}[/tex]
Explanation:
[tex]\omega_i[/tex] = Initial angular velocity = 500 rpm = [tex]500\times \dfrac{2\pi}{60}\ \text{rad/s}[/tex]
[tex]\omega_f[/tex] = Final angular velocity
t = Time = 34 s
[tex]\theta[/tex] = Angular displacement = 170 revs = [tex]170\times 2\pi\ \text{rad}[/tex]
[tex]\alpha[/tex] = Angulr acceleration
From the kinematic equations of angular motion we have
[tex]\theta=\omega_it+\dfrac{1}{2}\alpha t^2\\\Rightarrow \alpha=\dfrac{\theta-\omega_it}{\dfrac{1}{2}t^2}\\\Rightarrow \alpha=\dfrac{170\times 2\pi-500\times \dfrac{2\pi}{60}\times 34}{\dfrac{1}{2}\times 34^2}\\\Rightarrow \alpha=-1.23\ \text{rad/s}^2[/tex]
[tex]\omega_f=\omega_i+\alpha t\\\Rightarrow \omega_f=500\times \dfrac{2\pi}{60}+(-1.23)\times 34\\\Rightarrow \omega_f=10.54\ \text{rad/s}[/tex]
The rate at which the wheel is spinning when the power comes back on is [tex]10.54\ \text{rad/s}[/tex].
Extra CreditA particle is directed along the axis of the instrument in the gure. Aparallel plate capacitor sets up an electric eld E, which is orientedperpendicular to a uniform magnetic eld B. If the plates are separated byd= 2:0 mm and the value of the magnetic eld isB= 0:60T. Calculatethe potential di erence, between the capacitor plates, required to allow aparticle
This question is incomplete, the complete question is;
A particle is directed along the axis of the instrument in the figure below. A parallel plate capacitor sets up an electric field E, which is oriented perpendicular to a uniform magnetic field B. If the plates are separated by d = 2.0 mm and the value of the magnetic field is B = 0.60T.
Calculate the potential difference, between the capacitor plates, required to allow a particle with speed v = 5.0 × 10⁵ m/s to pass straight through without deflection.
Hint : ΔV = Ed
Answer:
the required potential difference, between the capacitor plates is 600 V
Explanation:
Given the data in the question;
B = 0.60 T
d = 2.0 mm = 0.002 m
v = 5.0 × 10⁵ m/s.
since particle pass straight through without deflection.
F[tex]_{net[/tex] = 0
so, F[tex]_E[/tex] = F[tex]_B[/tex]
qE = qvB
divide both sides by q
E = vB
we substitute
E = (5.0 × 10⁵) × 0.6
E = 300000 N/C
given that; potential difference ΔV = Ed
we substitute
ΔV = 300000 × 0.002
ΔV = 600 V
Therefore, the required potential difference, between the capacitor plates is 600 V
Why are some tsunamis described as local?
Answer:
A local tsunami is one that originates from within about 100 km or less than 1 hour tsunami travel time from the impacted coastline. Local tsunamis can result in a significant number of casualties since authorities have little time to warn/evacuate the population.
Explanation:
Hope this helps
Transverse thrusters are used to make large ships fully maneuverable at low speeds without tugboat assistance. A transverse thruster consists of a propeller mounted in a duct; the unit is then mounted below the waterline in the bow or stern of the ship. The duct runs completely across the ship. Calculate the thrust developed by a 1900 kW unit supplied to the propeller if the duct is 2.6 m in diameter and the ship is stationary.
Answer:
Thrust developed = 212.3373 kN
Explanation:
Assuming the ship is stationary
Determine the Thrust developed
power supplied to the propeller ( Punit ) = 1900 KW
Duct distance ( diameter ; D ) = 2.6 m
first step : calculate the area of the duct
A = π/4 * D^2
= π/4 * ( 2.6)^2 = 5.3092 m^2
next : calculate the velocity of propeller
Punit = (A*v*β ) / 2 * V^2 ( assuming β = 999 kg/m^3 ) also given V1 = 0
∴V^3 = Punit * 2 / A*β
= ( 1900 * 10^3 * 2 ) / ( 5.3092 * 999 )
hence V2 = 8.9480 m/s
Finally determine the thrust developed
F = Punit / V2
= (1900 * 10^3) / ( 8.9480)
= 212.3373 kN
1. Objects become electrically charged as a result of the transfer of
Answer:
Electron
Explanation:
An object can become electrically charged when it gains or loses an electron. Because an electron is negatively charged, when an object gains an electron it becomes negatively charged. Also, when it gives up an electron, it becomes positively charged. This positive charge is because the atom has one proton more than electron. In a neutral atom, the number of the proton is equal to the number of the electron. An electron is negatively charged, and a proton is positively charged.
Unpolarized light with intensity 370 W/m2 passes first through a polarizing filter with its axis vertical, then through a second polarizing filter. It emerges from the second filter with intensity 132 W/m2 . You may want to review (Pages 897 - 898) . Part A What is the angle from vertical of the axis of the second polarizing filter
Answer:
θ = 32.4º
Explanation:
For this exercise let's use Malus's law
I = Io cos² θ
in this case it indicates that the incident intensity is 370 W/m², when the first polarization passes, only the radiation with the same polarization of the polarizer emerges, that is, vertical
I₀ = 370/2 = 185 W / m²
this is the radiation that affects the second polarizer, let's apply the expression of Maluz
θ = cos⁻¹ ([tex]\sqrt{\frac{I}{I_o} }[/tex])
θ = cos⁻¹ ([tex]\sqrt{132/185}[/tex])
θ = cos⁻¹ (0.844697)
θ = 32.4º
PLEASE HELP
Which of the following are examples of gravity in action? Select all that apply.
A. an earthquake
B. a planet orbiting the sun
C. a ball flying through the air
D. precipitation falling to Earth
HURRY IM TIMED
How can you make people feel inspired?
By leading them on an emotional journey through various states to inspiration
By talking about something that interests you
By proving yourself to be a trustworthy speaker
By making them laugh and feel comfortable
Answer:
By talking about something that interesto you’
sorry if wrong
Explanation:
Which electromagnetic wave has the shortest wavelength?
Which electromagnetic wave would have a wavelength approximately the size of the tip of a pencil?
Which electromagnetic wave has the longest wavelength?
Answer:
shortest - gamma Ray's
size of a pencil tip : most likely microwaves
longest - radio waves
Gamma rays have the shortest wavelength whereas Radio waves have the longest wavelength. The wave whose wavelength is about the size of the tip of a pencil is infrared ray.
What is an Electromagnetic spectrum?The whole electromagnetic waves are divided into several classes based on their frequencies or energies as follows, in the order of increasing frequency:
Radio waves
Microwaves
Infrared
Visible
Ultraviolet
X-rays
Gamma rays
The Gamma rays are the shortest wavelength group with frequencies greater than 3 × 10²⁰ Hz.
The Radio waves are the longest wavelength group. Their frequency is lower than 3 × 10⁷ Hz.
The tip of a pencil is about 0.5mm in width.
Calculate the frequency of the wave whose wavelength is about the size of the tip of a pencil i.e. λ = 0.5 mm,
ν = 3×10⁸/(0.5×10⁻³) = 6×10¹¹ Hz.
The infrared rays have frequencies in the range of 3×10¹¹ Hz to 3×10¹³ Hz. So, the wave is infrared.
Infrared waves have a wavelength about the tip of a pencil.
Learn more about the electromagnetic spectrum here
https://brainly.com/question/23423065
#SPJ2
Why don’t the northern and Southern Hemisphere experience summer at the same time?
Answer:
It is because of the tilt of the earth.
Explanation:
the earth is tilted at 23.5 degrees. this makes it so that either the northern or southern hemisphere will be exposed to more rays from the sun. In the areas that are getting more rays from the sun, it gets warmer. Think about it like this, because the earth is tilted, part of it is more in the shade and part of it is more in the light. And its colder in the shade, so thats why seasons happen and why they dont happen at the same time.
5. A 6.0-kilogram mass is moving with a speed of 2.0 m/s. What is the kinetic energy of the mass?
Answer:
K.E. = ½ × mv²
= ½ × 6 × (2)²
= ½ × 6 × 4
= 3 × 4
= 12 J
1.What is the Kinetic energy of a 3 kg object moving at 4 m/s?
Plz help I’ll give points
Answer:
24 J
Explanation:
[tex]K = \frac{1}{2} mv^{2} = \frac{1}{2} (3kg)(4m/s)^{2} = 24 J[/tex]
A 35.0 g bullet strikes a 50 kg stationary piece of lumber and embeds itself in the wood. The piece of lumber and the bullet fly off together at 8.6 m/s. What was the speed of the ballot before it struck the lumbar? Define the bullet and the wood as a system
Answer:
12294.31 m/s
Explanation:
Momentum = (mass)(velocity)
Momentum before = Momentum after
(momentum of bullet)+(momentum of block)=(momentum of bullet and block)
0.035v+50(0)=(0.035+50)(8.6)
0.035v=430.301
v=12294.3142857m/s
A block of weight 1200N is on an incline plane of 30° with the horizontal, a force P is applied to the body parallel to the plane, if the coefficient of the static friction is 0.20 and kinetic friction is 0.15 (1) find the value of P to cause motion up the plane (2) find P to prevent motion down the plane. (3) Find P to cause continuous motion up the plane.
Answer:
a) P = 807.85 N, b) P = 392.15 N, c) P = 444.12 N
Explanation:
For this exercise, let's use Newton's second law, let's set a reference frame with the x-axis parallel to the plane and the direction rising as positive, and the y-axis perpendicular to the plane.
Let's use trigonometry to break down the weight
sin θ = Wₓ / W
cos θ = W_y / W
Wₓ = W sin θ
W_y = W cos θ
Wₓ = 1200 sin 30 = 600 N
W_y = 1200 cos 30 = 1039.23 N
Y axis
N- W_y = 0
N = W_y = 1039.23 N
Remember that the friction force always opposes the movement
a) in this case, the system will begin to move upwards, which is why friction is static
P -Wₓ -fr = 0
P = Wₓ + fr
as the system is moving the friction coefficient is dynamic
fr = μ N
fr = 0.20 1039.23
fr = 207.85 N
we substitute
P = 600+ 207.85
P = 807.85 N
b) to avoid downward movement implies that the system is stopped, therefore the friction coefficient is static
P + fr -Wx = 0
fr = μ N
fr = 0.20 1039.23
fr = 207.85 N
we substitute
P = Wₓ -fr
P = 600 - 207,846
P = 392.15 N
c) as the movement is continuous, the friction coefficient is dynamic
P - Wₓ + fr = 0
P = Wₓ - fr
fr = 0.15 1039.23
fr = 155.88 N
P = 600 - 155.88
P = 444.12 N
A ray diagram is shown. A tree acts as the object further than 2 F away from a biconvex lens. The distance between 2 F and the object is labeled W. The distance between F and 2 F is labeled X. There I a light ray parallel to the principal axis is bent through F on the image side of the lens. There is a ray straight through the center of the lens. The rays intersect a point below the principle axis between F and 2 F on the image side of the lens and is closer to the principal axis than the object is tall. The intersect point is labeled Z and the distance between F and 2 F on the image side of the lens is labeled Y. Which letter represents the location of the image produced by the lens? W X Y Z
Answer:
Z
Explanation:
correct on edge
Answer: Z
good luck!
In an elastic collision between a moving 10-kg mass and a stationary 10-kg mass half the momentum is transferred to the stationary mass. In this situation the total kinetic energy after the collision is less than it was before the collision. Where did the kinetic energy go?
A) The kinetic energy was destroyed during the collision.
B) Some of the kinetic energy was turned into momentum during the collision.
C) Some of the kinetic energy was turned into heat or used to deform the masses.
D) Some of the kinetic energy was turned into potential energy during the collision.
Answer: C
Explanation:
USAtestprep
6. If an object accelerates at 3m/s/s, how long does it take for the object to travel at a speed of 12 m/s.
Answer:
4 seconds
Explanation:
Assuming that the object started from rest,
v = at
--> t = v/a = (12 m/s) / (3 m/s^2)
= 4 seconds
7)
Which wave carries the most energy?
-)
A)
B)
C)
D)
Hover over answer image to enlarge
C.
Explanation:
C. is a gamma ray and they carry the most energy.
The most energy is carried by the gamma rays. The correct option is C.
What is a gamma ray?Gamma radiation, also known as gamma rays, is a type of electromagnetic radiation produced by the radioactive decay of atomic nuclei. It is made up of electromagnetic waves with the shortest wavelengths, which are typically shorter than those of X-rays.
Waves with a higher frequency have more energy. Gamma rays have the shortest wavelengths and highest frequencies of any electromagnetic wave. Gamma rays have more energy than any other electromagnetic wave due to their extremely high frequencies.
To know more about gamma rays follow
https://brainly.com/question/22166705
#SPJ6
What is surface tension
Answer:
Surface tension is, the surface where the water meets the air, water molecules cling even more tightly to each other.
stored energy is _________ ___________
kinetic energy
energy in motion
potential energy
Answer:
Potential energy
Explanation:
Potential energy is stored energy
1. A train is moving north at 5 m/s on a straight track. The engine is causing it to accelerate northward at 2 m/s^2.
How far will it go before it is moving at 20 m/s?
A) 83
B) 43
C) 39
D) 94
E) 20
Answer:
It will go up to 93.75 m before it is moving at 20 m/s
Explanation:
As we know that
[tex]v^2 - u^2 = 2aS[/tex]
here v is the final speed i.e 20 m/s
u is the initial speed i.e 5 m/s
a is the acceleration due to gravity i.e 2 m/s^2
Substituting the given values in above equation, we get -
[tex]20^2 - 5^2 = 2*2*S\\S = 93.75[/tex]meters
You are riding on a carousel that is rotating at a constant 24 rpm. It has an inside radius of 4 ftand outside radius of 12 ft. You begin to run from the inside to the outside along a radius. Your peak velocity with respect to the carousel is 6 mph and occurs at a radius of 8 ft.What are your maximum Coriolis acceleration magnitude and its directionwith respect to the carousel
Answer:
magnitude of the Coriolis acceleration is 44.235 ft/s² and the direction of the acceleration is along the axis of transmission
Explanation:
Given the data in the question;
Speed of carousel N = 24 rpm
From the diagram below, selected path direction defines the Axis of slip.
Hence, The Coriolis is acting along the axis of transmission
Now, we determine the angular speed ω of the carousel.
ω = 2πN / 60
we substitute in the value of N
ω = (2π × 24) / 60
ω = 2.5133 rad/s
Next, we convert the given velocity from mph to ft/s
we know that; 1 mph = 1.4667 ft/s
so
[tex]V_{slip[/tex] = 6 mph = ( 6 × 1.4667 ) = 8.8002 ft/s
Now, we determine the magnitude of the Coriolis acceleration
[tex]a_c[/tex] = 2( [tex]V_{slip[/tex] × ω )
we substitute
[tex]a_c[/tex] = 2( 8.8002 ft/s × 2.5133 rad/s )
[tex]a_c[/tex] = 44.235 ft/s²
Hence, magnitude of the Coriolis acceleration is 44.235 ft/s² and the direction of the acceleration is along the axis of transmission